1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
|
{-# LANGUAGE CPP, RecordWildCards #-}
-----------------------------------------------------------------------------
--
-- Stg to C-- code generation:
--
-- The types LambdaFormInfo
-- ClosureInfo
--
-- Nothing monadic in here!
--
-----------------------------------------------------------------------------
module StgCmmClosure (
DynTag, tagForCon, isSmallFamily,
idPrimRep, isVoidRep, isGcPtrRep, addIdReps, addArgReps,
argPrimRep,
NonVoid(..), fromNonVoid, nonVoidIds, nonVoidStgArgs,
assertNonVoidIds, assertNonVoidStgArgs,
-- * LambdaFormInfo
LambdaFormInfo, -- Abstract
StandardFormInfo, -- ...ditto...
mkLFThunk, mkLFReEntrant, mkConLFInfo, mkSelectorLFInfo,
mkApLFInfo, mkLFImported, mkLFArgument, mkLFLetNoEscape,
mkLFStringLit,
lfDynTag,
maybeIsLFCon, isLFThunk, isLFReEntrant, lfUpdatable,
-- * Used by other modules
CgLoc(..), SelfLoopInfo, CallMethod(..),
nodeMustPointToIt, isKnownFun, funTag, tagForArity, getCallMethod,
-- * ClosureInfo
ClosureInfo,
mkClosureInfo,
mkCmmInfo,
-- ** Inspection
closureLFInfo, closureName,
-- ** Labels
-- These just need the info table label
closureInfoLabel, staticClosureLabel,
closureSlowEntryLabel, closureLocalEntryLabel,
-- ** Predicates
-- These are really just functions on LambdaFormInfo
closureUpdReqd, closureSingleEntry,
closureReEntrant, closureFunInfo,
isToplevClosure,
blackHoleOnEntry, -- Needs LambdaFormInfo and SMRep
isStaticClosure, -- Needs SMPre
-- * InfoTables
mkDataConInfoTable,
cafBlackHoleInfoTable,
indStaticInfoTable,
staticClosureNeedsLink,
) where
#include "../includes/MachDeps.h"
#include "HsVersions.h"
import StgSyn
import SMRep
import Cmm
import PprCmmExpr()
import BlockId
import CLabel
import Id
import IdInfo
import DataCon
import Name
import Type
import TyCoRep
import TcType
import TyCon
import RepType
import BasicTypes
import Outputable
import DynFlags
import Util
import Data.Coerce (coerce)
-----------------------------------------------------------------------------
-- Data types and synonyms
-----------------------------------------------------------------------------
-- These data types are mostly used by other modules, especially StgCmmMonad,
-- but we define them here because some functions in this module need to
-- have access to them as well
data CgLoc
= CmmLoc CmmExpr -- A stable CmmExpr; that is, one not mentioning
-- Hp, so that it remains valid across calls
| LneLoc BlockId [LocalReg] -- A join point
-- A join point (= let-no-escape) should only
-- be tail-called, and in a saturated way.
-- To tail-call it, assign to these locals,
-- and branch to the block id
instance Outputable CgLoc where
ppr (CmmLoc e) = text "cmm" <+> ppr e
ppr (LneLoc b rs) = text "lne" <+> ppr b <+> ppr rs
type SelfLoopInfo = (Id, BlockId, [LocalReg])
-- used by ticky profiling
isKnownFun :: LambdaFormInfo -> Bool
isKnownFun LFReEntrant{} = True
isKnownFun LFLetNoEscape = True
isKnownFun _ = False
-------------------------------------
-- Non-void types
-------------------------------------
-- We frequently need the invariant that an Id or a an argument
-- is of a non-void type. This type is a witness to the invariant.
newtype NonVoid a = NonVoid a
deriving (Eq, Show)
fromNonVoid :: NonVoid a -> a
fromNonVoid (NonVoid a) = a
instance (Outputable a) => Outputable (NonVoid a) where
ppr (NonVoid a) = ppr a
nonVoidIds :: [Id] -> [NonVoid Id]
nonVoidIds ids = [NonVoid id | id <- ids, not (isVoidTy (idType id))]
-- | Used in places where some invariant ensures that all these Ids are
-- non-void; e.g. constructor field binders in case expressions.
-- See Note [Post-unarisation invariants] in UnariseStg.
assertNonVoidIds :: [Id] -> [NonVoid Id]
assertNonVoidIds ids = ASSERT(not (any (isVoidTy . idType) ids))
coerce ids
nonVoidStgArgs :: [StgArg] -> [NonVoid StgArg]
nonVoidStgArgs args = [NonVoid arg | arg <- args, not (isVoidTy (stgArgType arg))]
-- | Used in places where some invariant ensures that all these arguments are
-- non-void; e.g. constructor arguments.
-- See Note [Post-unarisation invariants] in UnariseStg.
assertNonVoidStgArgs :: [StgArg] -> [NonVoid StgArg]
assertNonVoidStgArgs args = ASSERT(not (any (isVoidTy . stgArgType) args))
coerce args
-----------------------------------------------------------------------------
-- Representations
-----------------------------------------------------------------------------
-- Why are these here?
idPrimRep :: Id -> PrimRep
idPrimRep id = typePrimRep1 (idType id)
-- NB: typePrimRep1 fails on unboxed tuples,
-- but by StgCmm no Ids have unboxed tuple type
addIdReps :: [NonVoid Id] -> [NonVoid (PrimRep, Id)]
addIdReps = map (\id -> let id' = fromNonVoid id
in NonVoid (idPrimRep id', id'))
addArgReps :: [NonVoid StgArg] -> [NonVoid (PrimRep, StgArg)]
addArgReps = map (\arg -> let arg' = fromNonVoid arg
in NonVoid (argPrimRep arg', arg'))
argPrimRep :: StgArg -> PrimRep
argPrimRep arg = typePrimRep1 (stgArgType arg)
-----------------------------------------------------------------------------
-- LambdaFormInfo
-----------------------------------------------------------------------------
-- Information about an identifier, from the code generator's point of
-- view. Every identifier is bound to a LambdaFormInfo in the
-- environment, which gives the code generator enough info to be able to
-- tail call or return that identifier.
data LambdaFormInfo
= LFReEntrant -- Reentrant closure (a function)
TopLevelFlag -- True if top level
OneShotInfo
!RepArity -- Arity. Invariant: always > 0
!Bool -- True <=> no fvs
ArgDescr -- Argument descriptor (should really be in ClosureInfo)
| LFThunk -- Thunk (zero arity)
TopLevelFlag
!Bool -- True <=> no free vars
!Bool -- True <=> updatable (i.e., *not* single-entry)
StandardFormInfo
!Bool -- True <=> *might* be a function type
| LFCon -- A saturated constructor application
DataCon -- The constructor
| LFUnknown -- Used for function arguments and imported things.
-- We know nothing about this closure.
-- Treat like updatable "LFThunk"...
-- Imported things which we *do* know something about use
-- one of the other LF constructors (eg LFReEntrant for
-- known functions)
!Bool -- True <=> *might* be a function type
-- The False case is good when we want to enter it,
-- because then we know the entry code will do
-- For a function, the entry code is the fast entry point
| LFUnlifted -- A value of unboxed type;
-- always a value, needs evaluation
| LFLetNoEscape -- See LetNoEscape module for precise description
-------------------------
-- StandardFormInfo tells whether this thunk has one of
-- a small number of standard forms
data StandardFormInfo
= NonStandardThunk
-- The usual case: not of the standard forms
| SelectorThunk
-- A SelectorThunk is of form
-- case x of
-- con a1,..,an -> ak
-- and the constructor is from a single-constr type.
WordOff -- 0-origin offset of ak within the "goods" of
-- constructor (Recall that the a1,...,an may be laid
-- out in the heap in a non-obvious order.)
| ApThunk
-- An ApThunk is of form
-- x1 ... xn
-- The code for the thunk just pushes x2..xn on the stack and enters x1.
-- There are a few of these (for 1 <= n <= MAX_SPEC_AP_SIZE) pre-compiled
-- in the RTS to save space.
RepArity -- Arity, n
------------------------------------------------------
-- Building LambdaFormInfo
------------------------------------------------------
mkLFArgument :: Id -> LambdaFormInfo
mkLFArgument id
| isUnliftedType ty = LFUnlifted
| might_be_a_function ty = LFUnknown True
| otherwise = LFUnknown False
where
ty = idType id
-------------
mkLFLetNoEscape :: LambdaFormInfo
mkLFLetNoEscape = LFLetNoEscape
-------------
mkLFReEntrant :: TopLevelFlag -- True of top level
-> [Id] -- Free vars
-> [Id] -- Args
-> ArgDescr -- Argument descriptor
-> LambdaFormInfo
mkLFReEntrant _ _ [] _
= pprPanic "mkLFReEntrant" empty
mkLFReEntrant top fvs args arg_descr
= LFReEntrant top os_info (length args) (null fvs) arg_descr
where os_info = idOneShotInfo (head args)
-------------
mkLFThunk :: Type -> TopLevelFlag -> [Id] -> UpdateFlag -> LambdaFormInfo
mkLFThunk thunk_ty top fvs upd_flag
= ASSERT( not (isUpdatable upd_flag) || not (isUnliftedType thunk_ty) )
LFThunk top (null fvs)
(isUpdatable upd_flag)
NonStandardThunk
(might_be_a_function thunk_ty)
--------------
might_be_a_function :: Type -> Bool
-- Return False only if we are *sure* it's a data type
-- Look through newtypes etc as much as poss
might_be_a_function ty
| [LiftedRep] <- typePrimRep ty
, Just tc <- tyConAppTyCon_maybe (unwrapType ty)
, isDataTyCon tc
= False
| otherwise
= True
-------------
mkConLFInfo :: DataCon -> LambdaFormInfo
mkConLFInfo con = LFCon con
-------------
mkSelectorLFInfo :: Id -> Int -> Bool -> LambdaFormInfo
mkSelectorLFInfo id offset updatable
= LFThunk NotTopLevel False updatable (SelectorThunk offset)
(might_be_a_function (idType id))
-------------
mkApLFInfo :: Id -> UpdateFlag -> Arity -> LambdaFormInfo
mkApLFInfo id upd_flag arity
= LFThunk NotTopLevel (arity == 0) (isUpdatable upd_flag) (ApThunk arity)
(might_be_a_function (idType id))
-------------
mkLFImported :: Id -> LambdaFormInfo
mkLFImported id
| Just con <- isDataConWorkId_maybe id
, isNullaryRepDataCon con
= LFCon con -- An imported nullary constructor
-- We assume that the constructor is evaluated so that
-- the id really does point directly to the constructor
| arity > 0
= LFReEntrant TopLevel noOneShotInfo arity True (panic "arg_descr")
| otherwise
= mkLFArgument id -- Not sure of exact arity
where
arity = idFunRepArity id
-------------
mkLFStringLit :: LambdaFormInfo
mkLFStringLit = LFUnlifted
-----------------------------------------------------
-- Dynamic pointer tagging
-----------------------------------------------------
type DynTag = Int -- The tag on a *pointer*
-- (from the dynamic-tagging paper)
-- Note [Data constructor dynamic tags]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- The family size of a data type (the number of constructors
-- or the arity of a function) can be either:
-- * small, if the family size < 2**tag_bits
-- * big, otherwise.
--
-- Small families can have the constructor tag in the tag bits.
-- Big families only use the tag value 1 to represent evaluatedness.
-- We don't have very many tag bits: for example, we have 2 bits on
-- x86-32 and 3 bits on x86-64.
isSmallFamily :: DynFlags -> Int -> Bool
isSmallFamily dflags fam_size = fam_size <= mAX_PTR_TAG dflags
tagForCon :: DynFlags -> DataCon -> DynTag
tagForCon dflags con
| isSmallFamily dflags fam_size = con_tag
| otherwise = 1
where
con_tag = dataConTag con -- NB: 1-indexed
fam_size = tyConFamilySize (dataConTyCon con)
tagForArity :: DynFlags -> RepArity -> DynTag
tagForArity dflags arity
| isSmallFamily dflags arity = arity
| otherwise = 0
lfDynTag :: DynFlags -> LambdaFormInfo -> DynTag
-- Return the tag in the low order bits of a variable bound
-- to this LambdaForm
lfDynTag dflags (LFCon con) = tagForCon dflags con
lfDynTag dflags (LFReEntrant _ _ arity _ _) = tagForArity dflags arity
lfDynTag _ _other = 0
-----------------------------------------------------------------------------
-- Observing LambdaFormInfo
-----------------------------------------------------------------------------
-------------
maybeIsLFCon :: LambdaFormInfo -> Maybe DataCon
maybeIsLFCon (LFCon con) = Just con
maybeIsLFCon _ = Nothing
------------
isLFThunk :: LambdaFormInfo -> Bool
isLFThunk (LFThunk {}) = True
isLFThunk _ = False
isLFReEntrant :: LambdaFormInfo -> Bool
isLFReEntrant (LFReEntrant {}) = True
isLFReEntrant _ = False
-----------------------------------------------------------------------------
-- Choosing SM reps
-----------------------------------------------------------------------------
lfClosureType :: LambdaFormInfo -> ClosureTypeInfo
lfClosureType (LFReEntrant _ _ arity _ argd) = Fun arity argd
lfClosureType (LFCon con) = Constr (dataConTagZ con)
(dataConIdentity con)
lfClosureType (LFThunk _ _ _ is_sel _) = thunkClosureType is_sel
lfClosureType _ = panic "lfClosureType"
thunkClosureType :: StandardFormInfo -> ClosureTypeInfo
thunkClosureType (SelectorThunk off) = ThunkSelector off
thunkClosureType _ = Thunk
-- We *do* get non-updatable top-level thunks sometimes. eg. f = g
-- gets compiled to a jump to g (if g has non-zero arity), instead of
-- messing around with update frames and PAPs. We set the closure type
-- to FUN_STATIC in this case.
-----------------------------------------------------------------------------
-- nodeMustPointToIt
-----------------------------------------------------------------------------
nodeMustPointToIt :: DynFlags -> LambdaFormInfo -> Bool
-- If nodeMustPointToIt is true, then the entry convention for
-- this closure has R1 (the "Node" register) pointing to the
-- closure itself --- the "self" argument
nodeMustPointToIt _ (LFReEntrant top _ _ no_fvs _)
= not no_fvs -- Certainly if it has fvs we need to point to it
|| isNotTopLevel top -- See Note [GC recovery]
-- For lex_profiling we also access the cost centre for a
-- non-inherited (i.e. non-top-level) function.
-- The isNotTopLevel test above ensures this is ok.
nodeMustPointToIt dflags (LFThunk top no_fvs updatable NonStandardThunk _)
= not no_fvs -- Self parameter
|| isNotTopLevel top -- Note [GC recovery]
|| updatable -- Need to push update frame
|| gopt Opt_SccProfilingOn dflags
-- For the non-updatable (single-entry case):
--
-- True if has fvs (in which case we need access to them, and we
-- should black-hole it)
-- or profiling (in which case we need to recover the cost centre
-- from inside it) ToDo: do we need this even for
-- top-level thunks? If not,
-- isNotTopLevel subsumes this
nodeMustPointToIt _ (LFThunk {}) -- Node must point to a standard-form thunk
= True
nodeMustPointToIt _ (LFCon _) = True
-- Strictly speaking, the above two don't need Node to point
-- to it if the arity = 0. But this is a *really* unlikely
-- situation. If we know it's nil (say) and we are entering
-- it. Eg: let x = [] in x then we will certainly have inlined
-- x, since nil is a simple atom. So we gain little by not
-- having Node point to known zero-arity things. On the other
-- hand, we do lose something; Patrick's code for figuring out
-- when something has been updated but not entered relies on
-- having Node point to the result of an update. SLPJ
-- 27/11/92.
nodeMustPointToIt _ (LFUnknown _) = True
nodeMustPointToIt _ LFUnlifted = False
nodeMustPointToIt _ LFLetNoEscape = False
{- Note [GC recovery]
~~~~~~~~~~~~~~~~~~~~~
If we a have a local let-binding (function or thunk)
let f = <body> in ...
AND <body> allocates, then the heap-overflow check needs to know how
to re-start the evaluation. It uses the "self" pointer to do this.
So even if there are no free variables in <body>, we still make
nodeMustPointToIt be True for non-top-level bindings.
Why do any such bindings exist? After all, let-floating should have
floated them out. Well, a clever optimiser might leave one there to
avoid a space leak, deliberately recomputing a thunk. Also (and this
really does happen occasionally) let-floating may make a function f smaller
so it can be inlined, so now (f True) may generate a local no-fv closure.
This actually happened during bootstrapping GHC itself, with f=mkRdrFunBind
in TcGenDeriv.) -}
-----------------------------------------------------------------------------
-- getCallMethod
-----------------------------------------------------------------------------
{- The entry conventions depend on the type of closure being entered,
whether or not it has free variables, and whether we're running
sequentially or in parallel.
Closure Node Argument Enter
Characteristics Par Req'd Passing Via
---------------------------------------------------------------------------
Unknown & no & yes & stack & node
Known fun (>1 arg), no fvs & no & no & registers & fast entry (enough args)
& slow entry (otherwise)
Known fun (>1 arg), fvs & no & yes & registers & fast entry (enough args)
0 arg, no fvs \r,\s & no & no & n/a & direct entry
0 arg, no fvs \u & no & yes & n/a & node
0 arg, fvs \r,\s,selector & no & yes & n/a & node
0 arg, fvs \r,\s & no & yes & n/a & direct entry
0 arg, fvs \u & no & yes & n/a & node
Unknown & yes & yes & stack & node
Known fun (>1 arg), no fvs & yes & no & registers & fast entry (enough args)
& slow entry (otherwise)
Known fun (>1 arg), fvs & yes & yes & registers & node
0 arg, fvs \r,\s,selector & yes & yes & n/a & node
0 arg, no fvs \r,\s & yes & no & n/a & direct entry
0 arg, no fvs \u & yes & yes & n/a & node
0 arg, fvs \r,\s & yes & yes & n/a & node
0 arg, fvs \u & yes & yes & n/a & node
When black-holing, single-entry closures could also be entered via node
(rather than directly) to catch double-entry. -}
data CallMethod
= EnterIt -- No args, not a function
| JumpToIt BlockId [LocalReg] -- A join point or a header of a local loop
| ReturnIt -- It's a value (function, unboxed value,
-- or constructor), so just return it.
| SlowCall -- Unknown fun, or known fun with
-- too few args.
| DirectEntry -- Jump directly, with args in regs
CLabel -- The code label
RepArity -- Its arity
getCallMethod :: DynFlags
-> Name -- Function being applied
-> Id -- Function Id used to chech if it can refer to
-- CAF's and whether the function is tail-calling
-- itself
-> LambdaFormInfo -- Its info
-> RepArity -- Number of available arguments
-> RepArity -- Number of them being void arguments
-> CgLoc -- Passed in from cgIdApp so that we can
-- handle let-no-escape bindings and self-recursive
-- tail calls using the same data constructor,
-- JumpToIt. This saves us one case branch in
-- cgIdApp
-> Maybe SelfLoopInfo -- can we perform a self-recursive tail call?
-> CallMethod
getCallMethod dflags _ id _ n_args v_args _cg_loc
(Just (self_loop_id, block_id, args))
| gopt Opt_Loopification dflags
, id == self_loop_id
, n_args - v_args == length args
-- If these patterns match then we know that:
-- * loopification optimisation is turned on
-- * function is performing a self-recursive call in a tail position
-- * number of non-void parameters of the function matches functions arity.
-- See Note [Self-recursive tail calls] and Note [Void arguments in
-- self-recursive tail calls] in StgCmmExpr for more details
= JumpToIt block_id args
getCallMethod dflags name id (LFReEntrant _ _ arity _ _) n_args _v_args _cg_loc
_self_loop_info
| n_args == 0 -- No args at all
&& not (gopt Opt_SccProfilingOn dflags)
-- See Note [Evaluating functions with profiling] in rts/Apply.cmm
= ASSERT( arity /= 0 ) ReturnIt
| n_args < arity = SlowCall -- Not enough args
| otherwise = DirectEntry (enterIdLabel dflags name (idCafInfo id)) arity
getCallMethod _ _name _ LFUnlifted n_args _v_args _cg_loc _self_loop_info
= ASSERT( n_args == 0 ) ReturnIt
getCallMethod _ _name _ (LFCon _) n_args _v_args _cg_loc _self_loop_info
= ASSERT( n_args == 0 ) ReturnIt
-- n_args=0 because it'd be ill-typed to apply a saturated
-- constructor application to anything
getCallMethod dflags name id (LFThunk _ _ updatable std_form_info is_fun)
n_args _v_args _cg_loc _self_loop_info
| is_fun -- it *might* be a function, so we must "call" it (which is always safe)
= SlowCall -- We cannot just enter it [in eval/apply, the entry code
-- is the fast-entry code]
-- Since is_fun is False, we are *definitely* looking at a data value
| updatable || gopt Opt_Ticky dflags -- to catch double entry
{- OLD: || opt_SMP
I decided to remove this, because in SMP mode it doesn't matter
if we enter the same thunk multiple times, so the optimisation
of jumping directly to the entry code is still valid. --SDM
-}
= EnterIt
-- even a non-updatable selector thunk can be updated by the garbage
-- collector, so we must enter it. (#8817)
| SelectorThunk{} <- std_form_info
= EnterIt
-- We used to have ASSERT( n_args == 0 ), but actually it is
-- possible for the optimiser to generate
-- let bot :: Int = error Int "urk"
-- in (bot `cast` unsafeCoerce Int (Int -> Int)) 3
-- This happens as a result of the case-of-error transformation
-- So the right thing to do is just to enter the thing
| otherwise -- Jump direct to code for single-entry thunks
= ASSERT( n_args == 0 )
DirectEntry (thunkEntryLabel dflags name (idCafInfo id) std_form_info
updatable) 0
getCallMethod _ _name _ (LFUnknown True) _n_arg _v_args _cg_locs _self_loop_info
= SlowCall -- might be a function
getCallMethod _ name _ (LFUnknown False) n_args _v_args _cg_loc _self_loop_info
= ASSERT2( n_args == 0, ppr name <+> ppr n_args )
EnterIt -- Not a function
getCallMethod _ _name _ LFLetNoEscape _n_args _v_args (LneLoc blk_id lne_regs)
_self_loop_info
= JumpToIt blk_id lne_regs
getCallMethod _ _ _ _ _ _ _ _ = panic "Unknown call method"
-----------------------------------------------------------------------------
-- staticClosureRequired
-----------------------------------------------------------------------------
{- staticClosureRequired is never called (hence commented out)
SimonMar writes (Sept 07) It's an optimisation we used to apply at
one time, I believe, but it got lost probably in the rewrite of
the RTS/code generator. I left that code there to remind me to
look into whether it was worth doing sometime
{- Avoiding generating entries and info tables
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
At present, for every function we generate all of the following,
just in case. But they aren't always all needed, as noted below:
[NB1: all of this applies only to *functions*. Thunks always
have closure, info table, and entry code.]
[NB2: All are needed if the function is *exported*, just to play safe.]
* Fast-entry code ALWAYS NEEDED
* Slow-entry code
Needed iff (a) we have any un-saturated calls to the function
OR (b) the function is passed as an arg
OR (c) we're in the parallel world and the function has free vars
[Reason: in parallel world, we always enter functions
with free vars via the closure.]
* The function closure
Needed iff (a) we have any un-saturated calls to the function
OR (b) the function is passed as an arg
OR (c) if the function has free vars (ie not top level)
Why case (a) here? Because if the arg-satis check fails,
UpdatePAP stuffs a pointer to the function closure in the PAP.
[Could be changed; UpdatePAP could stuff in a code ptr instead,
but doesn't seem worth it.]
[NB: these conditions imply that we might need the closure
without the slow-entry code. Here's how.
f x y = let g w = ...x..y..w...
in
...(g t)...
Here we need a closure for g which contains x and y,
but since the calls are all saturated we just jump to the
fast entry point for g, with R1 pointing to the closure for g.]
* Standard info table
Needed iff (a) we have any un-saturated calls to the function
OR (b) the function is passed as an arg
OR (c) the function has free vars (ie not top level)
NB. In the sequential world, (c) is only required so that the function closure has
an info table to point to, to keep the storage manager happy.
If (c) alone is true we could fake up an info table by choosing
one of a standard family of info tables, whose entry code just
bombs out.
[NB In the parallel world (c) is needed regardless because
we enter functions with free vars via the closure.]
If (c) is retained, then we'll sometimes generate an info table
(for storage mgr purposes) without slow-entry code. Then we need
to use an error label in the info table to substitute for the absent
slow entry code.
-}
staticClosureRequired
:: Name
-> StgBinderInfo
-> LambdaFormInfo
-> Bool
staticClosureRequired binder bndr_info
(LFReEntrant top_level _ _ _ _) -- It's a function
= ASSERT( isTopLevel top_level )
-- Assumption: it's a top-level, no-free-var binding
not (satCallsOnly bndr_info)
staticClosureRequired binder other_binder_info other_lf_info = True
-}
-----------------------------------------------------------------------------
-- Data types for closure information
-----------------------------------------------------------------------------
{- ClosureInfo: information about a binding
We make a ClosureInfo for each let binding (both top level and not),
but not bindings for data constructors: for those we build a CmmInfoTable
directly (see mkDataConInfoTable).
To a first approximation:
ClosureInfo = (LambdaFormInfo, CmmInfoTable)
A ClosureInfo has enough information
a) to construct the info table itself, and build other things
related to the binding (e.g. slow entry points for a function)
b) to allocate a closure containing that info pointer (i.e.
it knows the info table label)
-}
data ClosureInfo
= ClosureInfo {
closureName :: !Name, -- The thing bound to this closure
-- we don't really need this field: it's only used in generating
-- code for ticky and profiling, and we could pass the information
-- around separately, but it doesn't do much harm to keep it here.
closureLFInfo :: !LambdaFormInfo, -- NOTE: not an LFCon
-- this tells us about what the closure contains: it's right-hand-side.
-- the rest is just an unpacked CmmInfoTable.
closureInfoLabel :: !CLabel,
closureSMRep :: !SMRep, -- representation used by storage mgr
closureProf :: !ProfilingInfo
}
-- | Convert from 'ClosureInfo' to 'CmmInfoTable'.
mkCmmInfo :: ClosureInfo -> CmmInfoTable
mkCmmInfo ClosureInfo {..}
= CmmInfoTable { cit_lbl = closureInfoLabel
, cit_rep = closureSMRep
, cit_prof = closureProf
, cit_srt = NoC_SRT }
--------------------------------------
-- Building ClosureInfos
--------------------------------------
mkClosureInfo :: DynFlags
-> Bool -- Is static
-> Id
-> LambdaFormInfo
-> Int -> Int -- Total and pointer words
-> String -- String descriptor
-> ClosureInfo
mkClosureInfo dflags is_static id lf_info tot_wds ptr_wds val_descr
= ClosureInfo { closureName = name
, closureLFInfo = lf_info
, closureInfoLabel = info_lbl -- These three fields are
, closureSMRep = sm_rep -- (almost) an info table
, closureProf = prof } -- (we don't have an SRT yet)
where
name = idName id
sm_rep = mkHeapRep dflags is_static ptr_wds nonptr_wds (lfClosureType lf_info)
prof = mkProfilingInfo dflags id val_descr
nonptr_wds = tot_wds - ptr_wds
info_lbl = mkClosureInfoTableLabel id lf_info
--------------------------------------
-- Other functions over ClosureInfo
--------------------------------------
-- Eager blackholing is normally disabled, but can be turned on with
-- -feager-blackholing. When it is on, we replace the info pointer of
-- the thunk with stg_EAGER_BLACKHOLE_info on entry.
-- If we wanted to do eager blackholing with slop filling,
-- we'd need to do it at the *end* of a basic block, otherwise
-- we overwrite the free variables in the thunk that we still
-- need. We have a patch for this from Andy Cheadle, but not
-- incorporated yet. --SDM [6/2004]
--
-- Previously, eager blackholing was enabled when ticky-ticky
-- was on. But it didn't work, and it wasn't strictly necessary
-- to bring back minimal ticky-ticky, so now EAGER_BLACKHOLING
-- is unconditionally disabled. -- krc 1/2007
--
-- Static closures are never themselves black-holed.
blackHoleOnEntry :: ClosureInfo -> Bool
blackHoleOnEntry cl_info
| isStaticRep (closureSMRep cl_info)
= False -- Never black-hole a static closure
| otherwise
= case closureLFInfo cl_info of
LFReEntrant {} -> False
LFLetNoEscape -> False
LFThunk _ _no_fvs upd _ _ -> upd -- See Note [Black-holing non-updatable thunks]
_other -> panic "blackHoleOnEntry"
{- Note [Black-holing non-updatable thunks]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must not black-hole non-updatable (single-entry) thunks otherwise
we run into issues like Trac #10414. Specifically:
* There is no reason to black-hole a non-updatable thunk: it should
not be competed for by multiple threads
* It could, conceivably, cause a space leak if we don't black-hole
it, if there was a live but never-followed pointer pointing to it.
Let's hope that doesn't happen.
* It is dangerous to black-hole a non-updatable thunk because
- is not updated (of course)
- hence, if it is black-holed and another thread tries to evaluate
it, that thread will block forever
This actually happened in Trac #10414. So we do not black-hole
non-updatable thunks.
* How could two threads evaluate the same non-updatable (single-entry)
thunk? See Reid Barton's example below.
* Only eager blackholing could possibly black-hole a non-updatable
thunk, because lazy black-holing only affects thunks with an
update frame on the stack.
Here is and example due to Reid Barton (Trac #10414):
x = \u [] concat [[1], []]
with the following definitions,
concat x = case x of
[] -> []
(:) x xs -> (++) x (concat xs)
(++) xs ys = case xs of
[] -> ys
(:) x rest -> (:) x ((++) rest ys)
Where we use the syntax @\u []@ to denote an updatable thunk and @\s []@ to
denote a single-entry (i.e. non-updatable) thunk. After a thread evaluates @x@
to WHNF and calls @(++)@ the heap will contain the following thunks,
x = 1 : y
y = \u [] (++) [] z
z = \s [] concat []
Now that the stage is set, consider the follow evaluations by two racing threads
A and B,
1. Both threads enter @y@ before either is able to replace it with an
indirection
2. Thread A does the case analysis in @(++)@ and consequently enters @z@,
replacing it with a black-hole
3. At some later point thread B does the same case analysis and also attempts
to enter @z@. However, it finds that it has been replaced with a black-hole
so it blocks.
4. Thread A eventually finishes evaluating @z@ (to @[]@) and updates @y@
accordingly. It does *not* update @z@, however, as it is single-entry. This
leaves Thread B blocked forever on a black-hole which will never be
updated.
To avoid this sort of condition we never black-hole non-updatable thunks.
-}
isStaticClosure :: ClosureInfo -> Bool
isStaticClosure cl_info = isStaticRep (closureSMRep cl_info)
closureUpdReqd :: ClosureInfo -> Bool
closureUpdReqd ClosureInfo{ closureLFInfo = lf_info } = lfUpdatable lf_info
lfUpdatable :: LambdaFormInfo -> Bool
lfUpdatable (LFThunk _ _ upd _ _) = upd
lfUpdatable _ = False
closureSingleEntry :: ClosureInfo -> Bool
closureSingleEntry (ClosureInfo { closureLFInfo = LFThunk _ _ upd _ _}) = not upd
closureSingleEntry (ClosureInfo { closureLFInfo = LFReEntrant _ OneShotLam _ _ _}) = True
closureSingleEntry _ = False
closureReEntrant :: ClosureInfo -> Bool
closureReEntrant (ClosureInfo { closureLFInfo = LFReEntrant {} }) = True
closureReEntrant _ = False
closureFunInfo :: ClosureInfo -> Maybe (RepArity, ArgDescr)
closureFunInfo (ClosureInfo { closureLFInfo = lf_info }) = lfFunInfo lf_info
lfFunInfo :: LambdaFormInfo -> Maybe (RepArity, ArgDescr)
lfFunInfo (LFReEntrant _ _ arity _ arg_desc) = Just (arity, arg_desc)
lfFunInfo _ = Nothing
funTag :: DynFlags -> ClosureInfo -> DynTag
funTag dflags (ClosureInfo { closureLFInfo = lf_info })
= lfDynTag dflags lf_info
isToplevClosure :: ClosureInfo -> Bool
isToplevClosure (ClosureInfo { closureLFInfo = lf_info })
= case lf_info of
LFReEntrant TopLevel _ _ _ _ -> True
LFThunk TopLevel _ _ _ _ -> True
_other -> False
--------------------------------------
-- Label generation
--------------------------------------
staticClosureLabel :: ClosureInfo -> CLabel
staticClosureLabel = toClosureLbl . closureInfoLabel
closureSlowEntryLabel :: ClosureInfo -> CLabel
closureSlowEntryLabel = toSlowEntryLbl . closureInfoLabel
closureLocalEntryLabel :: DynFlags -> ClosureInfo -> CLabel
closureLocalEntryLabel dflags
| tablesNextToCode dflags = toInfoLbl . closureInfoLabel
| otherwise = toEntryLbl . closureInfoLabel
mkClosureInfoTableLabel :: Id -> LambdaFormInfo -> CLabel
mkClosureInfoTableLabel id lf_info
= case lf_info of
LFThunk _ _ upd_flag (SelectorThunk offset) _
-> mkSelectorInfoLabel upd_flag offset
LFThunk _ _ upd_flag (ApThunk arity) _
-> mkApInfoTableLabel upd_flag arity
LFThunk{} -> std_mk_lbl name cafs
LFReEntrant{} -> std_mk_lbl name cafs
_other -> panic "closureInfoTableLabel"
where
name = idName id
std_mk_lbl | is_local = mkLocalInfoTableLabel
| otherwise = mkInfoTableLabel
cafs = idCafInfo id
is_local = isDataConWorkId id
-- Make the _info pointer for the implicit datacon worker
-- binding local. The reason we can do this is that importing
-- code always either uses the _closure or _con_info. By the
-- invariants in CorePrep anything else gets eta expanded.
thunkEntryLabel :: DynFlags -> Name -> CafInfo -> StandardFormInfo -> Bool -> CLabel
-- thunkEntryLabel is a local help function, not exported. It's used from
-- getCallMethod.
thunkEntryLabel dflags _thunk_id _ (ApThunk arity) upd_flag
= enterApLabel dflags upd_flag arity
thunkEntryLabel dflags _thunk_id _ (SelectorThunk offset) upd_flag
= enterSelectorLabel dflags upd_flag offset
thunkEntryLabel dflags thunk_id c _ _
= enterIdLabel dflags thunk_id c
enterApLabel :: DynFlags -> Bool -> Arity -> CLabel
enterApLabel dflags is_updatable arity
| tablesNextToCode dflags = mkApInfoTableLabel is_updatable arity
| otherwise = mkApEntryLabel is_updatable arity
enterSelectorLabel :: DynFlags -> Bool -> WordOff -> CLabel
enterSelectorLabel dflags upd_flag offset
| tablesNextToCode dflags = mkSelectorInfoLabel upd_flag offset
| otherwise = mkSelectorEntryLabel upd_flag offset
enterIdLabel :: DynFlags -> Name -> CafInfo -> CLabel
enterIdLabel dflags id c
| tablesNextToCode dflags = mkInfoTableLabel id c
| otherwise = mkEntryLabel id c
--------------------------------------
-- Profiling
--------------------------------------
-- Profiling requires two pieces of information to be determined for
-- each closure's info table --- description and type.
-- The description is stored directly in the @CClosureInfoTable@ when the
-- info table is built.
-- The type is determined from the type information stored with the @Id@
-- in the closure info using @closureTypeDescr@.
mkProfilingInfo :: DynFlags -> Id -> String -> ProfilingInfo
mkProfilingInfo dflags id val_descr
| not (gopt Opt_SccProfilingOn dflags) = NoProfilingInfo
| otherwise = ProfilingInfo ty_descr_w8 val_descr_w8
where
ty_descr_w8 = stringToWord8s (getTyDescription (idType id))
val_descr_w8 = stringToWord8s val_descr
getTyDescription :: Type -> String
getTyDescription ty
= case (tcSplitSigmaTy ty) of { (_, _, tau_ty) ->
case tau_ty of
TyVarTy _ -> "*"
AppTy fun _ -> getTyDescription fun
TyConApp tycon _ -> getOccString tycon
FunTy _ res -> '-' : '>' : fun_result res
ForAllTy _ ty -> getTyDescription ty
LitTy n -> getTyLitDescription n
CastTy ty _ -> getTyDescription ty
CoercionTy co -> pprPanic "getTyDescription" (ppr co)
}
where
fun_result (FunTy _ res) = '>' : fun_result res
fun_result other = getTyDescription other
getTyLitDescription :: TyLit -> String
getTyLitDescription l =
case l of
NumTyLit n -> show n
StrTyLit n -> show n
--------------------------------------
-- CmmInfoTable-related things
--------------------------------------
mkDataConInfoTable :: DynFlags -> DataCon -> Bool -> Int -> Int -> CmmInfoTable
mkDataConInfoTable dflags data_con is_static ptr_wds nonptr_wds
= CmmInfoTable { cit_lbl = info_lbl
, cit_rep = sm_rep
, cit_prof = prof
, cit_srt = NoC_SRT }
where
name = dataConName data_con
info_lbl = mkConInfoTableLabel name NoCafRefs
sm_rep = mkHeapRep dflags is_static ptr_wds nonptr_wds cl_type
cl_type = Constr (dataConTagZ data_con) (dataConIdentity data_con)
-- We keep the *zero-indexed* tag in the srt_len field
-- of the info table of a data constructor.
prof | not (gopt Opt_SccProfilingOn dflags) = NoProfilingInfo
| otherwise = ProfilingInfo ty_descr val_descr
ty_descr = stringToWord8s $ occNameString $ getOccName $ dataConTyCon data_con
val_descr = stringToWord8s $ occNameString $ getOccName data_con
-- We need a black-hole closure info to pass to @allocDynClosure@ when we
-- want to allocate the black hole on entry to a CAF.
cafBlackHoleInfoTable :: CmmInfoTable
cafBlackHoleInfoTable
= CmmInfoTable { cit_lbl = mkCAFBlackHoleInfoTableLabel
, cit_rep = blackHoleRep
, cit_prof = NoProfilingInfo
, cit_srt = NoC_SRT }
indStaticInfoTable :: CmmInfoTable
indStaticInfoTable
= CmmInfoTable { cit_lbl = mkIndStaticInfoLabel
, cit_rep = indStaticRep
, cit_prof = NoProfilingInfo
, cit_srt = NoC_SRT }
staticClosureNeedsLink :: Bool -> CmmInfoTable -> Bool
-- A static closure needs a link field to aid the GC when traversing
-- the static closure graph. But it only needs such a field if either
-- a) it has an SRT
-- b) it's a constructor with one or more pointer fields
-- In case (b), the constructor's fields themselves play the role
-- of the SRT.
staticClosureNeedsLink has_srt CmmInfoTable{ cit_rep = smrep }
| isConRep smrep = not (isStaticNoCafCon smrep)
| otherwise = has_srt -- needsSRT (cit_srt info_tbl)
|