1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
The Code Generator
This module says how things get going at the top level.
@codeGen@ is the interface to the outside world. The \tr{cgTop*}
functions drive the mangling of top-level bindings.
\begin{code}
{-# OPTIONS -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
-- http://hackage.haskell.org/trac/ghc/wiki/CodingStyle#Warnings
-- for details
module CodeGen ( codeGen ) where
#include "HsVersions.h"
-- Kludge (??) so that CgExpr is reached via at least one non-SOURCE
-- import. Before, that wasn't the case, and CM therefore didn't
-- bother to compile it.
import CgExpr ( {-NOTHING!-} ) -- DO NOT DELETE THIS IMPORT
import CgProf
import CgMonad
import CgBindery
import CgClosure
import CgCon
import CgUtils
import CgHpc
import CLabel
import Cmm
import CmmUtils
import PprCmm
import MachOp
import StgSyn
import PrelNames
import DynFlags
import StaticFlags
import PackageConfig
import HscTypes
import CostCentre
import Id
import Name
import OccName
import TyCon
import Module
import ErrUtils
#ifdef DEBUG
import Panic
#endif
\end{code}
\begin{code}
codeGen :: DynFlags
-> Module
-> [TyCon]
-> [Module] -- directly-imported modules
-> CollectedCCs -- (Local/global) cost-centres needing declaring/registering.
-> [(StgBinding,[(Id,[Id])])] -- Bindings to convert, with SRTs
-> HpcInfo
-> IO [Cmm] -- Output
codeGen dflags this_mod data_tycons imported_mods
cost_centre_info stg_binds hpc_info
= do
{ showPass dflags "CodeGen"
; let way = buildTag dflags
main_mod = mainModIs dflags
-- Why?
-- ; mapM_ (\x -> seq x (return ())) data_tycons
; code_stuff <- initC dflags this_mod $ do
{ cmm_binds <- mapM (getCmm . cgTopBinding dflags) stg_binds
; cmm_tycons <- mapM cgTyCon data_tycons
; cmm_init <- getCmm (mkModuleInit way cost_centre_info
this_mod main_mod
imported_mods hpc_info)
; return (cmm_binds ++ concat cmm_tycons ++ [cmm_init])
}
-- Put datatype_stuff after code_stuff, because the
-- datatype closure table (for enumeration types) to
-- (say) PrelBase_True_closure, which is defined in
-- code_stuff
; dumpIfSet_dyn dflags Opt_D_dump_cmm "Cmm" (pprCmms code_stuff)
; return code_stuff }
\end{code}
%************************************************************************
%* *
\subsection[codegen-init]{Module initialisation code}
%* *
%************************************************************************
/* -----------------------------------------------------------------------------
Module initialisation
The module initialisation code looks like this, roughly:
FN(__stginit_Foo) {
JMP_(__stginit_Foo_1_p)
}
FN(__stginit_Foo_1_p) {
...
}
We have one version of the init code with a module version and the
'way' attached to it. The version number helps to catch cases
where modules are not compiled in dependency order before being
linked: if a module has been compiled since any modules which depend on
it, then the latter modules will refer to a different version in their
init blocks and a link error will ensue.
The 'way' suffix helps to catch cases where modules compiled in different
ways are linked together (eg. profiled and non-profiled).
We provide a plain, unadorned, version of the module init code
which just jumps to the version with the label and way attached. The
reason for this is that when using foreign exports, the caller of
startupHaskell() must supply the name of the init function for the "top"
module in the program, and we don't want to require that this name
has the version and way info appended to it.
-------------------------------------------------------------------------- */
We initialise the module tree by keeping a work-stack,
* pointed to by Sp
* that grows downward
* Sp points to the last occupied slot
\begin{code}
mkModuleInit
:: String -- the "way"
-> CollectedCCs -- cost centre info
-> Module
-> Module -- name of the Main module
-> [Module]
-> HpcInfo
-> Code
mkModuleInit way cost_centre_info this_mod main_mod imported_mods hpc_info
= do { -- Allocate the static boolean that records if this
-- module has been registered already
emitData Data [CmmDataLabel moduleRegdLabel,
CmmStaticLit zeroCLit]
; whenC (opt_Hpc) $
hpcTable this_mod hpc_info
-- we emit a recursive descent module search for all modules
-- and *choose* to chase it in :Main, below.
-- In this way, Hpc enabled modules can interact seamlessly with
-- not Hpc enabled moduled, provided Main is compiled with Hpc.
; emitSimpleProc real_init_lbl $ do
{ ret_blk <- forkLabelledCode ret_code
; init_blk <- forkLabelledCode $ do
{ mod_init_code; stmtC (CmmBranch ret_blk) }
; stmtC (CmmCondBranch (cmmNeWord (CmmLit zeroCLit) mod_reg_val)
ret_blk)
; stmtC (CmmBranch init_blk)
}
-- Make the "plain" procedure jump to the "real" init procedure
; emitSimpleProc plain_init_lbl jump_to_init
-- When compiling the module in which the 'main' function lives,
-- (that is, this_mod == main_mod)
-- we inject an extra stg_init procedure for stg_init_ZCMain, for the
-- RTS to invoke. We must consult the -main-is flag in case the
-- user specified a different function to Main.main
-- Notice that the recursive descent is optional, depending on what options
-- are enabled.
; whenC (this_mod == main_mod)
(emitSimpleProc plain_main_init_lbl rec_descent_init)
}
where
plain_init_lbl = mkPlainModuleInitLabel this_mod
real_init_lbl = mkModuleInitLabel this_mod way
plain_main_init_lbl = mkPlainModuleInitLabel rOOT_MAIN
jump_to_init = stmtC (CmmJump (mkLblExpr real_init_lbl) [])
mod_reg_val = CmmLoad (mkLblExpr moduleRegdLabel) wordRep
-- Main refers to GHC.TopHandler.runIO, so make sure we call the
-- init function for GHC.TopHandler.
extra_imported_mods
| this_mod == main_mod = [gHC_TOP_HANDLER]
| otherwise = []
mod_init_code = do
{ -- Set mod_reg to 1 to record that we've been here
stmtC (CmmStore (mkLblExpr moduleRegdLabel) (CmmLit (mkIntCLit 1)))
; whenC (opt_SccProfilingOn) $ do
initCostCentres cost_centre_info
; whenC (opt_Hpc) $
initHpc this_mod hpc_info
; mapCs (registerModuleImport way)
(imported_mods++extra_imported_mods)
}
-- The return-code pops the work stack by
-- incrementing Sp, and then jumpd to the popped item
ret_code = stmtsC [ CmmAssign spReg (cmmRegOffW spReg 1)
, CmmJump (CmmLoad (cmmRegOffW spReg (-1)) wordRep) [] ]
rec_descent_init = if opt_SccProfilingOn || isHpcUsed hpc_info
then jump_to_init
else ret_code
-----------------------
registerModuleImport :: String -> Module -> Code
registerModuleImport way mod
| mod == gHC_PRIM
= nopC
| otherwise -- Push the init procedure onto the work stack
= stmtsC [ CmmAssign spReg (cmmRegOffW spReg (-1))
, CmmStore (CmmReg spReg) (mkLblExpr (mkModuleInitLabel mod way)) ]
\end{code}
Cost-centre profiling: Besides the usual stuff, we must produce
declarations for the cost-centres defined in this module;
(The local cost-centres involved in this are passed into the
code-generator.)
\begin{code}
initCostCentres :: CollectedCCs -> Code
-- Emit the declarations, and return code to register them
initCostCentres (local_CCs, ___extern_CCs, singleton_CCSs)
| not opt_SccProfilingOn = nopC
| otherwise
= do { mapM_ emitCostCentreDecl local_CCs
; mapM_ emitCostCentreStackDecl singleton_CCSs
; mapM_ emitRegisterCC local_CCs
; mapM_ emitRegisterCCS singleton_CCSs
}
\end{code}
%************************************************************************
%* *
\subsection[codegen-top-bindings]{Converting top-level STG bindings}
%* *
%************************************************************************
@cgTopBinding@ is only used for top-level bindings, since they need
to be allocated statically (not in the heap) and need to be labelled.
No unboxed bindings can happen at top level.
In the code below, the static bindings are accumulated in the
@MkCgState@, and transferred into the ``statics'' slot by @forkStatics@.
This is so that we can write the top level processing in a compositional
style, with the increasing static environment being plumbed as a state
variable.
\begin{code}
cgTopBinding :: DynFlags -> (StgBinding,[(Id,[Id])]) -> Code
cgTopBinding dflags (StgNonRec id rhs, srts)
= do { id' <- maybeExternaliseId dflags id
; mapM_ (mkSRT [id']) srts
; (id,info) <- cgTopRhs id' rhs
; addBindC id info -- Add the *un-externalised* Id to the envt,
-- so we find it when we look up occurrences
}
cgTopBinding dflags (StgRec pairs, srts)
= do { let (bndrs, rhss) = unzip pairs
; bndrs' <- mapFCs (maybeExternaliseId dflags) bndrs
; let pairs' = zip bndrs' rhss
; mapM_ (mkSRT bndrs') srts
; _new_binds <- fixC (\ new_binds -> do
{ addBindsC new_binds
; mapFCs ( \ (b,e) -> cgTopRhs b e ) pairs' })
; nopC }
mkSRT :: [Id] -> (Id,[Id]) -> Code
mkSRT these (id,[]) = nopC
mkSRT these (id,ids)
= do { ids <- mapFCs remap ids
; id <- remap id
; emitRODataLits (mkSRTLabel (idName id))
(map (CmmLabel . mkClosureLabel . idName) ids)
}
where
-- Sigh, better map all the ids against the environment in
-- case they've been externalised (see maybeExternaliseId below).
remap id = case filter (==id) these of
(id':_) -> returnFC id'
[] -> do { info <- getCgIdInfo id; return (cgIdInfoId info) }
-- Urgh! I tried moving the forkStatics call from the rhss of cgTopRhs
-- to enclose the listFCs in cgTopBinding, but that tickled the
-- statics "error" call in initC. I DON'T UNDERSTAND WHY!
cgTopRhs :: Id -> StgRhs -> FCode (Id, CgIdInfo)
-- The Id is passed along for setting up a binding...
-- It's already been externalised if necessary
cgTopRhs bndr (StgRhsCon cc con args)
= forkStatics (cgTopRhsCon bndr con args)
cgTopRhs bndr (StgRhsClosure cc bi fvs upd_flag srt args body)
= ASSERT(null fvs) -- There should be no free variables
setSRTLabel (mkSRTLabel (idName bndr)) $
setSRT srt $
forkStatics (cgTopRhsClosure bndr cc bi upd_flag args body)
\end{code}
%************************************************************************
%* *
\subsection{Stuff to support splitting}
%* *
%************************************************************************
If we're splitting the object, we need to externalise all the top-level names
(and then make sure we only use the externalised one in any C label we use
which refers to this name).
\begin{code}
maybeExternaliseId :: DynFlags -> Id -> FCode Id
maybeExternaliseId dflags id
| dopt Opt_SplitObjs dflags, -- Externalise the name for -split-objs
isInternalName name = do { mod <- getModuleName
; returnFC (setIdName id (externalise mod)) }
| otherwise = returnFC id
where
externalise mod = mkExternalName uniq mod new_occ loc
name = idName id
uniq = nameUnique name
new_occ = mkLocalOcc uniq (nameOccName name)
loc = nameSrcSpan name
-- We want to conjure up a name that can't clash with any
-- existing name. So we generate
-- Mod_$L243foo
-- where 243 is the unique.
\end{code}
|