summaryrefslogtreecommitdiff
path: root/compiler/codeGen/ClosureInfo.lhs
blob: 740bfab84599a721026b0739909270e7e5489dbf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
%
% (c) The University of Glasgow 2006
% (c) The Univserity of Glasgow 1992-2004
%

	Data structures which describe closures, and
	operations over those data structures

		Nothing monadic in here

Much of the rationale for these things is in the ``details'' part of
the STG paper.

\begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

module ClosureInfo (
        idRepArity,

	ClosureInfo(..), LambdaFormInfo(..),	-- would be abstract but
	StandardFormInfo(..),			-- mkCmmInfo looks inside
        SMRep,

	ArgDescr(..), Liveness, 
	C_SRT(..), needsSRT,

	mkLFThunk, mkLFReEntrant, mkConLFInfo, mkSelectorLFInfo,
	mkApLFInfo, mkLFImported, mkLFArgument, mkLFLetNoEscape,

	mkClosureInfo, mkConInfo, maybeIsLFCon,
        closureSize,

	ConTagZ, dataConTagZ,

	infoTableLabelFromCI, entryLabelFromCI,
	closureLabelFromCI,
	isLFThunk, closureUpdReqd,
	closureNeedsUpdSpace, closureIsThunk,
	closureSingleEntry, closureReEntrant, isConstrClosure_maybe,
        closureFunInfo, isKnownFun,
        funTag, funTagLFInfo, tagForArity, clHasCafRefs,

        enterIdLabel, enterReturnPtLabel,

	nodeMustPointToIt, 
	CallMethod(..), getCallMethod,

	blackHoleOnEntry,

	staticClosureRequired,

	isToplevClosure,
	closureValDescr, closureTypeDescr,	-- profiling

	isStaticClosure,
	cafBlackHoleClosureInfo,

	staticClosureNeedsLink,

	-- CgRep and its functions
	CgRep(..), nonVoidArg,
	argMachRep, primRepToCgRep, 
	isFollowableArg, isVoidArg, 
	isFloatingArg, is64BitArg,
	separateByPtrFollowness,
	cgRepSizeW, cgRepSizeB,
	retAddrSizeW,
	typeCgRep, idCgRep, tyConCgRep, 

    ) where

#include "../includes/MachDeps.h"
#include "HsVersions.h"

import StgSyn
import SMRep

import CLabel
import Cmm
import Unique
import Var
import Id
import IdInfo
import DataCon
import Name
import Type
import TypeRep
import TcType
import TyCon
import BasicTypes
import Outputable
import FastString
import Constants
import DynFlags
import Util
\end{code}


%************************************************************************
%*									*
\subsection[ClosureInfo-datatypes]{Data types for closure information}
%*									*
%************************************************************************

Information about a closure, from the code generator's point of view.

A ClosureInfo decribes the info pointer of a closure.  It has
enough information 
  a) to construct the info table itself
  b) to allocate a closure containing that info pointer (i.e.
	it knows the info table label)

We make a ClosureInfo for
	- each let binding (both top level and not)
	- each data constructor (for its shared static and
		dynamic info tables)

\begin{code}
data ClosureInfo
  = ClosureInfo {
	closureName   :: !Name,		  -- The thing bound to this closure
	closureLFInfo :: !LambdaFormInfo, -- NOTE: not an LFCon (see below)
	closureSMRep  :: !SMRep,	  -- representation used by storage mgr
	closureSRT    :: !C_SRT,	  -- What SRT applies to this closure
        closureType   :: !Type,           -- Type of closure (ToDo: remove)
	closureDescr  :: !String,	  -- closure description (for profiling)
	closureInfLcl :: Bool             -- can the info pointer be a local symbol?
    }

  -- Constructor closures don't have a unique info table label (they use
  -- the constructor's info table), and they don't have an SRT.
  | ConInfo {
	closureCon       :: !DataCon,
	closureSMRep     :: !SMRep
    }
\end{code}

%************************************************************************
%*									*
\subsubsection[LambdaFormInfo-datatype]{@LambdaFormInfo@: source-derivable info}
%*									*
%************************************************************************

Information about an identifier, from the code generator's point of
view.  Every identifier is bound to a LambdaFormInfo in the
environment, which gives the code generator enough info to be able to
tail call or return that identifier.

Note that a closure is usually bound to an identifier, so a
ClosureInfo contains a LambdaFormInfo.

\begin{code}
data LambdaFormInfo
  = LFReEntrant		-- Reentrant closure (a function)
	TopLevelFlag	-- True if top level
	!RepArity	-- Arity. Invariant: always > 0
	!Bool		-- True <=> no fvs
	ArgDescr	-- Argument descriptor (should reall be in ClosureInfo)

  | LFCon		-- A saturated constructor application
	DataCon		-- The constructor

  | LFThunk		-- Thunk (zero arity)
	TopLevelFlag
	!Bool		-- True <=> no free vars
	!Bool		-- True <=> updatable (i.e., *not* single-entry)
	StandardFormInfo
	!Bool		-- True <=> *might* be a function type

  | LFUnknown		-- Used for function arguments and imported things.
			--  We know nothing about  this closure.  Treat like
			-- updatable "LFThunk"...
			-- Imported things which we do know something about use
			-- one of the other LF constructors (eg LFReEntrant for
			-- known functions)
	!Bool		-- True <=> *might* be a function type

  | LFLetNoEscape	-- See LetNoEscape module for precise description of
			-- these "lets".
	!RepArity	-- arity;

  | LFBlackHole		-- Used for the closures allocated to hold the result
			-- of a CAF.  We want the target of the update frame to
			-- be in the heap, so we make a black hole to hold it.



-------------------------
-- StandardFormInfo tells whether this thunk has one of 
-- a small number of standard forms

data StandardFormInfo
  = NonStandardThunk
	-- Not of of the standard forms

  | SelectorThunk
	-- A SelectorThunk is of form
	--      case x of
	--	       con a1,..,an -> ak
	-- and the constructor is from a single-constr type.
       WordOff             	-- 0-origin offset of ak within the "goods" of 
			-- constructor (Recall that the a1,...,an may be laid
			-- out in the heap in a non-obvious order.)

  | ApThunk 
	-- An ApThunk is of form
	--	x1 ... xn
	-- The code for the thunk just pushes x2..xn on the stack and enters x1.
	-- There are a few of these (for 1 <= n <= MAX_SPEC_AP_SIZE) pre-compiled
	-- in the RTS to save space.
	RepArity	-- Arity, n
\end{code}


%************************************************************************
%*									*
			CgRep
%*									*
%************************************************************************

An CgRep is an abstraction of a Type which tells the code generator
all it needs to know about the calling convention for arguments (and
results) of that type.  In particular, the ArgReps of a function's
arguments are used to decide which of the RTS's generic apply
functions to call when applying an unknown function.

It contains more information than the back-end data type MachRep,
so one can easily convert from CgRep -> MachRep.  (Except that
there's no MachRep for a VoidRep.)

It distinguishes 
	pointers from non-pointers (we sort the pointers together
	when building closures)

	void from other types: a void argument is different from no argument

All 64-bit types map to the same CgRep, because they're passed in the
same register, but a PtrArg is still different from an NonPtrArg
because the function's entry convention has to take into account the
pointer-hood of arguments for the purposes of describing the stack on
entry to the garbage collector.

\begin{code}
data CgRep 
  = VoidArg 	-- Void
  | PtrArg 	-- Word-sized heap pointer, followed
		-- by the garbage collector
  | NonPtrArg 	-- Word-sized non-pointer
		-- (including addresses not followed by GC)
  | LongArg	-- 64-bit non-pointer
  | FloatArg 	-- 32-bit float
  | DoubleArg 	-- 64-bit float
  deriving Eq

instance Outputable CgRep where
    ppr VoidArg   = ptext (sLit "V_")
    ppr PtrArg    = ptext (sLit "P_")
    ppr NonPtrArg = ptext (sLit "I_")
    ppr LongArg   = ptext (sLit "L_")
    ppr FloatArg  = ptext (sLit "F_")
    ppr DoubleArg = ptext (sLit "D_")

argMachRep :: DynFlags -> CgRep -> CmmType
argMachRep dflags PtrArg    = gcWord dflags
argMachRep dflags NonPtrArg = bWord dflags
argMachRep _      LongArg   = b64
argMachRep _      FloatArg  = f32
argMachRep _      DoubleArg = f64
argMachRep _      VoidArg   = panic "argMachRep:VoidRep"

primRepToCgRep :: PrimRep -> CgRep
primRepToCgRep VoidRep    = VoidArg
primRepToCgRep PtrRep     = PtrArg
primRepToCgRep IntRep	  = NonPtrArg
primRepToCgRep WordRep	  = NonPtrArg
primRepToCgRep Int64Rep   = LongArg
primRepToCgRep Word64Rep  = LongArg
primRepToCgRep AddrRep    = NonPtrArg
primRepToCgRep FloatRep   = FloatArg
primRepToCgRep DoubleRep  = DoubleArg

idCgRep :: Id -> CgRep
idCgRep x = typeCgRep . idType $ x

tyConCgRep :: TyCon -> CgRep
tyConCgRep = primRepToCgRep . tyConPrimRep

typeCgRep :: UnaryType -> CgRep
typeCgRep = primRepToCgRep . typePrimRep 
\end{code}

Whether or not the thing is a pointer that the garbage-collector
should follow. Or, to put it another (less confusing) way, whether
the object in question is a heap object. 

Depending on the outcome, this predicate determines what stack
the pointer/object possibly will have to be saved onto, and the
computation of GC liveness info.

\begin{code}
isFollowableArg :: CgRep -> Bool  -- True <=> points to a heap object
isFollowableArg PtrArg  = True
isFollowableArg _       = False

isVoidArg :: CgRep -> Bool
isVoidArg VoidArg = True
isVoidArg _       = False

nonVoidArg :: CgRep -> Bool
nonVoidArg VoidArg = False
nonVoidArg _       = True

-- isFloatingArg is used to distinguish @Double@ and @Float@ which
-- cause inadvertent numeric conversions if you aren't jolly careful.
-- See codeGen/CgCon:cgTopRhsCon.

isFloatingArg :: CgRep -> Bool
isFloatingArg DoubleArg = True
isFloatingArg FloatArg  = True
isFloatingArg _         = False

is64BitArg :: CgRep -> Bool
is64BitArg LongArg = True
is64BitArg _       = False
\end{code}

\begin{code}
separateByPtrFollowness :: [(CgRep,a)] -> ([(CgRep,a)], [(CgRep,a)])
-- Returns (ptrs, non-ptrs)
separateByPtrFollowness things
  = sep_things things [] []
    -- accumulating params for follow-able and don't-follow things...
  where
    sep_things []    	       bs us = (reverse bs, reverse us)
    sep_things ((PtrArg,a):ts) bs us = sep_things ts ((PtrArg,a):bs) us
    sep_things (t         :ts) bs us = sep_things ts bs		     (t:us)
\end{code}

\begin{code}
cgRepSizeB :: DynFlags -> CgRep -> ByteOff
cgRepSizeB dflags DoubleArg = dOUBLE_SIZE dflags
cgRepSizeB _      LongArg   = wORD64_SIZE
cgRepSizeB _      VoidArg   = 0
cgRepSizeB dflags _         = wORD_SIZE dflags

cgRepSizeW :: DynFlags -> CgRep -> ByteOff
cgRepSizeW dflags DoubleArg = dOUBLE_SIZE dflags `quot` wORD_SIZE dflags
cgRepSizeW dflags LongArg   = wORD64_SIZE        `quot` wORD_SIZE dflags
cgRepSizeW _      VoidArg   = 0
cgRepSizeW _      _         = 1

retAddrSizeW :: WordOff
retAddrSizeW = 1	-- One word
\end{code}

%************************************************************************
%*									*
\subsection[ClosureInfo-construction]{Functions which build LFInfos}
%*									*
%************************************************************************

\begin{code}
mkLFReEntrant :: TopLevelFlag	-- True of top level
	      -> [Id]		-- Free vars
	      -> [Id] 		-- Args
	      -> ArgDescr	-- Argument descriptor
	      -> LambdaFormInfo

mkLFReEntrant top fvs args arg_descr 
  = LFReEntrant top (length args) (null fvs) arg_descr

mkLFThunk :: Type -> TopLevelFlag -> [Var] -> UpdateFlag -> LambdaFormInfo
mkLFThunk thunk_ty top fvs upd_flag
  = ASSERT2( not (isUpdatable upd_flag) || not (isUnLiftedType thunk_ty), ppr thunk_ty $$ ppr fvs )
    LFThunk top (null fvs) 
	    (isUpdatable upd_flag)
	    NonStandardThunk 
	    (might_be_a_function thunk_ty)

might_be_a_function :: Type -> Bool
-- Return False only if we are *sure* it's a data type
-- Look through newtypes etc as much as poss
might_be_a_function ty
  | UnaryRep rep <- repType ty
  , Just tc <- tyConAppTyCon_maybe rep
  , isDataTyCon tc
  = False
  | otherwise
  = True
\end{code}

@mkConLFInfo@ is similar, for constructors.

\begin{code}
mkConLFInfo :: DataCon -> LambdaFormInfo
mkConLFInfo con = LFCon con

maybeIsLFCon :: LambdaFormInfo -> Maybe DataCon
maybeIsLFCon (LFCon con) = Just con
maybeIsLFCon _ = Nothing

mkSelectorLFInfo :: Id -> WordOff -> Bool -> LambdaFormInfo
mkSelectorLFInfo id offset updatable
  = LFThunk NotTopLevel False updatable (SelectorThunk offset) 
	(might_be_a_function (idType id))

mkApLFInfo :: Id -> UpdateFlag -> RepArity -> LambdaFormInfo
mkApLFInfo id upd_flag arity
  = LFThunk NotTopLevel (arity == 0) (isUpdatable upd_flag) (ApThunk arity)
	(might_be_a_function (idType id))
\end{code}

Miscellaneous LF-infos.

\begin{code}
mkLFArgument :: Id -> LambdaFormInfo
mkLFArgument id = LFUnknown (might_be_a_function (idType id))

mkLFLetNoEscape :: RepArity -> LambdaFormInfo
mkLFLetNoEscape = LFLetNoEscape

mkLFImported :: Id -> LambdaFormInfo
mkLFImported id
  = case idRepArity id of
      n | n > 0 -> LFReEntrant TopLevel n True (panic "arg_descr")  -- n > 0
      _ -> mkLFArgument id -- Not sure of exact arity
\end{code}

\begin{code}
isLFThunk :: LambdaFormInfo -> Bool
isLFThunk (LFThunk _ _ _ _ _)  = True
isLFThunk LFBlackHole          = True
	-- return True for a blackhole: this function is used to determine
	-- whether to use the thunk header in SMP mode, and a blackhole
	-- must have one.
isLFThunk _ = False
\end{code}

\begin{code}
-- We keep the *zero-indexed* tag in the srt_len field of the info
-- table of a data constructor.
type ConTagZ = Int	-- A *zero-indexed* contructor tag

dataConTagZ :: DataCon -> ConTagZ
dataConTagZ con = dataConTag con - fIRST_TAG
\end{code}


%************************************************************************
%*									*
	Building ClosureInfos
%*									*
%************************************************************************

\begin{code}
mkClosureInfo :: DynFlags
              -> Bool		-- Is static
	      -> Id
	      -> LambdaFormInfo 
	      -> Int -> Int	-- Total and pointer words
	      -> C_SRT
	      -> String		-- String descriptor
	      -> ClosureInfo
mkClosureInfo dflags is_static id lf_info tot_wds ptr_wds srt_info descr
  = ClosureInfo { closureName = name, 
		  closureLFInfo = lf_info,
		  closureSMRep = sm_rep, 
		  closureSRT = srt_info,
		  closureType = idType id,
		  closureDescr = descr,
		  closureInfLcl = isDataConWorkId id }
		    -- Make the _info pointer for the implicit datacon worker binding
		    -- local. The reason we can do this is that importing code always
		    -- either uses the _closure or _con_info. By the invariants in CorePrep
		    -- anything else gets eta expanded.
  where
    name   = idName id
    sm_rep = mkHeapRep dflags is_static ptr_wds nonptr_wds (lfClosureType dflags lf_info)
    nonptr_wds = tot_wds - ptr_wds

mkConInfo :: DynFlags
          -> Bool	-- Is static
	  -> DataCon	
	  -> Int -> Int	-- Total and pointer words
	  -> ClosureInfo
mkConInfo dflags is_static data_con tot_wds ptr_wds
   = ConInfo {	closureSMRep = sm_rep,
		closureCon = data_con }
  where
    sm_rep  = mkHeapRep dflags is_static ptr_wds nonptr_wds (lfClosureType dflags lf_info)
    lf_info = mkConLFInfo data_con
    nonptr_wds = tot_wds - ptr_wds
\end{code}

%************************************************************************
%*									*
\subsection[ClosureInfo-sizes]{Functions about closure {\em sizes}}
%*									*
%************************************************************************

\begin{code}
closureSize :: DynFlags -> ClosureInfo -> WordOff
closureSize dflags cl_info = heapClosureSize dflags (closureSMRep cl_info)
\end{code}

\begin{code}
-- we leave space for an update if either (a) the closure is updatable
-- or (b) it is a static thunk.  This is because a static thunk needs
-- a static link field in a predictable place (after the slop), regardless
-- of whether it is updatable or not.
closureNeedsUpdSpace :: ClosureInfo -> Bool
closureNeedsUpdSpace (ClosureInfo { closureLFInfo = 
					LFThunk TopLevel _ _ _ _ }) = True
closureNeedsUpdSpace cl_info = closureUpdReqd cl_info
\end{code}

%************************************************************************
%*									*
\subsection[SMreps]{Choosing SM reps}
%*									*
%************************************************************************

\begin{code}
lfClosureType :: DynFlags -> LambdaFormInfo -> ClosureTypeInfo
lfClosureType dflags (LFReEntrant _ arity _ argd) = Fun (toStgHalfWord dflags (toInteger arity)) argd
lfClosureType dflags (LFCon con)                  = Constr (toStgHalfWord dflags (toInteger (dataConTagZ con)))
                                                           (dataConIdentity con)
lfClosureType dflags (LFThunk _ _ _ is_sel _)     = thunkClosureType dflags is_sel
lfClosureType _      _                            = panic "lfClosureType"

thunkClosureType :: DynFlags -> StandardFormInfo -> ClosureTypeInfo
thunkClosureType dflags (SelectorThunk off) = ThunkSelector (toStgWord dflags (toInteger off))
thunkClosureType _      _                   = Thunk

-- We *do* get non-updatable top-level thunks sometimes.  eg. f = g
-- gets compiled to a jump to g (if g has non-zero arity), instead of
-- messing around with update frames and PAPs.  We set the closure type
-- to FUN_STATIC in this case.
\end{code}

%************************************************************************
%*									*
\subsection[ClosureInfo-4-questions]{Four major questions about @ClosureInfo@}
%*									*
%************************************************************************

Be sure to see the stg-details notes about these...

\begin{code}
nodeMustPointToIt :: DynFlags -> LambdaFormInfo -> Bool
nodeMustPointToIt _ (LFReEntrant top _ no_fvs _)
  = not no_fvs ||   -- Certainly if it has fvs we need to point to it
    isNotTopLevel top
		    -- If it is not top level we will point to it
		    --   We can have a \r closure with no_fvs which
		    --   is not top level as special case cgRhsClosure
		    --   has been dissabled in favour of let floating

		-- For lex_profiling we also access the cost centre for a
		-- non-inherited function i.e. not top level
		-- the  not top  case above ensures this is ok.

nodeMustPointToIt _ (LFCon _) = True

	-- Strictly speaking, the above two don't need Node to point
	-- to it if the arity = 0.  But this is a *really* unlikely
	-- situation.  If we know it's nil (say) and we are entering
	-- it. Eg: let x = [] in x then we will certainly have inlined
	-- x, since nil is a simple atom.  So we gain little by not
	-- having Node point to known zero-arity things.  On the other
	-- hand, we do lose something; Patrick's code for figuring out
	-- when something has been updated but not entered relies on
	-- having Node point to the result of an update.  SLPJ
	-- 27/11/92.

nodeMustPointToIt dflags (LFThunk _ no_fvs updatable NonStandardThunk _)
  = updatable || not no_fvs || dopt Opt_SccProfilingOn dflags
	  -- For the non-updatable (single-entry case):
	  --
	  -- True if has fvs (in which case we need access to them, and we
	  --		    should black-hole it)
	  -- or profiling (in which case we need to recover the cost centre
	  --		 from inside it)

nodeMustPointToIt _ (LFThunk _ _ _ _ _)
  = True  -- Node must point to any standard-form thunk

nodeMustPointToIt _ (LFUnknown _)     = True
nodeMustPointToIt _ LFBlackHole       = True    -- BH entry may require Node to point
nodeMustPointToIt _ (LFLetNoEscape _) = False 
\end{code}

The entry conventions depend on the type of closure being entered,
whether or not it has free variables, and whether we're running
sequentially or in parallel.

\begin{tabular}{lllll}
Closure Characteristics & Parallel & Node Req'd & Argument Passing & Enter Via \\
Unknown 			& no & yes & stack	& node \\
Known fun ($\ge$ 1 arg), no fvs 	& no & no  & registers 	& fast entry (enough args) \\
\ & \ & \ & \ 						& slow entry (otherwise) \\
Known fun ($\ge$ 1 arg), fvs	& no & yes & registers 	& fast entry (enough args) \\
0 arg, no fvs @\r,\s@ 		& no & no  & n/a 	& direct entry \\
0 arg, no fvs @\u@ 		& no & yes & n/a 	& node \\
0 arg, fvs @\r,\s@ 		& no & yes & n/a 	& direct entry \\
0 arg, fvs @\u@ 		& no & yes & n/a 	& node \\

Unknown 			& yes & yes & stack	& node \\
Known fun ($\ge$ 1 arg), no fvs 	& yes & no  & registers & fast entry (enough args) \\
\ & \ & \ & \ 						& slow entry (otherwise) \\
Known fun ($\ge$ 1 arg), fvs	& yes & yes & registers & node \\
0 arg, no fvs @\r,\s@ 		& yes & no  & n/a 	& direct entry \\
0 arg, no fvs @\u@ 		& yes & yes & n/a 	& node \\
0 arg, fvs @\r,\s@ 		& yes & yes & n/a 	& node \\
0 arg, fvs @\u@ 		& yes & yes & n/a 	& node\\
\end{tabular}

When black-holing, single-entry closures could also be entered via node
(rather than directly) to catch double-entry.

\begin{code}
data CallMethod
  = EnterIt				-- no args, not a function

  | JumpToIt CLabel			-- no args, not a function, but we
					-- know what its entry code is

  | ReturnIt				-- it's a function, but we have
					-- zero args to apply to it, so just
					-- return it.

  | ReturnCon DataCon			-- It's a data constructor, just return it

  | SlowCall				-- Unknown fun, or known fun with
					-- too few args.

  | DirectEntry 			-- Jump directly, with args in regs
	CLabel 				--   The code label
	RepArity			--   Its arity

getCallMethod :: DynFlags
              -> Name		-- Function being applied
              -> CafInfo        -- Can it refer to CAF's?
	      -> LambdaFormInfo	-- Its info
	      -> RepArity	-- Number of available arguments
	      -> CallMethod

getCallMethod dflags _ _ lf_info _
  | nodeMustPointToIt dflags lf_info && dopt Opt_Parallel dflags
  =	-- If we're parallel, then we must always enter via node.  
	-- The reason is that the closure may have been 	
	-- fetched since we allocated it.
    EnterIt

getCallMethod dflags name caf (LFReEntrant _ arity _ _) n_args
  | n_args == 0    = ASSERT( arity /= 0 )
		     ReturnIt	-- No args at all
  | n_args < arity = SlowCall	-- Not enough args
  | otherwise      = DirectEntry (enterIdLabel dflags name caf) arity

getCallMethod dflags _ _ (LFCon con) n_args
  -- when profiling, we must always enter a closure when we use it, so
  -- that the closure can be recorded as used for LDV profiling.
  | dopt Opt_SccProfilingOn dflags
  = EnterIt
  | otherwise
  = ASSERT( n_args == 0 )
    ReturnCon con

getCallMethod _dflags _name _caf (LFThunk _ _ _updatable _std_form_info is_fun) _n_args
  | is_fun 	-- it *might* be a function, so we must "call" it (which is
                -- always safe)
  = SlowCall	-- We cannot just enter it [in eval/apply, the entry code
		-- is the fast-entry code]

  -- Since is_fun is False, we are *definitely* looking at a data value
  | otherwise
  = EnterIt
    -- We used to have ASSERT( n_args == 0 ), but actually it is
    -- possible for the optimiser to generate
    --   let bot :: Int = error Int "urk"
    --   in (bot `cast` unsafeCoerce Int (Int -> Int)) 3
    -- This happens as a result of the case-of-error transformation
    -- So the right thing to do is just to enter the thing

-- Old version:
--  | updatable || dopt Opt_Ticky dflags -- to catch double entry
--  = EnterIt
--  | otherwise	-- Jump direct to code for single-entry thunks
--  = JumpToIt (thunkEntryLabel name caf std_form_info updatable)
--
-- Now we never use JumpToIt, even if the thunk is single-entry, since
-- the thunk may have already been entered and blackholed by another
-- processor.


getCallMethod _ _ _ (LFUnknown True) _
  = SlowCall -- Might be a function

getCallMethod _ name _ (LFUnknown False) n_args
  | n_args > 0 
  = WARN( True, ppr name <+> ppr n_args ) 
    SlowCall	-- Note [Unsafe coerce complications]

  | otherwise
  = EnterIt -- Not a function

getCallMethod _ _ _ LFBlackHole _
  = SlowCall	-- Presumably the black hole has by now
		-- been updated, but we don't know with
		-- what, so we slow call it

getCallMethod dflags name _ (LFLetNoEscape 0) _
  = JumpToIt (enterReturnPtLabel dflags (nameUnique name))

getCallMethod dflags name _ (LFLetNoEscape arity) n_args
  | n_args == arity = DirectEntry (enterReturnPtLabel dflags (nameUnique name)) arity
  | otherwise = pprPanic "let-no-escape: " (ppr name <+> ppr arity)


blackHoleOnEntry :: ClosureInfo -> Bool
blackHoleOnEntry ConInfo{} = False
blackHoleOnEntry cl_info
  | isStaticRep (closureSMRep cl_info)
  = False	-- Never black-hole a static closure

  | otherwise
  = case closureLFInfo cl_info of
	LFReEntrant _ _ _ _	  -> False
        LFLetNoEscape _           -> False
        LFThunk _ _no_fvs _updatable _ _ -> True
        _other -> panic "blackHoleOnEntry"      -- Should never happen

isKnownFun :: LambdaFormInfo -> Bool
isKnownFun (LFReEntrant _ _ _ _) = True
isKnownFun (LFLetNoEscape _) = True
isKnownFun _ = False
\end{code}

Note [Unsafe coerce complications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In some (badly-optimised) DPH code we see this
   Module X:    rr :: Int = error Int "Urk"
   Module Y:    ...((X.rr |> g) True) ...
     where g is an (unsafe) coercion of kind (Int ~ Bool->Bool), say

It's badly optimised, because knowing that 'X.rr' is bottom, we should
have dumped the application to True.  But it should still work. These
strange unsafe coercions arise from the case-of-error transformation:
	(case (error Int "foo") of { ... }) True
--->	(error Int "foo" |> g) True

Anyway, the net effect is that in STG-land, when casts are discarded,
we *can* see a value of type Int applied to an argument.  This only happens
if (a) the programmer made a mistake, or (b) the value of type Int is
actually bottom.

So it's wrong to trigger an ASSERT failure in this circumstance.  Instead
we now emit a WARN -- mainly to draw attention to a probably-badly-optimised
program fragment -- and do the conservative thing which is SlowCall.


-----------------------------------------------------------------------------
SRT-related stuff

\begin{code}
staticClosureNeedsLink :: ClosureInfo -> Bool
-- A static closure needs a link field to aid the GC when traversing
-- the static closure graph.  But it only needs such a field if either
-- 	a) it has an SRT
--	b) it's a constructor with one or more pointer fields
-- In case (b), the constructor's fields themselves play the role
-- of the SRT.
staticClosureNeedsLink (ClosureInfo { closureSRT = srt })
  = needsSRT srt
staticClosureNeedsLink (ConInfo { closureSMRep = rep })
  = not (isStaticNoCafCon rep)
\end{code}

Note [Entering error thunks]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this

	fail :: Int
	fail = error Int "Urk"

	foo :: Bool -> Bool 
	foo True  y = (fail `cast` Bool -> Bool) y
	foo False y = False

This looks silly, but it can arise from case-of-error.  Even if it
does, we'd usually see that 'fail' is a bottoming function and would
discard the extra argument 'y'.  But even if that does not occur,
this program is still OK.  We will enter 'fail', which never returns.

The WARN is just to alert me to the fact that we aren't spotting that
'fail' is bottoming.

(We are careful never to make a funtion value look like a data type,
because we can't enter a function closure -- but that is not the 
problem here.)


Avoiding generating entries and info tables
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
At present, for every function we generate all of the following,
just in case.  But they aren't always all needed, as noted below:

[NB1: all of this applies only to *functions*.  Thunks always
have closure, info table, and entry code.]

[NB2: All are needed if the function is *exported*, just to play safe.]


* Fast-entry code  ALWAYS NEEDED

* Slow-entry code
	Needed iff (a) we have any un-saturated calls to the function
	OR	   (b) the function is passed as an arg
	OR	   (c) we're in the parallel world and the function has free vars
			[Reason: in parallel world, we always enter functions
			with free vars via the closure.]

* The function closure
	Needed iff (a) we have any un-saturated calls to the function
	OR	   (b) the function is passed as an arg
	OR	   (c) if the function has free vars (ie not top level)

  Why case (a) here?  Because if the arg-satis check fails,
  UpdatePAP stuffs a pointer to the function closure in the PAP.
  [Could be changed; UpdatePAP could stuff in a code ptr instead,
   but doesn't seem worth it.]

  [NB: these conditions imply that we might need the closure
  without the slow-entry code.  Here's how.

	f x y = let g w = ...x..y..w...
		in
		...(g t)...

  Here we need a closure for g which contains x and y,
  but since the calls are all saturated we just jump to the
  fast entry point for g, with R1 pointing to the closure for g.]


* Standard info table
	Needed iff (a) we have any un-saturated calls to the function
	OR	   (b) the function is passed as an arg
	OR 	   (c) the function has free vars (ie not top level)

	NB.  In the sequential world, (c) is only required so that the function closure has
	an info table to point to, to keep the storage manager happy.
	If (c) alone is true we could fake up an info table by choosing
	one of a standard family of info tables, whose entry code just
	bombs out.

	[NB In the parallel world (c) is needed regardless because
	we enter functions with free vars via the closure.]

	If (c) is retained, then we'll sometimes generate an info table
	(for storage mgr purposes) without slow-entry code.  Then we need
	to use an error label in the info table to substitute for the absent
	slow entry code.

\begin{code}
staticClosureRequired
	:: Name
	-> StgBinderInfo
	-> LambdaFormInfo
	-> Bool
staticClosureRequired _ bndr_info
		      (LFReEntrant top_level _ _ _)	-- It's a function
  = ASSERT( isTopLevel top_level )
	-- Assumption: it's a top-level, no-free-var binding
	not (satCallsOnly bndr_info)

staticClosureRequired _ _ _ = True
\end{code}

%************************************************************************
%*									*
\subsection[ClosureInfo-misc-funs]{Misc functions about @ClosureInfo@, etc.}
%*									*
%************************************************************************

\begin{code}
isStaticClosure :: ClosureInfo -> Bool
isStaticClosure cl_info = isStaticRep (closureSMRep cl_info)

closureUpdReqd :: ClosureInfo -> Bool
closureUpdReqd ClosureInfo{ closureLFInfo = lf_info } = lfUpdatable lf_info
closureUpdReqd ConInfo{} = False

lfUpdatable :: LambdaFormInfo -> Bool
lfUpdatable (LFThunk _ _ upd _ _)  = upd
lfUpdatable LFBlackHole 	   = True
	-- Black-hole closures are allocated to receive the results of an
	-- alg case with a named default... so they need to be updated.
lfUpdatable _ = False

closureIsThunk :: ClosureInfo -> Bool
closureIsThunk ClosureInfo{ closureLFInfo = lf_info } = isLFThunk lf_info
closureIsThunk ConInfo{} = False

closureSingleEntry :: ClosureInfo -> Bool
closureSingleEntry (ClosureInfo { closureLFInfo = LFThunk _ _ upd _ _}) = not upd
closureSingleEntry _ = False

closureReEntrant :: ClosureInfo -> Bool
closureReEntrant (ClosureInfo { closureLFInfo = LFReEntrant _ _ _ _ }) = True
closureReEntrant _ = False

isConstrClosure_maybe :: ClosureInfo -> Maybe DataCon
isConstrClosure_maybe (ConInfo { closureCon = data_con }) = Just data_con
isConstrClosure_maybe _ 				  = Nothing

closureFunInfo :: ClosureInfo -> Maybe (RepArity, ArgDescr)
closureFunInfo (ClosureInfo { closureLFInfo = lf_info }) = lfFunInfo lf_info
closureFunInfo _ = Nothing

lfFunInfo :: LambdaFormInfo ->  Maybe (RepArity, ArgDescr)
lfFunInfo (LFReEntrant _ arity _ arg_desc)  = Just (arity, arg_desc)
lfFunInfo _                                 = Nothing

funTag :: DynFlags -> ClosureInfo -> Int
funTag dflags (ClosureInfo { closureLFInfo = lf_info })
    = funTagLFInfo dflags lf_info
funTag _ _ = 0

-- maybe this should do constructor tags too?
funTagLFInfo :: DynFlags -> LambdaFormInfo -> Int
funTagLFInfo dflags lf
    -- A function is tagged with its arity
  | Just (arity,_) <- lfFunInfo lf,
    Just tag <- tagForArity dflags arity
  = tag

    -- other closures (and unknown ones) are not tagged
  | otherwise
  = 0

tagForArity :: DynFlags -> RepArity -> Maybe Int
tagForArity dflags i
 | i <= mAX_PTR_TAG dflags = Just i
 | otherwise               = Nothing

clHasCafRefs :: ClosureInfo -> CafInfo
clHasCafRefs (ClosureInfo {closureSRT = srt}) = 
  case srt of NoC_SRT -> NoCafRefs
              _       -> MayHaveCafRefs
clHasCafRefs (ConInfo {}) = NoCafRefs
\end{code}

\begin{code}
isToplevClosure :: ClosureInfo -> Bool
isToplevClosure (ClosureInfo { closureLFInfo = lf_info })
  = case lf_info of
      LFReEntrant TopLevel _ _ _ -> True
      LFThunk TopLevel _ _ _ _   -> True
      _ -> False
isToplevClosure _ = False
\end{code}

Label generation.

\begin{code}
infoTableLabelFromCI :: ClosureInfo -> CLabel
infoTableLabelFromCI = fst . labelsFromCI

entryLabelFromCI :: DynFlags -> ClosureInfo -> CLabel
entryLabelFromCI dflags ci
  | tablesNextToCode dflags = info_lbl
  | otherwise               = entry_lbl
  where (info_lbl, entry_lbl) = labelsFromCI ci

labelsFromCI :: ClosureInfo -> (CLabel, CLabel) -- (Info, Entry)
labelsFromCI cl@(ClosureInfo { closureName = name,
			       closureLFInfo = lf_info,
			       closureInfLcl = is_lcl })
  = case lf_info of
	LFBlackHole -> (mkCAFBlackHoleInfoTableLabel, mkCAFBlackHoleEntryLabel)

	LFThunk _ _ upd_flag (SelectorThunk offset) _ -> 
		bothL (mkSelectorInfoLabel, mkSelectorEntryLabel) upd_flag offset

	LFThunk _ _ upd_flag (ApThunk arity) _ -> 
		bothL (mkApInfoTableLabel, mkApEntryLabel) upd_flag arity

	LFThunk{}      -> bothL std_mk_lbls name $ clHasCafRefs cl

	LFReEntrant _ _ _ _ -> bothL std_mk_lbls name $ clHasCafRefs cl

	_ -> panic "labelsFromCI"
  where std_mk_lbls = if is_lcl then (mkLocalInfoTableLabel, mkLocalEntryLabel) else (mkInfoTableLabel, mkEntryLabel)

labelsFromCI cl@(ConInfo { closureCon = con, 
			           closureSMRep = rep })
  | isStaticRep rep = bothL (mkStaticInfoTableLabel, mkStaticConEntryLabel)  name $ clHasCafRefs cl
  | otherwise	    = bothL (mkConInfoTableLabel,    mkConEntryLabel)        name $ clHasCafRefs cl
  where
    name = dataConName con

bothL :: (a -> b -> c, a -> b -> c) -> a -> b -> (c, c)
bothL (f, g) x y = (f x y, g x y)

-- ClosureInfo for a closure (as opposed to a constructor) is always local
closureLabelFromCI :: ClosureInfo -> CLabel
closureLabelFromCI cl@(ClosureInfo { closureName = nm }) = mkLocalClosureLabel nm $ clHasCafRefs cl
closureLabelFromCI _ = panic "closureLabelFromCI"

-- thunkEntryLabel is a local help function, not exported.  It's used from both
-- entryLabelFromCI and getCallMethod.

{- UNUSED:
thunkEntryLabel :: Name -> CafInfo -> StandardFormInfo -> Bool -> CLabel
thunkEntryLabel _thunk_id _ (ApThunk arity) is_updatable
  = enterApLabel is_updatable arity
thunkEntryLabel _thunk_id _ (SelectorThunk offset) upd_flag
  = enterSelectorLabel upd_flag offset
thunkEntryLabel thunk_id caf _ _is_updatable
  = enterIdLabel thunk_id caf
-}

{- UNUSED:
enterApLabel :: Bool -> Int -> CLabel
enterApLabel is_updatable arity
  | tablesNextToCode = mkApInfoTableLabel is_updatable arity
  | otherwise        = mkApEntryLabel is_updatable arity
-}

{- UNUSED:
enterSelectorLabel :: Bool -> Int -> CLabel
enterSelectorLabel upd_flag offset
  | tablesNextToCode = mkSelectorInfoLabel upd_flag offset
  | otherwise        = mkSelectorEntryLabel upd_flag offset
-}

enterIdLabel :: DynFlags -> Name -> CafInfo -> CLabel
enterIdLabel dflags id
  | tablesNextToCode dflags = mkInfoTableLabel id
  | otherwise               = mkEntryLabel id

enterReturnPtLabel :: DynFlags -> Unique -> CLabel
enterReturnPtLabel dflags name
  | tablesNextToCode dflags = mkReturnInfoLabel name
  | otherwise               = mkReturnPtLabel name
\end{code}


We need a black-hole closure info to pass to @allocDynClosure@ when we
want to allocate the black hole on entry to a CAF.  These are the only
ways to build an LFBlackHole, maintaining the invariant that it really
is a black hole and not something else.

\begin{code}
cafBlackHoleClosureInfo :: ClosureInfo -> ClosureInfo
cafBlackHoleClosureInfo (ClosureInfo { closureName = nm,
				       closureType = ty })
  = ClosureInfo { closureName   = nm,
		  closureLFInfo = LFBlackHole,
		  closureSMRep  = blackHoleRep,
		  closureSRT    = NoC_SRT,
		  closureType   = ty,
		  closureDescr  = "",
		  closureInfLcl = False }
cafBlackHoleClosureInfo _ = panic "cafBlackHoleClosureInfo"
\end{code}

%************************************************************************
%*									*
\subsection[ClosureInfo-Profiling-funs]{Misc functions about for profiling info.}
%*									*
%************************************************************************

Profiling requires two pieces of information to be determined for
each closure's info table --- description and type.

The description is stored directly in the @CClosureInfoTable@ when the
info table is built.

The type is determined from the type information stored with the @Id@
in the closure info using @closureTypeDescr@.

\begin{code}
closureValDescr, closureTypeDescr :: ClosureInfo -> String
closureValDescr (ClosureInfo {closureDescr = descr}) 
  = descr
closureValDescr (ConInfo {closureCon = con})
  = occNameString (getOccName con)

closureTypeDescr (ClosureInfo { closureType = ty })
  = getTyDescription ty
closureTypeDescr (ConInfo { closureCon = data_con })
  = occNameString (getOccName (dataConTyCon data_con))

getTyDescription :: Type -> String
getTyDescription ty
  = case (tcSplitSigmaTy ty) of { (_, _, tau_ty) ->
    case tau_ty of
      TyVarTy _	       	     -> "*"
      AppTy fun _      	     -> getTyDescription fun
      FunTy _ res      	     -> '-' : '>' : fun_result res
      TyConApp tycon _ 	     -> getOccString tycon
      ForAllTy _ ty          -> getTyDescription ty
      LitTy n                -> getTyLitDescription n
    }
  where
    fun_result (FunTy _ res) = '>' : fun_result res
    fun_result other	     = getTyDescription other


getTyLitDescription :: TyLit -> String
getTyLitDescription l =
  case l of
    NumTyLit n -> show n
    StrTyLit n -> show n
\end{code}