1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
|
-----------------------------------------------------------------------------
--
-- Building info tables.
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
-- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details
module StgCmmLayout (
mkArgDescr,
emitCall, emitReturn, adjustHpBackwards,
emitClosureProcAndInfoTable,
emitClosureAndInfoTable,
slowCall, directCall,
mkVirtHeapOffsets, mkVirtConstrOffsets, getHpRelOffset, hpRel,
ArgRep(..), toArgRep, argRepSizeW -- re-exported from StgCmmArgRep
) where
#include "HsVersions.h"
import StgCmmClosure
import StgCmmEnv
import StgCmmArgRep -- notably: ( slowCallPattern )
import StgCmmTicky
import StgCmmMonad
import StgCmmUtils
import StgCmmProf
import MkGraph
import SMRep
import Cmm
import CmmUtils
import CmmInfo
import CLabel
import StgSyn
import Id
import Name
import TyCon ( PrimRep(..) )
import BasicTypes ( RepArity )
import DynFlags
import Module
import Util
import Data.List
import Outputable
import FastString
import Control.Monad
------------------------------------------------------------------------
-- Call and return sequences
------------------------------------------------------------------------
-- | Return multiple values to the sequel
--
-- If the sequel is @Return@
--
-- > return (x,y)
--
-- If the sequel is @AssignTo [p,q]@
--
-- > p=x; q=y;
--
emitReturn :: [CmmExpr] -> FCode ReturnKind
emitReturn results
= do { dflags <- getDynFlags
; sequel <- getSequel
; updfr_off <- getUpdFrameOff
; case sequel of
Return _ ->
do { adjustHpBackwards
; let e = CmmLoad (CmmStackSlot Old updfr_off) (gcWord dflags)
; emit (mkReturn dflags (entryCode dflags e) results updfr_off)
}
AssignTo regs adjust ->
do { when adjust adjustHpBackwards
; emitMultiAssign regs results }
; return AssignedDirectly
}
-- | @emitCall conv fun args@ makes a call to the entry-code of @fun@,
-- using the call/return convention @conv@, passing @args@, and
-- returning the results to the current sequel.
--
emitCall :: (Convention, Convention) -> CmmExpr -> [CmmExpr] -> FCode ReturnKind
emitCall convs fun args
= emitCallWithExtraStack convs fun args noExtraStack
-- | @emitCallWithExtraStack conv fun args stack@ makes a call to the
-- entry-code of @fun@, using the call/return convention @conv@,
-- passing @args@, pushing some extra stack frames described by
-- @stack@, and returning the results to the current sequel.
--
emitCallWithExtraStack
:: (Convention, Convention) -> CmmExpr -> [CmmExpr]
-> [CmmExpr] -> FCode ReturnKind
emitCallWithExtraStack (callConv, retConv) fun args extra_stack
= do { dflags <- getDynFlags
; adjustHpBackwards
; sequel <- getSequel
; updfr_off <- getUpdFrameOff
; case sequel of
Return _ -> do
emit $ mkJumpExtra dflags callConv fun args updfr_off extra_stack
return AssignedDirectly
AssignTo res_regs _ -> do
k <- newLabelC
let area = Young k
(off, _, copyin) = copyInOflow dflags retConv area res_regs []
copyout = mkCallReturnsTo dflags fun callConv args k off updfr_off
extra_stack
emit (copyout <*> mkLabel k <*> copyin)
return (ReturnedTo k off)
}
adjustHpBackwards :: FCode ()
-- This function adjusts and heap pointers just before a tail call or
-- return. At a call or return, the virtual heap pointer may be less
-- than the real Hp, because the latter was advanced to deal with
-- the worst-case branch of the code, and we may be in a better-case
-- branch. In that case, move the real Hp *back* and retract some
-- ticky allocation count.
--
-- It *does not* deal with high-water-mark adjustment.
-- That's done by functions which allocate heap.
adjustHpBackwards
= do { hp_usg <- getHpUsage
; let rHp = realHp hp_usg
vHp = virtHp hp_usg
adjust_words = vHp -rHp
; new_hp <- getHpRelOffset vHp
; emit (if adjust_words == 0
then mkNop
else mkAssign hpReg new_hp) -- Generates nothing when vHp==rHp
; tickyAllocHeap False adjust_words -- ...ditto
; setRealHp vHp
}
-------------------------------------------------------------------------
-- Making calls: directCall and slowCall
-------------------------------------------------------------------------
-- General plan is:
-- - we'll make *one* fast call, either to the function itself
-- (directCall) or to stg_ap_<pat>_fast (slowCall)
-- Any left-over arguments will be pushed on the stack,
--
-- e.g. Sp[old+8] = arg1
-- Sp[old+16] = arg2
-- Sp[old+32] = stg_ap_pp_info
-- R2 = arg3
-- R3 = arg4
-- call f() return to Nothing updfr_off: 32
directCall :: Convention -> CLabel -> RepArity -> [StgArg] -> FCode ReturnKind
-- (directCall f n args)
-- calls f(arg1, ..., argn), and applies the result to the remaining args
-- The function f has arity n, and there are guaranteed at least n args
-- Both arity and args include void args
directCall conv lbl arity stg_args
= do { argreps <- getArgRepsAmodes stg_args
; direct_call "directCall" conv lbl arity argreps }
slowCall :: CmmExpr -> [StgArg] -> FCode ReturnKind
-- (slowCall fun args) applies fun to args, returning the results to Sequel
slowCall fun stg_args
= do { dflags <- getDynFlags
; argsreps <- getArgRepsAmodes stg_args
; let (rts_fun, arity) = slowCallPattern (map fst argsreps)
; r <- direct_call "slow_call" NativeNodeCall
(mkRtsApFastLabel rts_fun) arity ((P,Just fun):argsreps)
; emitComment $ mkFastString ("slow_call for " ++
showSDoc dflags (ppr fun) ++
" with pat " ++ unpackFS rts_fun)
; return r
}
--------------
direct_call :: String
-> Convention -- e.g. NativeNodeCall or NativeDirectCall
-> CLabel -> RepArity
-> [(ArgRep,Maybe CmmExpr)] -> FCode ReturnKind
direct_call caller call_conv lbl arity args
| debugIsOn && real_arity > length args -- Too few args
= do -- Caller should ensure that there enough args!
pprPanic "direct_call" $
text caller <+> ppr arity <+>
ppr lbl <+> ppr (length args) <+>
ppr (map snd args) <+> ppr (map fst args)
| null rest_args -- Precisely the right number of arguments
= emitCall (call_conv, NativeReturn) target (nonVArgs args)
| otherwise -- Note [over-saturated calls]
= do dflags <- getDynFlags
emitCallWithExtraStack (call_conv, NativeReturn)
target
(nonVArgs fast_args)
(nonVArgs (stack_args dflags))
where
target = CmmLit (CmmLabel lbl)
(fast_args, rest_args) = splitAt real_arity args
stack_args dflags = slowArgs dflags rest_args
real_arity = case call_conv of
NativeNodeCall -> arity+1
_ -> arity
-- When constructing calls, it is easier to keep the ArgReps and the
-- CmmExprs zipped together. However, a void argument has no
-- representation, so we need to use Maybe CmmExpr (the alternative of
-- using zeroCLit or even undefined would work, but would be ugly).
--
getArgRepsAmodes :: [StgArg] -> FCode [(ArgRep, Maybe CmmExpr)]
getArgRepsAmodes = mapM getArgRepAmode
where getArgRepAmode arg
| V <- rep = return (V, Nothing)
| otherwise = do expr <- getArgAmode (NonVoid arg)
return (rep, Just expr)
where rep = toArgRep (argPrimRep arg)
nonVArgs :: [(ArgRep, Maybe CmmExpr)] -> [CmmExpr]
nonVArgs [] = []
nonVArgs ((_,Nothing) : args) = nonVArgs args
nonVArgs ((_,Just arg) : args) = arg : nonVArgs args
{-
Note [over-saturated calls]
The natural thing to do for an over-saturated call would be to call
the function with the correct number of arguments, and then apply the
remaining arguments to the value returned, e.g.
f a b c d (where f has arity 2)
-->
r = call f(a,b)
call r(c,d)
but this entails
- saving c and d on the stack
- making a continuation info table
- at the continuation, loading c and d off the stack into regs
- finally, call r
Note that since there are a fixed number of different r's
(e.g. stg_ap_pp_fast), we can also pre-compile continuations
that correspond to each of them, rather than generating a fresh
one for each over-saturated call.
Not only does this generate much less code, it is faster too. We will
generate something like:
Sp[old+16] = c
Sp[old+24] = d
Sp[old+32] = stg_ap_pp_info
call f(a,b) -- usual calling convention
For the purposes of the CmmCall node, we count this extra stack as
just more arguments that we are passing on the stack (cml_args).
-}
-- | 'slowArgs' takes a list of function arguments and prepares them for
-- pushing on the stack for "extra" arguments to a function which requires
-- fewer arguments than we currently have.
slowArgs :: DynFlags -> [(ArgRep, Maybe CmmExpr)] -> [(ArgRep, Maybe CmmExpr)]
slowArgs _ [] = []
slowArgs dflags args -- careful: reps contains voids (V), but args does not
| gopt Opt_SccProfilingOn dflags
= save_cccs ++ this_pat ++ slowArgs dflags rest_args
| otherwise = this_pat ++ slowArgs dflags rest_args
where
(arg_pat, n) = slowCallPattern (map fst args)
(call_args, rest_args) = splitAt n args
stg_ap_pat = mkCmmRetInfoLabel rtsPackageId arg_pat
this_pat = (N, Just (mkLblExpr stg_ap_pat)) : call_args
save_cccs = [(N, Just (mkLblExpr save_cccs_lbl)), (N, Just curCCS)]
save_cccs_lbl = mkCmmRetInfoLabel rtsPackageId (fsLit "stg_restore_cccs")
-------------------------------------------------------------------------
---- Laying out objects on the heap and stack
-------------------------------------------------------------------------
-- The heap always grows upwards, so hpRel is easy
hpRel :: VirtualHpOffset -- virtual offset of Hp
-> VirtualHpOffset -- virtual offset of The Thing
-> WordOff -- integer word offset
hpRel hp off = off - hp
getHpRelOffset :: VirtualHpOffset -> FCode CmmExpr
getHpRelOffset virtual_offset
= do dflags <- getDynFlags
hp_usg <- getHpUsage
return (cmmRegOffW dflags hpReg (hpRel (realHp hp_usg) virtual_offset))
mkVirtHeapOffsets
:: DynFlags
-> Bool -- True <=> is a thunk
-> [(PrimRep,a)] -- Things to make offsets for
-> (WordOff, -- _Total_ number of words allocated
WordOff, -- Number of words allocated for *pointers*
[(NonVoid a, VirtualHpOffset)])
-- Things with their offsets from start of object in order of
-- increasing offset; BUT THIS MAY BE DIFFERENT TO INPUT ORDER
-- First in list gets lowest offset, which is initial offset + 1.
--
-- Void arguments are removed, so output list may be shorter than
-- input list
--
-- mkVirtHeapOffsets always returns boxed things with smaller offsets
-- than the unboxed things
mkVirtHeapOffsets dflags is_thunk things
= let non_void_things = filterOut (isVoidRep . fst) things
(ptrs, non_ptrs) = partition (isGcPtrRep . fst) non_void_things
(wds_of_ptrs, ptrs_w_offsets) = mapAccumL computeOffset 0 ptrs
(tot_wds, non_ptrs_w_offsets) = mapAccumL computeOffset wds_of_ptrs non_ptrs
in
(tot_wds, wds_of_ptrs, ptrs_w_offsets ++ non_ptrs_w_offsets)
where
hdr_size | is_thunk = thunkHdrSize dflags
| otherwise = fixedHdrSize dflags
computeOffset wds_so_far (rep, thing)
= (wds_so_far + argRepSizeW dflags (toArgRep rep),
(NonVoid thing, hdr_size + wds_so_far))
mkVirtConstrOffsets :: DynFlags -> [(PrimRep,a)] -> (WordOff, WordOff, [(NonVoid a, VirtualHpOffset)])
-- Just like mkVirtHeapOffsets, but for constructors
mkVirtConstrOffsets dflags = mkVirtHeapOffsets dflags False
-------------------------------------------------------------------------
--
-- Making argument descriptors
--
-- An argument descriptor describes the layout of args on the stack,
-- both for * GC (stack-layout) purposes, and
-- * saving/restoring registers when a heap-check fails
--
-- Void arguments aren't important, therefore (contrast constructSlowCall)
--
-------------------------------------------------------------------------
-- bring in ARG_P, ARG_N, etc.
#include "../includes/rts/storage/FunTypes.h"
mkArgDescr :: Name -> [Id] -> FCode ArgDescr
mkArgDescr _nm args
= do dflags <- getDynFlags
let arg_bits = argBits dflags arg_reps
arg_reps = filter isNonV (map idArgRep args)
-- Getting rid of voids eases matching of standard patterns
case stdPattern arg_reps of
Just spec_id -> return (ArgSpec spec_id)
Nothing -> return (ArgGen arg_bits)
argBits :: DynFlags -> [ArgRep] -> [Bool] -- True for non-ptr, False for ptr
argBits _ [] = []
argBits dflags (P : args) = False : argBits dflags args
argBits dflags (arg : args) = take (argRepSizeW dflags arg) (repeat True)
++ argBits dflags args
----------------------
stdPattern :: [ArgRep] -> Maybe Int
stdPattern reps
= case reps of
[] -> Just ARG_NONE -- just void args, probably
[N] -> Just ARG_N
[P] -> Just ARG_P
[F] -> Just ARG_F
[D] -> Just ARG_D
[L] -> Just ARG_L
[V16] -> Just ARG_V16
[N,N] -> Just ARG_NN
[N,P] -> Just ARG_NP
[P,N] -> Just ARG_PN
[P,P] -> Just ARG_PP
[N,N,N] -> Just ARG_NNN
[N,N,P] -> Just ARG_NNP
[N,P,N] -> Just ARG_NPN
[N,P,P] -> Just ARG_NPP
[P,N,N] -> Just ARG_PNN
[P,N,P] -> Just ARG_PNP
[P,P,N] -> Just ARG_PPN
[P,P,P] -> Just ARG_PPP
[P,P,P,P] -> Just ARG_PPPP
[P,P,P,P,P] -> Just ARG_PPPPP
[P,P,P,P,P,P] -> Just ARG_PPPPPP
_ -> Nothing
-------------------------------------------------------------------------
--
-- Generating the info table and code for a closure
--
-------------------------------------------------------------------------
-- Here we make an info table of type 'CmmInfo'. The concrete
-- representation as a list of 'CmmAddr' is handled later
-- in the pipeline by 'cmmToRawCmm'.
-- When loading the free variables, a function closure pointer may be tagged,
-- so we must take it into account.
emitClosureProcAndInfoTable :: Bool -- top-level?
-> Id -- name of the closure
-> LambdaFormInfo
-> CmmInfoTable
-> [NonVoid Id] -- incoming arguments
-> ((Int, LocalReg, [LocalReg]) -> FCode ()) -- function body
-> FCode ()
emitClosureProcAndInfoTable top_lvl bndr lf_info info_tbl args body
= do { dflags <- getDynFlags
-- Bind the binder itself, but only if it's not a top-level
-- binding. We need non-top let-bindings to refer to the
-- top-level binding, which this binding would incorrectly shadow.
; node <- if top_lvl then return $ idToReg dflags (NonVoid bndr)
else bindToReg (NonVoid bndr) lf_info
; let node_points = nodeMustPointToIt dflags lf_info
; arg_regs <- bindArgsToRegs args
; let args' = if node_points then (node : arg_regs) else arg_regs
conv = if nodeMustPointToIt dflags lf_info then NativeNodeCall
else NativeDirectCall
(offset, _, _) = mkCallEntry dflags conv args' []
; emitClosureAndInfoTable info_tbl conv args' $ body (offset, node, arg_regs)
}
-- Data constructors need closures, but not with all the argument handling
-- needed for functions. The shared part goes here.
emitClosureAndInfoTable ::
CmmInfoTable -> Convention -> [LocalReg] -> FCode () -> FCode ()
emitClosureAndInfoTable info_tbl conv args body
= do { blks <- getCode body
; let entry_lbl = toEntryLbl (cit_lbl info_tbl)
; emitProcWithConvention conv (Just info_tbl) entry_lbl args blks
}
|