1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
|
-----------------------------------------------------------------------------
--
-- Stg to C--: primitive operations
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------
module StgCmmPrim (
cgOpApp
) where
#include "HsVersions.h"
import StgCmmLayout
import StgCmmForeign
import StgCmmEnv
import StgCmmMonad
import StgCmmUtils
import MkZipCfgCmm
import StgSyn
import Cmm
import Type ( Type, tyConAppTyCon )
import TyCon
import CLabel
import CmmUtils
import PrimOp
import SMRep
import Constants
import Module
import FastString
import Outputable
------------------------------------------------------------------------
-- Primitive operations and foreign calls
------------------------------------------------------------------------
{- Note [Foreign call results]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
A foreign call always returns an unboxed tuple of results, one
of which is the state token. This seems to happen even for pure
calls.
Even if we returned a single result for pure calls, it'd still be
right to wrap it in a singleton unboxed tuple, because the result
might be a Haskell closure pointer, we don't want to evaluate it. -}
----------------------------------
cgOpApp :: StgOp -- The op
-> [StgArg] -- Arguments
-> Type -- Result type (always an unboxed tuple)
-> FCode ()
-- Foreign calls
cgOpApp (StgFCallOp fcall _) stg_args res_ty
= do { (res_regs, res_hints) <- newUnboxedTupleRegs res_ty
-- Choose result regs r1, r2
-- Note [Foreign call results]
; cgForeignCall res_regs res_hints fcall stg_args
-- r1, r2 = foo( x, y )
; emitReturn (map (CmmReg . CmmLocal) res_regs) }
-- return (r1, r2)
-- tagToEnum# is special: we need to pull the constructor
-- out of the table, and perform an appropriate return.
cgOpApp (StgPrimOp TagToEnumOp) [arg] res_ty
= ASSERT(isEnumerationTyCon tycon)
do { args' <- getNonVoidArgAmodes [arg]
; let amode = case args' of [amode] -> amode
_ -> panic "TagToEnumOp had void arg"
; emitReturn [tagToClosure tycon amode] }
where
-- If you're reading this code in the attempt to figure
-- out why the compiler panic'ed here, it is probably because
-- you used tagToEnum# in a non-monomorphic setting, e.g.,
-- intToTg :: Enum a => Int -> a ; intToTg (I# x#) = tagToEnum# x#
-- That won't work.
tycon = tyConAppTyCon res_ty
cgOpApp (StgPrimOp primop) args res_ty
| primOpOutOfLine primop
= do { cmm_args <- getNonVoidArgAmodes args
; let fun = CmmLit (CmmLabel (mkRtsPrimOpLabel primop))
; emitCall (PrimOpCall, PrimOpReturn) fun cmm_args }
| ReturnsPrim VoidRep <- result_info
= do cgPrimOp [] primop args
emitReturn []
| ReturnsPrim rep <- result_info
= do res <- newTemp (primRepCmmType rep)
cgPrimOp [res] primop args
emitReturn [CmmReg (CmmLocal res)]
| ReturnsAlg tycon <- result_info, isUnboxedTupleTyCon tycon
= do (regs, _hints) <- newUnboxedTupleRegs res_ty
cgPrimOp regs primop args
emitReturn (map (CmmReg . CmmLocal) regs)
| ReturnsAlg tycon <- result_info
, isEnumerationTyCon tycon
-- c.f. cgExpr (...TagToEnumOp...)
= do tag_reg <- newTemp bWord
cgPrimOp [tag_reg] primop args
emitReturn [tagToClosure tycon
(CmmReg (CmmLocal tag_reg))]
| otherwise = panic "cgPrimop"
where
result_info = getPrimOpResultInfo primop
cgOpApp (StgPrimCallOp primcall) args _res_ty
= do { cmm_args <- getNonVoidArgAmodes args
; let fun = CmmLit (CmmLabel (mkPrimCallLabel primcall))
; emitCall (PrimOpCall, PrimOpReturn) fun cmm_args }
---------------------------------------------------
cgPrimOp :: [LocalReg] -- where to put the results
-> PrimOp -- the op
-> [StgArg] -- arguments
-> FCode ()
cgPrimOp results op args
= do arg_exprs <- getNonVoidArgAmodes args
emitPrimOp results op arg_exprs
------------------------------------------------------------------------
-- Emitting code for a primop
------------------------------------------------------------------------
emitPrimOp :: [LocalReg] -- where to put the results
-> PrimOp -- the op
-> [CmmExpr] -- arguments
-> FCode ()
-- First we handle various awkward cases specially. The remaining
-- easy cases are then handled by translateOp, defined below.
emitPrimOp [res_r,res_c] IntAddCOp [aa,bb]
{-
With some bit-twiddling, we can define int{Add,Sub}Czh portably in
C, and without needing any comparisons. This may not be the
fastest way to do it - if you have better code, please send it! --SDM
Return : r = a + b, c = 0 if no overflow, 1 on overflow.
We currently don't make use of the r value if c is != 0 (i.e.
overflow), we just convert to big integers and try again. This
could be improved by making r and c the correct values for
plugging into a new J#.
{ r = ((I_)(a)) + ((I_)(b)); \
c = ((StgWord)(~(((I_)(a))^((I_)(b))) & (((I_)(a))^r))) \
>> (BITS_IN (I_) - 1); \
}
Wading through the mass of bracketry, it seems to reduce to:
c = ( (~(a^b)) & (a^r) ) >>unsigned (BITS_IN(I_)-1)
-}
= emit $ catAGraphs [
mkAssign (CmmLocal res_r) (CmmMachOp mo_wordAdd [aa,bb]),
mkAssign (CmmLocal res_c) $
CmmMachOp mo_wordUShr [
CmmMachOp mo_wordAnd [
CmmMachOp mo_wordNot [CmmMachOp mo_wordXor [aa,bb]],
CmmMachOp mo_wordXor [aa, CmmReg (CmmLocal res_r)]
],
CmmLit (mkIntCLit (wORD_SIZE_IN_BITS - 1))
]
]
emitPrimOp [res_r,res_c] IntSubCOp [aa,bb]
{- Similarly:
#define subIntCzh(r,c,a,b) \
{ r = ((I_)(a)) - ((I_)(b)); \
c = ((StgWord)((((I_)(a))^((I_)(b))) & (((I_)(a))^r))) \
>> (BITS_IN (I_) - 1); \
}
c = ((a^b) & (a^r)) >>unsigned (BITS_IN(I_)-1)
-}
= emit $ catAGraphs [
mkAssign (CmmLocal res_r) (CmmMachOp mo_wordSub [aa,bb]),
mkAssign (CmmLocal res_c) $
CmmMachOp mo_wordUShr [
CmmMachOp mo_wordAnd [
CmmMachOp mo_wordXor [aa,bb],
CmmMachOp mo_wordXor [aa, CmmReg (CmmLocal res_r)]
],
CmmLit (mkIntCLit (wORD_SIZE_IN_BITS - 1))
]
]
emitPrimOp [res] ParOp [arg]
=
-- for now, just implement this in a C function
-- later, we might want to inline it.
emitCCall
[(res,NoHint)]
(CmmLit (CmmLabel (mkCmmCodeLabel rtsPackageId (fsLit "newSpark"))))
[(CmmReg (CmmGlobal BaseReg), AddrHint), (arg,AddrHint)]
emitPrimOp [res] ReadMutVarOp [mutv]
= emit (mkAssign (CmmLocal res) (cmmLoadIndexW mutv fixedHdrSize gcWord))
emitPrimOp [] WriteMutVarOp [mutv,var]
= do
emit (mkStore (cmmOffsetW mutv fixedHdrSize) var)
emitCCall
[{-no results-}]
(CmmLit (CmmLabel mkDirty_MUT_VAR_Label))
[(CmmReg (CmmGlobal BaseReg), AddrHint), (mutv,AddrHint)]
-- #define sizzeofByteArrayzh(r,a) \
-- r = ((StgArrWords *)(a))->bytes
emitPrimOp [res] SizeofByteArrayOp [arg]
= emit $
mkAssign (CmmLocal res) (cmmLoadIndexW arg fixedHdrSize bWord)
-- #define sizzeofMutableByteArrayzh(r,a) \
-- r = ((StgArrWords *)(a))->bytes
emitPrimOp [res] SizeofMutableByteArrayOp [arg]
= emitPrimOp [res] SizeofByteArrayOp [arg]
-- #define touchzh(o) /* nothing */
emitPrimOp res@[] TouchOp args@[_arg]
= do emitPrimCall res MO_Touch args
-- #define byteArrayContentszh(r,a) r = BYTE_ARR_CTS(a)
emitPrimOp [res] ByteArrayContents_Char [arg]
= emit (mkAssign (CmmLocal res) (cmmOffsetB arg arrWordsHdrSize))
-- #define stableNameToIntzh(r,s) (r = ((StgStableName *)s)->sn)
emitPrimOp [res] StableNameToIntOp [arg]
= emit (mkAssign (CmmLocal res) (cmmLoadIndexW arg fixedHdrSize bWord))
-- #define eqStableNamezh(r,sn1,sn2) \
-- (r = (((StgStableName *)sn1)->sn == ((StgStableName *)sn2)->sn))
emitPrimOp [res] EqStableNameOp [arg1,arg2]
= emit (mkAssign (CmmLocal res) (CmmMachOp mo_wordEq [
cmmLoadIndexW arg1 fixedHdrSize bWord,
cmmLoadIndexW arg2 fixedHdrSize bWord
]))
emitPrimOp [res] ReallyUnsafePtrEqualityOp [arg1,arg2]
= emit (mkAssign (CmmLocal res) (CmmMachOp mo_wordEq [arg1,arg2]))
-- #define addrToHValuezh(r,a) r=(P_)a
emitPrimOp [res] AddrToHValueOp [arg]
= emit (mkAssign (CmmLocal res) arg)
-- #define dataToTagzh(r,a) r=(GET_TAG(((StgClosure *)a)->header.info))
-- Note: argument may be tagged!
emitPrimOp [res] DataToTagOp [arg]
= emit (mkAssign (CmmLocal res) (getConstrTag (cmmUntag arg)))
{- Freezing arrays-of-ptrs requires changing an info table, for the
benefit of the generational collector. It needs to scavenge mutable
objects, even if they are in old space. When they become immutable,
they can be removed from this scavenge list. -}
-- #define unsafeFreezzeArrayzh(r,a)
-- {
-- SET_INFO((StgClosure *)a,&stg_MUT_ARR_PTRS_FROZEN0_info);
-- r = a;
-- }
emitPrimOp [res] UnsafeFreezeArrayOp [arg]
= emit $ catAGraphs
[ setInfo arg (CmmLit (CmmLabel mkMAP_FROZEN_infoLabel)),
mkAssign (CmmLocal res) arg ]
-- #define unsafeFreezzeByteArrayzh(r,a) r=(a)
emitPrimOp [res] UnsafeFreezeByteArrayOp [arg]
= emit (mkAssign (CmmLocal res) arg)
-- Reading/writing pointer arrays
emitPrimOp [r] ReadArrayOp [obj,ix] = doReadPtrArrayOp r obj ix
emitPrimOp [r] IndexArrayOp [obj,ix] = doReadPtrArrayOp r obj ix
emitPrimOp [] WriteArrayOp [obj,ix,v] = doWritePtrArrayOp obj ix v
-- IndexXXXoffAddr
emitPrimOp res IndexOffAddrOp_Char args = doIndexOffAddrOp (Just mo_u_8ToWord) b8 res args
emitPrimOp res IndexOffAddrOp_WideChar args = doIndexOffAddrOp (Just mo_u_32ToWord) b32 res args
emitPrimOp res IndexOffAddrOp_Int args = doIndexOffAddrOp Nothing bWord res args
emitPrimOp res IndexOffAddrOp_Word args = doIndexOffAddrOp Nothing bWord res args
emitPrimOp res IndexOffAddrOp_Addr args = doIndexOffAddrOp Nothing bWord res args
emitPrimOp res IndexOffAddrOp_Float args = doIndexOffAddrOp Nothing f32 res args
emitPrimOp res IndexOffAddrOp_Double args = doIndexOffAddrOp Nothing f64 res args
emitPrimOp res IndexOffAddrOp_StablePtr args = doIndexOffAddrOp Nothing bWord res args
emitPrimOp res IndexOffAddrOp_Int8 args = doIndexOffAddrOp (Just mo_s_8ToWord) b8 res args
emitPrimOp res IndexOffAddrOp_Int16 args = doIndexOffAddrOp (Just mo_s_16ToWord) b16 res args
emitPrimOp res IndexOffAddrOp_Int32 args = doIndexOffAddrOp (Just mo_s_32ToWord) b32 res args
emitPrimOp res IndexOffAddrOp_Int64 args = doIndexOffAddrOp Nothing b64 res args
emitPrimOp res IndexOffAddrOp_Word8 args = doIndexOffAddrOp (Just mo_u_8ToWord) b8 res args
emitPrimOp res IndexOffAddrOp_Word16 args = doIndexOffAddrOp (Just mo_u_16ToWord) b16 res args
emitPrimOp res IndexOffAddrOp_Word32 args = doIndexOffAddrOp (Just mo_u_32ToWord) b32 res args
emitPrimOp res IndexOffAddrOp_Word64 args = doIndexOffAddrOp Nothing b64 res args
-- ReadXXXoffAddr, which are identical, for our purposes, to IndexXXXoffAddr.
emitPrimOp res ReadOffAddrOp_Char args = doIndexOffAddrOp (Just mo_u_8ToWord) b8 res args
emitPrimOp res ReadOffAddrOp_WideChar args = doIndexOffAddrOp (Just mo_u_32ToWord) b32 res args
emitPrimOp res ReadOffAddrOp_Int args = doIndexOffAddrOp Nothing bWord res args
emitPrimOp res ReadOffAddrOp_Word args = doIndexOffAddrOp Nothing bWord res args
emitPrimOp res ReadOffAddrOp_Addr args = doIndexOffAddrOp Nothing bWord res args
emitPrimOp res ReadOffAddrOp_Float args = doIndexOffAddrOp Nothing f32 res args
emitPrimOp res ReadOffAddrOp_Double args = doIndexOffAddrOp Nothing f64 res args
emitPrimOp res ReadOffAddrOp_StablePtr args = doIndexOffAddrOp Nothing bWord res args
emitPrimOp res ReadOffAddrOp_Int8 args = doIndexOffAddrOp (Just mo_s_8ToWord) b8 res args
emitPrimOp res ReadOffAddrOp_Int16 args = doIndexOffAddrOp (Just mo_s_16ToWord) b16 res args
emitPrimOp res ReadOffAddrOp_Int32 args = doIndexOffAddrOp (Just mo_s_32ToWord) b32 res args
emitPrimOp res ReadOffAddrOp_Int64 args = doIndexOffAddrOp Nothing b64 res args
emitPrimOp res ReadOffAddrOp_Word8 args = doIndexOffAddrOp (Just mo_u_8ToWord) b8 res args
emitPrimOp res ReadOffAddrOp_Word16 args = doIndexOffAddrOp (Just mo_u_16ToWord) b16 res args
emitPrimOp res ReadOffAddrOp_Word32 args = doIndexOffAddrOp (Just mo_u_32ToWord) b32 res args
emitPrimOp res ReadOffAddrOp_Word64 args = doIndexOffAddrOp Nothing b64 res args
-- IndexXXXArray
emitPrimOp res IndexByteArrayOp_Char args = doIndexByteArrayOp (Just mo_u_8ToWord) b8 res args
emitPrimOp res IndexByteArrayOp_WideChar args = doIndexByteArrayOp (Just mo_u_32ToWord) b32 res args
emitPrimOp res IndexByteArrayOp_Int args = doIndexByteArrayOp Nothing bWord res args
emitPrimOp res IndexByteArrayOp_Word args = doIndexByteArrayOp Nothing bWord res args
emitPrimOp res IndexByteArrayOp_Addr args = doIndexByteArrayOp Nothing bWord res args
emitPrimOp res IndexByteArrayOp_Float args = doIndexByteArrayOp Nothing f32 res args
emitPrimOp res IndexByteArrayOp_Double args = doIndexByteArrayOp Nothing f64 res args
emitPrimOp res IndexByteArrayOp_StablePtr args = doIndexByteArrayOp Nothing bWord res args
emitPrimOp res IndexByteArrayOp_Int8 args = doIndexByteArrayOp (Just mo_s_8ToWord) b8 res args
emitPrimOp res IndexByteArrayOp_Int16 args = doIndexByteArrayOp (Just mo_s_16ToWord) b16 res args
emitPrimOp res IndexByteArrayOp_Int32 args = doIndexByteArrayOp (Just mo_s_32ToWord) b32 res args
emitPrimOp res IndexByteArrayOp_Int64 args = doIndexByteArrayOp Nothing b64 res args
emitPrimOp res IndexByteArrayOp_Word8 args = doIndexByteArrayOp (Just mo_u_8ToWord) b8 res args
emitPrimOp res IndexByteArrayOp_Word16 args = doIndexByteArrayOp (Just mo_u_16ToWord) b16 res args
emitPrimOp res IndexByteArrayOp_Word32 args = doIndexByteArrayOp (Just mo_u_32ToWord) b32 res args
emitPrimOp res IndexByteArrayOp_Word64 args = doIndexByteArrayOp Nothing b64 res args
-- ReadXXXArray, identical to IndexXXXArray.
emitPrimOp res ReadByteArrayOp_Char args = doIndexByteArrayOp (Just mo_u_8ToWord) b8 res args
emitPrimOp res ReadByteArrayOp_WideChar args = doIndexByteArrayOp (Just mo_u_32ToWord) b32 res args
emitPrimOp res ReadByteArrayOp_Int args = doIndexByteArrayOp Nothing bWord res args
emitPrimOp res ReadByteArrayOp_Word args = doIndexByteArrayOp Nothing bWord res args
emitPrimOp res ReadByteArrayOp_Addr args = doIndexByteArrayOp Nothing bWord res args
emitPrimOp res ReadByteArrayOp_Float args = doIndexByteArrayOp Nothing f32 res args
emitPrimOp res ReadByteArrayOp_Double args = doIndexByteArrayOp Nothing f64 res args
emitPrimOp res ReadByteArrayOp_StablePtr args = doIndexByteArrayOp Nothing bWord res args
emitPrimOp res ReadByteArrayOp_Int8 args = doIndexByteArrayOp (Just mo_s_8ToWord) b8 res args
emitPrimOp res ReadByteArrayOp_Int16 args = doIndexByteArrayOp (Just mo_s_16ToWord) b16 res args
emitPrimOp res ReadByteArrayOp_Int32 args = doIndexByteArrayOp (Just mo_s_32ToWord) b32 res args
emitPrimOp res ReadByteArrayOp_Int64 args = doIndexByteArrayOp Nothing b64 res args
emitPrimOp res ReadByteArrayOp_Word8 args = doIndexByteArrayOp (Just mo_u_8ToWord) b8 res args
emitPrimOp res ReadByteArrayOp_Word16 args = doIndexByteArrayOp (Just mo_u_16ToWord) b16 res args
emitPrimOp res ReadByteArrayOp_Word32 args = doIndexByteArrayOp (Just mo_u_32ToWord) b32 res args
emitPrimOp res ReadByteArrayOp_Word64 args = doIndexByteArrayOp Nothing b64 res args
-- WriteXXXoffAddr
emitPrimOp res WriteOffAddrOp_Char args = doWriteOffAddrOp (Just mo_WordTo8) res args
emitPrimOp res WriteOffAddrOp_WideChar args = doWriteOffAddrOp (Just mo_WordTo32) res args
emitPrimOp res WriteOffAddrOp_Int args = doWriteOffAddrOp Nothing res args
emitPrimOp res WriteOffAddrOp_Word args = doWriteOffAddrOp Nothing res args
emitPrimOp res WriteOffAddrOp_Addr args = doWriteOffAddrOp Nothing res args
emitPrimOp res WriteOffAddrOp_Float args = doWriteOffAddrOp Nothing res args
emitPrimOp res WriteOffAddrOp_Double args = doWriteOffAddrOp Nothing res args
emitPrimOp res WriteOffAddrOp_StablePtr args = doWriteOffAddrOp Nothing res args
emitPrimOp res WriteOffAddrOp_Int8 args = doWriteOffAddrOp (Just mo_WordTo8) res args
emitPrimOp res WriteOffAddrOp_Int16 args = doWriteOffAddrOp (Just mo_WordTo16) res args
emitPrimOp res WriteOffAddrOp_Int32 args = doWriteOffAddrOp (Just mo_WordTo32) res args
emitPrimOp res WriteOffAddrOp_Int64 args = doWriteOffAddrOp Nothing res args
emitPrimOp res WriteOffAddrOp_Word8 args = doWriteOffAddrOp (Just mo_WordTo8) res args
emitPrimOp res WriteOffAddrOp_Word16 args = doWriteOffAddrOp (Just mo_WordTo16) res args
emitPrimOp res WriteOffAddrOp_Word32 args = doWriteOffAddrOp (Just mo_WordTo32) res args
emitPrimOp res WriteOffAddrOp_Word64 args = doWriteOffAddrOp Nothing res args
-- WriteXXXArray
emitPrimOp res WriteByteArrayOp_Char args = doWriteByteArrayOp (Just mo_WordTo8) res args
emitPrimOp res WriteByteArrayOp_WideChar args = doWriteByteArrayOp (Just mo_WordTo32) res args
emitPrimOp res WriteByteArrayOp_Int args = doWriteByteArrayOp Nothing res args
emitPrimOp res WriteByteArrayOp_Word args = doWriteByteArrayOp Nothing res args
emitPrimOp res WriteByteArrayOp_Addr args = doWriteByteArrayOp Nothing res args
emitPrimOp res WriteByteArrayOp_Float args = doWriteByteArrayOp Nothing res args
emitPrimOp res WriteByteArrayOp_Double args = doWriteByteArrayOp Nothing res args
emitPrimOp res WriteByteArrayOp_StablePtr args = doWriteByteArrayOp Nothing res args
emitPrimOp res WriteByteArrayOp_Int8 args = doWriteByteArrayOp (Just mo_WordTo8) res args
emitPrimOp res WriteByteArrayOp_Int16 args = doWriteByteArrayOp (Just mo_WordTo16) res args
emitPrimOp res WriteByteArrayOp_Int32 args = doWriteByteArrayOp (Just mo_WordTo32) res args
emitPrimOp res WriteByteArrayOp_Int64 args = doWriteByteArrayOp Nothing res args
emitPrimOp res WriteByteArrayOp_Word8 args = doWriteByteArrayOp (Just mo_WordTo8) res args
emitPrimOp res WriteByteArrayOp_Word16 args = doWriteByteArrayOp (Just mo_WordTo16) res args
emitPrimOp res WriteByteArrayOp_Word32 args = doWriteByteArrayOp (Just mo_WordTo32) res args
emitPrimOp res WriteByteArrayOp_Word64 args = doWriteByteArrayOp Nothing res args
-- The rest just translate straightforwardly
emitPrimOp [res] op [arg]
| nopOp op
= emit (mkAssign (CmmLocal res) arg)
| Just (mop,rep) <- narrowOp op
= emit (mkAssign (CmmLocal res) $
CmmMachOp (mop rep wordWidth) [CmmMachOp (mop wordWidth rep) [arg]])
emitPrimOp r@[res] op args
| Just prim <- callishOp op
= do emitPrimCall r prim args
| Just mop <- translateOp op
= let stmt = mkAssign (CmmLocal res) (CmmMachOp mop args) in
emit stmt
emitPrimOp _ op _
= pprPanic "emitPrimOp: can't translate PrimOp" (ppr op)
-- These PrimOps are NOPs in Cmm
nopOp :: PrimOp -> Bool
nopOp Int2WordOp = True
nopOp Word2IntOp = True
nopOp Int2AddrOp = True
nopOp Addr2IntOp = True
nopOp ChrOp = True -- Int# and Char# are rep'd the same
nopOp OrdOp = True
nopOp _ = False
-- These PrimOps turn into double casts
narrowOp :: PrimOp -> Maybe (Width -> Width -> MachOp, Width)
narrowOp Narrow8IntOp = Just (MO_SS_Conv, W8)
narrowOp Narrow16IntOp = Just (MO_SS_Conv, W16)
narrowOp Narrow32IntOp = Just (MO_SS_Conv, W32)
narrowOp Narrow8WordOp = Just (MO_UU_Conv, W8)
narrowOp Narrow16WordOp = Just (MO_UU_Conv, W16)
narrowOp Narrow32WordOp = Just (MO_UU_Conv, W32)
narrowOp _ = Nothing
-- Native word signless ops
translateOp :: PrimOp -> Maybe MachOp
translateOp IntAddOp = Just mo_wordAdd
translateOp IntSubOp = Just mo_wordSub
translateOp WordAddOp = Just mo_wordAdd
translateOp WordSubOp = Just mo_wordSub
translateOp AddrAddOp = Just mo_wordAdd
translateOp AddrSubOp = Just mo_wordSub
translateOp IntEqOp = Just mo_wordEq
translateOp IntNeOp = Just mo_wordNe
translateOp WordEqOp = Just mo_wordEq
translateOp WordNeOp = Just mo_wordNe
translateOp AddrEqOp = Just mo_wordEq
translateOp AddrNeOp = Just mo_wordNe
translateOp AndOp = Just mo_wordAnd
translateOp OrOp = Just mo_wordOr
translateOp XorOp = Just mo_wordXor
translateOp NotOp = Just mo_wordNot
translateOp SllOp = Just mo_wordShl
translateOp SrlOp = Just mo_wordUShr
translateOp AddrRemOp = Just mo_wordURem
-- Native word signed ops
translateOp IntMulOp = Just mo_wordMul
translateOp IntMulMayOfloOp = Just (MO_S_MulMayOflo wordWidth)
translateOp IntQuotOp = Just mo_wordSQuot
translateOp IntRemOp = Just mo_wordSRem
translateOp IntNegOp = Just mo_wordSNeg
translateOp IntGeOp = Just mo_wordSGe
translateOp IntLeOp = Just mo_wordSLe
translateOp IntGtOp = Just mo_wordSGt
translateOp IntLtOp = Just mo_wordSLt
translateOp ISllOp = Just mo_wordShl
translateOp ISraOp = Just mo_wordSShr
translateOp ISrlOp = Just mo_wordUShr
-- Native word unsigned ops
translateOp WordGeOp = Just mo_wordUGe
translateOp WordLeOp = Just mo_wordULe
translateOp WordGtOp = Just mo_wordUGt
translateOp WordLtOp = Just mo_wordULt
translateOp WordMulOp = Just mo_wordMul
translateOp WordQuotOp = Just mo_wordUQuot
translateOp WordRemOp = Just mo_wordURem
translateOp AddrGeOp = Just mo_wordUGe
translateOp AddrLeOp = Just mo_wordULe
translateOp AddrGtOp = Just mo_wordUGt
translateOp AddrLtOp = Just mo_wordULt
-- Char# ops
translateOp CharEqOp = Just (MO_Eq wordWidth)
translateOp CharNeOp = Just (MO_Ne wordWidth)
translateOp CharGeOp = Just (MO_U_Ge wordWidth)
translateOp CharLeOp = Just (MO_U_Le wordWidth)
translateOp CharGtOp = Just (MO_U_Gt wordWidth)
translateOp CharLtOp = Just (MO_U_Lt wordWidth)
-- Double ops
translateOp DoubleEqOp = Just (MO_F_Eq W64)
translateOp DoubleNeOp = Just (MO_F_Ne W64)
translateOp DoubleGeOp = Just (MO_F_Ge W64)
translateOp DoubleLeOp = Just (MO_F_Le W64)
translateOp DoubleGtOp = Just (MO_F_Gt W64)
translateOp DoubleLtOp = Just (MO_F_Lt W64)
translateOp DoubleAddOp = Just (MO_F_Add W64)
translateOp DoubleSubOp = Just (MO_F_Sub W64)
translateOp DoubleMulOp = Just (MO_F_Mul W64)
translateOp DoubleDivOp = Just (MO_F_Quot W64)
translateOp DoubleNegOp = Just (MO_F_Neg W64)
-- Float ops
translateOp FloatEqOp = Just (MO_F_Eq W32)
translateOp FloatNeOp = Just (MO_F_Ne W32)
translateOp FloatGeOp = Just (MO_F_Ge W32)
translateOp FloatLeOp = Just (MO_F_Le W32)
translateOp FloatGtOp = Just (MO_F_Gt W32)
translateOp FloatLtOp = Just (MO_F_Lt W32)
translateOp FloatAddOp = Just (MO_F_Add W32)
translateOp FloatSubOp = Just (MO_F_Sub W32)
translateOp FloatMulOp = Just (MO_F_Mul W32)
translateOp FloatDivOp = Just (MO_F_Quot W32)
translateOp FloatNegOp = Just (MO_F_Neg W32)
-- Conversions
translateOp Int2DoubleOp = Just (MO_SF_Conv wordWidth W64)
translateOp Double2IntOp = Just (MO_FS_Conv W64 wordWidth)
translateOp Int2FloatOp = Just (MO_SF_Conv wordWidth W32)
translateOp Float2IntOp = Just (MO_FS_Conv W32 wordWidth)
translateOp Float2DoubleOp = Just (MO_FF_Conv W32 W64)
translateOp Double2FloatOp = Just (MO_FF_Conv W64 W32)
-- Word comparisons masquerading as more exotic things.
translateOp SameMutVarOp = Just mo_wordEq
translateOp SameMVarOp = Just mo_wordEq
translateOp SameMutableArrayOp = Just mo_wordEq
translateOp SameMutableByteArrayOp = Just mo_wordEq
translateOp SameTVarOp = Just mo_wordEq
translateOp EqStablePtrOp = Just mo_wordEq
translateOp _ = Nothing
-- These primops are implemented by CallishMachOps, because they sometimes
-- turn into foreign calls depending on the backend.
callishOp :: PrimOp -> Maybe CallishMachOp
callishOp DoublePowerOp = Just MO_F64_Pwr
callishOp DoubleSinOp = Just MO_F64_Sin
callishOp DoubleCosOp = Just MO_F64_Cos
callishOp DoubleTanOp = Just MO_F64_Tan
callishOp DoubleSinhOp = Just MO_F64_Sinh
callishOp DoubleCoshOp = Just MO_F64_Cosh
callishOp DoubleTanhOp = Just MO_F64_Tanh
callishOp DoubleAsinOp = Just MO_F64_Asin
callishOp DoubleAcosOp = Just MO_F64_Acos
callishOp DoubleAtanOp = Just MO_F64_Atan
callishOp DoubleLogOp = Just MO_F64_Log
callishOp DoubleExpOp = Just MO_F64_Exp
callishOp DoubleSqrtOp = Just MO_F64_Sqrt
callishOp FloatPowerOp = Just MO_F32_Pwr
callishOp FloatSinOp = Just MO_F32_Sin
callishOp FloatCosOp = Just MO_F32_Cos
callishOp FloatTanOp = Just MO_F32_Tan
callishOp FloatSinhOp = Just MO_F32_Sinh
callishOp FloatCoshOp = Just MO_F32_Cosh
callishOp FloatTanhOp = Just MO_F32_Tanh
callishOp FloatAsinOp = Just MO_F32_Asin
callishOp FloatAcosOp = Just MO_F32_Acos
callishOp FloatAtanOp = Just MO_F32_Atan
callishOp FloatLogOp = Just MO_F32_Log
callishOp FloatExpOp = Just MO_F32_Exp
callishOp FloatSqrtOp = Just MO_F32_Sqrt
callishOp _ = Nothing
------------------------------------------------------------------------------
-- Helpers for translating various minor variants of array indexing.
doIndexOffAddrOp :: Maybe MachOp -> CmmType -> [LocalReg] -> [CmmExpr] -> FCode ()
doIndexOffAddrOp maybe_post_read_cast rep [res] [addr,idx]
= mkBasicIndexedRead 0 maybe_post_read_cast rep res addr idx
doIndexOffAddrOp _ _ _ _
= panic "CgPrimOp: doIndexOffAddrOp"
doIndexByteArrayOp :: Maybe MachOp -> CmmType -> [LocalReg] -> [CmmExpr] -> FCode ()
doIndexByteArrayOp maybe_post_read_cast rep [res] [addr,idx]
= mkBasicIndexedRead arrWordsHdrSize maybe_post_read_cast rep res addr idx
doIndexByteArrayOp _ _ _ _
= panic "CgPrimOp: doIndexByteArrayOp"
doReadPtrArrayOp :: LocalReg -> CmmExpr -> CmmExpr -> FCode ()
doReadPtrArrayOp res addr idx
= mkBasicIndexedRead arrPtrsHdrSize Nothing gcWord res addr idx
doWriteOffAddrOp :: Maybe MachOp -> [LocalReg] -> [CmmExpr] -> FCode ()
doWriteOffAddrOp maybe_pre_write_cast [] [addr,idx,val]
= mkBasicIndexedWrite 0 maybe_pre_write_cast addr idx val
doWriteOffAddrOp _ _ _
= panic "CgPrimOp: doWriteOffAddrOp"
doWriteByteArrayOp :: Maybe MachOp -> [LocalReg] -> [CmmExpr] -> FCode ()
doWriteByteArrayOp maybe_pre_write_cast [] [addr,idx,val]
= mkBasicIndexedWrite arrWordsHdrSize maybe_pre_write_cast addr idx val
doWriteByteArrayOp _ _ _
= panic "CgPrimOp: doWriteByteArrayOp"
doWritePtrArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> FCode ()
doWritePtrArrayOp addr idx val
= do mkBasicIndexedWrite arrPtrsHdrSize Nothing addr idx val
emit (setInfo addr (CmmLit (CmmLabel mkMAP_DIRTY_infoLabel)))
-- the write barrier. We must write a byte into the mark table:
-- bits8[a + header_size + StgMutArrPtrs_size(a) + x >> N]
emit $ mkStore (
cmmOffsetExpr
(cmmOffsetExprW (cmmOffsetB addr arrPtrsHdrSize)
(loadArrPtrsSize addr))
(CmmMachOp mo_wordUShr [idx,
CmmLit (mkIntCLit mUT_ARR_PTRS_CARD_BITS)])
) (CmmLit (CmmInt 1 W8))
loadArrPtrsSize :: CmmExpr -> CmmExpr
loadArrPtrsSize addr = CmmLoad (cmmOffsetB addr off) bWord
where off = fixedHdrSize*wORD_SIZE + oFFSET_StgMutArrPtrs_ptrs
mkBasicIndexedRead :: ByteOff -> Maybe MachOp -> CmmType
-> LocalReg -> CmmExpr -> CmmExpr -> FCode ()
mkBasicIndexedRead off Nothing read_rep res base idx
= emit (mkAssign (CmmLocal res) (cmmLoadIndexOffExpr off read_rep base idx))
mkBasicIndexedRead off (Just cast) read_rep res base idx
= emit (mkAssign (CmmLocal res) (CmmMachOp cast [
cmmLoadIndexOffExpr off read_rep base idx]))
mkBasicIndexedWrite :: ByteOff -> Maybe MachOp
-> CmmExpr -> CmmExpr -> CmmExpr -> FCode ()
mkBasicIndexedWrite off Nothing base idx val
= emit (mkStore (cmmIndexOffExpr off (typeWidth (cmmExprType val)) base idx) val)
mkBasicIndexedWrite off (Just cast) base idx val
= mkBasicIndexedWrite off Nothing base idx (CmmMachOp cast [val])
-- ----------------------------------------------------------------------------
-- Misc utils
cmmIndexOffExpr :: ByteOff -> Width -> CmmExpr -> CmmExpr -> CmmExpr
cmmIndexOffExpr off width base idx
= cmmIndexExpr width (cmmOffsetB base off) idx
cmmLoadIndexOffExpr :: ByteOff -> CmmType -> CmmExpr -> CmmExpr -> CmmExpr
cmmLoadIndexOffExpr off ty base idx
= CmmLoad (cmmIndexOffExpr off (typeWidth ty) base idx) ty
setInfo :: CmmExpr -> CmmExpr -> CmmAGraph
setInfo closure_ptr info_ptr = mkStore closure_ptr info_ptr
|