1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
|
{-# LANGUAGE CPP #-}
-- emitPrimOp is quite large
{-# OPTIONS_GHC -fmax-pmcheck-iterations=4000000 #-}
----------------------------------------------------------------------------
--
-- Stg to C--: primitive operations
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------
module StgCmmPrim (
cgOpApp,
cgPrimOp, -- internal(ish), used by cgCase to get code for a
-- comparison without also turning it into a Bool.
shouldInlinePrimOp
) where
#include "HsVersions.h"
import GhcPrelude hiding ((<*>))
import StgCmmLayout
import StgCmmForeign
import StgCmmEnv
import StgCmmMonad
import StgCmmUtils
import StgCmmTicky
import StgCmmHeap
import StgCmmProf ( costCentreFrom )
import DynFlags
import Platform
import BasicTypes
import BlockId
import MkGraph
import StgSyn
import Cmm
import CmmInfo
import Type ( Type, tyConAppTyCon )
import TyCon
import CLabel
import CmmUtils
import PrimOp
import SMRep
import FastString
import Outputable
import Util
import Data.Bits ((.&.), bit)
import Control.Monad (liftM, when, unless)
------------------------------------------------------------------------
-- Primitive operations and foreign calls
------------------------------------------------------------------------
{- Note [Foreign call results]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
A foreign call always returns an unboxed tuple of results, one
of which is the state token. This seems to happen even for pure
calls.
Even if we returned a single result for pure calls, it'd still be
right to wrap it in a singleton unboxed tuple, because the result
might be a Haskell closure pointer, we don't want to evaluate it. -}
----------------------------------
cgOpApp :: StgOp -- The op
-> [StgArg] -- Arguments
-> Type -- Result type (always an unboxed tuple)
-> FCode ReturnKind
-- Foreign calls
cgOpApp (StgFCallOp fcall _) stg_args res_ty
= cgForeignCall fcall stg_args res_ty
-- Note [Foreign call results]
-- tagToEnum# is special: we need to pull the constructor
-- out of the table, and perform an appropriate return.
cgOpApp (StgPrimOp TagToEnumOp) [arg] res_ty
= ASSERT(isEnumerationTyCon tycon)
do { dflags <- getDynFlags
; args' <- getNonVoidArgAmodes [arg]
; let amode = case args' of [amode] -> amode
_ -> panic "TagToEnumOp had void arg"
; emitReturn [tagToClosure dflags tycon amode] }
where
-- If you're reading this code in the attempt to figure
-- out why the compiler panic'ed here, it is probably because
-- you used tagToEnum# in a non-monomorphic setting, e.g.,
-- intToTg :: Enum a => Int -> a ; intToTg (I# x#) = tagToEnum# x#
-- That won't work.
tycon = tyConAppTyCon res_ty
cgOpApp (StgPrimOp primop) args res_ty = do
dflags <- getDynFlags
cmm_args <- getNonVoidArgAmodes args
case shouldInlinePrimOp dflags primop cmm_args of
Nothing -> do -- out-of-line
let fun = CmmLit (CmmLabel (mkRtsPrimOpLabel primop))
emitCall (NativeNodeCall, NativeReturn) fun cmm_args
Just f -- inline
| ReturnsPrim VoidRep <- result_info
-> do f []
emitReturn []
| ReturnsPrim rep <- result_info
-> do dflags <- getDynFlags
res <- newTemp (primRepCmmType dflags rep)
f [res]
emitReturn [CmmReg (CmmLocal res)]
| ReturnsAlg tycon <- result_info, isUnboxedTupleTyCon tycon
-> do (regs, _hints) <- newUnboxedTupleRegs res_ty
f regs
emitReturn (map (CmmReg . CmmLocal) regs)
| otherwise -> panic "cgPrimop"
where
result_info = getPrimOpResultInfo primop
cgOpApp (StgPrimCallOp primcall) args _res_ty
= do { cmm_args <- getNonVoidArgAmodes args
; let fun = CmmLit (CmmLabel (mkPrimCallLabel primcall))
; emitCall (NativeNodeCall, NativeReturn) fun cmm_args }
-- | Interpret the argument as an unsigned value, assuming the value
-- is given in two-complement form in the given width.
--
-- Example: @asUnsigned W64 (-1)@ is 18446744073709551615.
--
-- This function is used to work around the fact that many array
-- primops take Int# arguments, but we interpret them as unsigned
-- quantities in the code gen. This means that we have to be careful
-- every time we work on e.g. a CmmInt literal that corresponds to the
-- array size, as it might contain a negative Integer value if the
-- user passed a value larger than 2^(wORD_SIZE_IN_BITS-1) as the Int#
-- literal.
asUnsigned :: Width -> Integer -> Integer
asUnsigned w n = n .&. (bit (widthInBits w) - 1)
-- TODO: Several primop implementations (e.g. 'doNewByteArrayOp') use
-- ByteOff (or some other fixed width signed type) to represent
-- array sizes or indices. This means that these will overflow for
-- large enough sizes.
-- | Decide whether an out-of-line primop should be replaced by an
-- inline implementation. This might happen e.g. if there's enough
-- static information, such as statically know arguments, to emit a
-- more efficient implementation inline.
--
-- Returns 'Nothing' if this primop should use its out-of-line
-- implementation (defined elsewhere) and 'Just' together with a code
-- generating function that takes the output regs as arguments
-- otherwise.
shouldInlinePrimOp :: DynFlags
-> PrimOp -- ^ The primop
-> [CmmExpr] -- ^ The primop arguments
-> Maybe ([LocalReg] -> FCode ())
shouldInlinePrimOp dflags NewByteArrayOp_Char [(CmmLit (CmmInt n w))]
| asUnsigned w n <= fromIntegral (maxInlineAllocSize dflags) =
Just $ \ [res] -> doNewByteArrayOp res (fromInteger n)
shouldInlinePrimOp dflags NewArrayOp [(CmmLit (CmmInt n w)), init]
| wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) =
Just $ \ [res] ->
doNewArrayOp res (arrPtrsRep dflags (fromInteger n)) mkMAP_DIRTY_infoLabel
[ (mkIntExpr dflags (fromInteger n),
fixedHdrSize dflags + oFFSET_StgMutArrPtrs_ptrs dflags)
, (mkIntExpr dflags (nonHdrSizeW (arrPtrsRep dflags (fromInteger n))),
fixedHdrSize dflags + oFFSET_StgMutArrPtrs_size dflags)
]
(fromInteger n) init
shouldInlinePrimOp _ CopyArrayOp
[src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] =
Just $ \ [] -> doCopyArrayOp src src_off dst dst_off (fromInteger n)
shouldInlinePrimOp _ CopyMutableArrayOp
[src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] =
Just $ \ [] -> doCopyMutableArrayOp src src_off dst dst_off (fromInteger n)
shouldInlinePrimOp _ CopyArrayArrayOp
[src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] =
Just $ \ [] -> doCopyArrayOp src src_off dst dst_off (fromInteger n)
shouldInlinePrimOp _ CopyMutableArrayArrayOp
[src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] =
Just $ \ [] -> doCopyMutableArrayOp src src_off dst dst_off (fromInteger n)
shouldInlinePrimOp dflags CloneArrayOp [src, src_off, (CmmLit (CmmInt n w))]
| wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) =
Just $ \ [res] -> emitCloneArray mkMAP_FROZEN_CLEAN_infoLabel res src src_off (fromInteger n)
shouldInlinePrimOp dflags CloneMutableArrayOp [src, src_off, (CmmLit (CmmInt n w))]
| wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) =
Just $ \ [res] -> emitCloneArray mkMAP_DIRTY_infoLabel res src src_off (fromInteger n)
shouldInlinePrimOp dflags FreezeArrayOp [src, src_off, (CmmLit (CmmInt n w))]
| wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) =
Just $ \ [res] -> emitCloneArray mkMAP_FROZEN_CLEAN_infoLabel res src src_off (fromInteger n)
shouldInlinePrimOp dflags ThawArrayOp [src, src_off, (CmmLit (CmmInt n w))]
| wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) =
Just $ \ [res] -> emitCloneArray mkMAP_DIRTY_infoLabel res src src_off (fromInteger n)
shouldInlinePrimOp dflags NewSmallArrayOp [(CmmLit (CmmInt n w)), init]
| wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) =
Just $ \ [res] ->
doNewArrayOp res (smallArrPtrsRep (fromInteger n)) mkSMAP_DIRTY_infoLabel
[ (mkIntExpr dflags (fromInteger n),
fixedHdrSize dflags + oFFSET_StgSmallMutArrPtrs_ptrs dflags)
]
(fromInteger n) init
shouldInlinePrimOp _ CopySmallArrayOp
[src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] =
Just $ \ [] -> doCopySmallArrayOp src src_off dst dst_off (fromInteger n)
shouldInlinePrimOp _ CopySmallMutableArrayOp
[src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] =
Just $ \ [] -> doCopySmallMutableArrayOp src src_off dst dst_off (fromInteger n)
shouldInlinePrimOp dflags CloneSmallArrayOp [src, src_off, (CmmLit (CmmInt n w))]
| wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) =
Just $ \ [res] -> emitCloneSmallArray mkSMAP_FROZEN_CLEAN_infoLabel res src src_off (fromInteger n)
shouldInlinePrimOp dflags CloneSmallMutableArrayOp [src, src_off, (CmmLit (CmmInt n w))]
| wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) =
Just $ \ [res] -> emitCloneSmallArray mkSMAP_DIRTY_infoLabel res src src_off (fromInteger n)
shouldInlinePrimOp dflags FreezeSmallArrayOp [src, src_off, (CmmLit (CmmInt n w))]
| wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) =
Just $ \ [res] -> emitCloneSmallArray mkSMAP_FROZEN_CLEAN_infoLabel res src src_off (fromInteger n)
shouldInlinePrimOp dflags ThawSmallArrayOp [src, src_off, (CmmLit (CmmInt n w))]
| wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) =
Just $ \ [res] -> emitCloneSmallArray mkSMAP_DIRTY_infoLabel res src src_off (fromInteger n)
shouldInlinePrimOp dflags primop args
| primOpOutOfLine primop = Nothing
| otherwise = Just $ \ regs -> emitPrimOp dflags regs primop args
-- TODO: Several primops, such as 'copyArray#', only have an inline
-- implementation (below) but could possibly have both an inline
-- implementation and an out-of-line implementation, just like
-- 'newArray#'. This would lower the amount of code generated,
-- hopefully without a performance impact (needs to be measured).
---------------------------------------------------
cgPrimOp :: [LocalReg] -- where to put the results
-> PrimOp -- the op
-> [StgArg] -- arguments
-> FCode ()
cgPrimOp results op args
= do dflags <- getDynFlags
arg_exprs <- getNonVoidArgAmodes args
emitPrimOp dflags results op arg_exprs
------------------------------------------------------------------------
-- Emitting code for a primop
------------------------------------------------------------------------
emitPrimOp :: DynFlags
-> [LocalReg] -- where to put the results
-> PrimOp -- the op
-> [CmmExpr] -- arguments
-> FCode ()
-- First we handle various awkward cases specially. The remaining
-- easy cases are then handled by translateOp, defined below.
emitPrimOp _ [res] ParOp [arg]
=
-- for now, just implement this in a C function
-- later, we might want to inline it.
emitCCall
[(res,NoHint)]
(CmmLit (CmmLabel (mkForeignLabel (fsLit "newSpark") Nothing ForeignLabelInExternalPackage IsFunction)))
[(baseExpr, AddrHint), (arg,AddrHint)]
emitPrimOp dflags [res] SparkOp [arg]
= do
-- returns the value of arg in res. We're going to therefore
-- refer to arg twice (once to pass to newSpark(), and once to
-- assign to res), so put it in a temporary.
tmp <- assignTemp arg
tmp2 <- newTemp (bWord dflags)
emitCCall
[(tmp2,NoHint)]
(CmmLit (CmmLabel (mkForeignLabel (fsLit "newSpark") Nothing ForeignLabelInExternalPackage IsFunction)))
[(baseExpr, AddrHint), ((CmmReg (CmmLocal tmp)), AddrHint)]
emitAssign (CmmLocal res) (CmmReg (CmmLocal tmp))
emitPrimOp dflags [res] GetCCSOfOp [arg]
= emitAssign (CmmLocal res) val
where
val
| gopt Opt_SccProfilingOn dflags = costCentreFrom dflags (cmmUntag dflags arg)
| otherwise = CmmLit (zeroCLit dflags)
emitPrimOp _ [res] GetCurrentCCSOp [_dummy_arg]
= emitAssign (CmmLocal res) cccsExpr
emitPrimOp _ [res] MyThreadIdOp []
= emitAssign (CmmLocal res) currentTSOExpr
emitPrimOp dflags [res] ReadMutVarOp [mutv]
= emitAssign (CmmLocal res) (cmmLoadIndexW dflags mutv (fixedHdrSizeW dflags) (gcWord dflags))
emitPrimOp dflags res@[] WriteMutVarOp [mutv,var]
= do -- Without this write barrier, other CPUs may see this pointer before
-- the writes for the closure it points to have occurred.
emitPrimCall res MO_WriteBarrier []
emitStore (cmmOffsetW dflags mutv (fixedHdrSizeW dflags)) var
emitCCall
[{-no results-}]
(CmmLit (CmmLabel mkDirty_MUT_VAR_Label))
[(baseExpr, AddrHint), (mutv,AddrHint)]
-- #define sizzeofByteArrayzh(r,a) \
-- r = ((StgArrBytes *)(a))->bytes
emitPrimOp dflags [res] SizeofByteArrayOp [arg]
= emit $ mkAssign (CmmLocal res) (cmmLoadIndexW dflags arg (fixedHdrSizeW dflags) (bWord dflags))
-- #define sizzeofMutableByteArrayzh(r,a) \
-- r = ((StgArrBytes *)(a))->bytes
emitPrimOp dflags [res] SizeofMutableByteArrayOp [arg]
= emitPrimOp dflags [res] SizeofByteArrayOp [arg]
-- #define getSizzeofMutableByteArrayzh(r,a) \
-- r = ((StgArrBytes *)(a))->bytes
emitPrimOp dflags [res] GetSizeofMutableByteArrayOp [arg]
= emitAssign (CmmLocal res) (cmmLoadIndexW dflags arg (fixedHdrSizeW dflags) (bWord dflags))
-- #define touchzh(o) /* nothing */
emitPrimOp _ res@[] TouchOp args@[_arg]
= do emitPrimCall res MO_Touch args
-- #define byteArrayContentszh(r,a) r = BYTE_ARR_CTS(a)
emitPrimOp dflags [res] ByteArrayContents_Char [arg]
= emitAssign (CmmLocal res) (cmmOffsetB dflags arg (arrWordsHdrSize dflags))
-- #define stableNameToIntzh(r,s) (r = ((StgStableName *)s)->sn)
emitPrimOp dflags [res] StableNameToIntOp [arg]
= emitAssign (CmmLocal res) (cmmLoadIndexW dflags arg (fixedHdrSizeW dflags) (bWord dflags))
emitPrimOp dflags [res] ReallyUnsafePtrEqualityOp [arg1,arg2]
= emitAssign (CmmLocal res) (CmmMachOp (mo_wordEq dflags) [arg1,arg2])
-- #define addrToHValuezh(r,a) r=(P_)a
emitPrimOp _ [res] AddrToAnyOp [arg]
= emitAssign (CmmLocal res) arg
-- #define hvalueToAddrzh(r, a) r=(W_)a
emitPrimOp _ [res] AnyToAddrOp [arg]
= emitAssign (CmmLocal res) arg
-- #define dataToTagzh(r,a) r=(GET_TAG(((StgClosure *)a)->header.info))
-- Note: argument may be tagged!
emitPrimOp dflags [res] DataToTagOp [arg]
= emitAssign (CmmLocal res) (getConstrTag dflags (cmmUntag dflags arg))
{- Freezing arrays-of-ptrs requires changing an info table, for the
benefit of the generational collector. It needs to scavenge mutable
objects, even if they are in old space. When they become immutable,
they can be removed from this scavenge list. -}
-- #define unsafeFreezzeArrayzh(r,a)
-- {
-- SET_INFO((StgClosure *)a,&stg_MUT_ARR_PTRS_FROZEN_DIRTY_info);
-- r = a;
-- }
emitPrimOp _ [res] UnsafeFreezeArrayOp [arg]
= emit $ catAGraphs
[ setInfo arg (CmmLit (CmmLabel mkMAP_FROZEN_DIRTY_infoLabel)),
mkAssign (CmmLocal res) arg ]
emitPrimOp _ [res] UnsafeFreezeArrayArrayOp [arg]
= emit $ catAGraphs
[ setInfo arg (CmmLit (CmmLabel mkMAP_FROZEN_DIRTY_infoLabel)),
mkAssign (CmmLocal res) arg ]
emitPrimOp _ [res] UnsafeFreezeSmallArrayOp [arg]
= emit $ catAGraphs
[ setInfo arg (CmmLit (CmmLabel mkSMAP_FROZEN_DIRTY_infoLabel)),
mkAssign (CmmLocal res) arg ]
-- #define unsafeFreezzeByteArrayzh(r,a) r=(a)
emitPrimOp _ [res] UnsafeFreezeByteArrayOp [arg]
= emitAssign (CmmLocal res) arg
-- Reading/writing pointer arrays
emitPrimOp _ [res] ReadArrayOp [obj,ix] = doReadPtrArrayOp res obj ix
emitPrimOp _ [res] IndexArrayOp [obj,ix] = doReadPtrArrayOp res obj ix
emitPrimOp _ [] WriteArrayOp [obj,ix,v] = doWritePtrArrayOp obj ix v
emitPrimOp _ [res] IndexArrayArrayOp_ByteArray [obj,ix] = doReadPtrArrayOp res obj ix
emitPrimOp _ [res] IndexArrayArrayOp_ArrayArray [obj,ix] = doReadPtrArrayOp res obj ix
emitPrimOp _ [res] ReadArrayArrayOp_ByteArray [obj,ix] = doReadPtrArrayOp res obj ix
emitPrimOp _ [res] ReadArrayArrayOp_MutableByteArray [obj,ix] = doReadPtrArrayOp res obj ix
emitPrimOp _ [res] ReadArrayArrayOp_ArrayArray [obj,ix] = doReadPtrArrayOp res obj ix
emitPrimOp _ [res] ReadArrayArrayOp_MutableArrayArray [obj,ix] = doReadPtrArrayOp res obj ix
emitPrimOp _ [] WriteArrayArrayOp_ByteArray [obj,ix,v] = doWritePtrArrayOp obj ix v
emitPrimOp _ [] WriteArrayArrayOp_MutableByteArray [obj,ix,v] = doWritePtrArrayOp obj ix v
emitPrimOp _ [] WriteArrayArrayOp_ArrayArray [obj,ix,v] = doWritePtrArrayOp obj ix v
emitPrimOp _ [] WriteArrayArrayOp_MutableArrayArray [obj,ix,v] = doWritePtrArrayOp obj ix v
emitPrimOp _ [res] ReadSmallArrayOp [obj,ix] = doReadSmallPtrArrayOp res obj ix
emitPrimOp _ [res] IndexSmallArrayOp [obj,ix] = doReadSmallPtrArrayOp res obj ix
emitPrimOp _ [] WriteSmallArrayOp [obj,ix,v] = doWriteSmallPtrArrayOp obj ix v
-- Getting the size of pointer arrays
emitPrimOp dflags [res] SizeofArrayOp [arg]
= emit $ mkAssign (CmmLocal res) (cmmLoadIndexW dflags arg
(fixedHdrSizeW dflags + bytesToWordsRoundUp dflags (oFFSET_StgMutArrPtrs_ptrs dflags))
(bWord dflags))
emitPrimOp dflags [res] SizeofMutableArrayOp [arg]
= emitPrimOp dflags [res] SizeofArrayOp [arg]
emitPrimOp dflags [res] SizeofArrayArrayOp [arg]
= emitPrimOp dflags [res] SizeofArrayOp [arg]
emitPrimOp dflags [res] SizeofMutableArrayArrayOp [arg]
= emitPrimOp dflags [res] SizeofArrayOp [arg]
emitPrimOp dflags [res] SizeofSmallArrayOp [arg] =
emit $ mkAssign (CmmLocal res)
(cmmLoadIndexW dflags arg
(fixedHdrSizeW dflags + bytesToWordsRoundUp dflags (oFFSET_StgSmallMutArrPtrs_ptrs dflags))
(bWord dflags))
emitPrimOp dflags [res] SizeofSmallMutableArrayOp [arg] =
emitPrimOp dflags [res] SizeofSmallArrayOp [arg]
-- IndexXXXoffAddr
emitPrimOp dflags res IndexOffAddrOp_Char args = doIndexOffAddrOp (Just (mo_u_8ToWord dflags)) b8 res args
emitPrimOp dflags res IndexOffAddrOp_WideChar args = doIndexOffAddrOp (Just (mo_u_32ToWord dflags)) b32 res args
emitPrimOp dflags res IndexOffAddrOp_Int args = doIndexOffAddrOp Nothing (bWord dflags) res args
emitPrimOp dflags res IndexOffAddrOp_Word args = doIndexOffAddrOp Nothing (bWord dflags) res args
emitPrimOp dflags res IndexOffAddrOp_Addr args = doIndexOffAddrOp Nothing (bWord dflags) res args
emitPrimOp _ res IndexOffAddrOp_Float args = doIndexOffAddrOp Nothing f32 res args
emitPrimOp _ res IndexOffAddrOp_Double args = doIndexOffAddrOp Nothing f64 res args
emitPrimOp dflags res IndexOffAddrOp_StablePtr args = doIndexOffAddrOp Nothing (bWord dflags) res args
emitPrimOp dflags res IndexOffAddrOp_Int8 args = doIndexOffAddrOp (Just (mo_s_8ToWord dflags)) b8 res args
emitPrimOp dflags res IndexOffAddrOp_Int16 args = doIndexOffAddrOp (Just (mo_s_16ToWord dflags)) b16 res args
emitPrimOp dflags res IndexOffAddrOp_Int32 args = doIndexOffAddrOp (Just (mo_s_32ToWord dflags)) b32 res args
emitPrimOp _ res IndexOffAddrOp_Int64 args = doIndexOffAddrOp Nothing b64 res args
emitPrimOp dflags res IndexOffAddrOp_Word8 args = doIndexOffAddrOp (Just (mo_u_8ToWord dflags)) b8 res args
emitPrimOp dflags res IndexOffAddrOp_Word16 args = doIndexOffAddrOp (Just (mo_u_16ToWord dflags)) b16 res args
emitPrimOp dflags res IndexOffAddrOp_Word32 args = doIndexOffAddrOp (Just (mo_u_32ToWord dflags)) b32 res args
emitPrimOp _ res IndexOffAddrOp_Word64 args = doIndexOffAddrOp Nothing b64 res args
-- ReadXXXoffAddr, which are identical, for our purposes, to IndexXXXoffAddr.
emitPrimOp dflags res ReadOffAddrOp_Char args = doIndexOffAddrOp (Just (mo_u_8ToWord dflags)) b8 res args
emitPrimOp dflags res ReadOffAddrOp_WideChar args = doIndexOffAddrOp (Just (mo_u_32ToWord dflags)) b32 res args
emitPrimOp dflags res ReadOffAddrOp_Int args = doIndexOffAddrOp Nothing (bWord dflags) res args
emitPrimOp dflags res ReadOffAddrOp_Word args = doIndexOffAddrOp Nothing (bWord dflags) res args
emitPrimOp dflags res ReadOffAddrOp_Addr args = doIndexOffAddrOp Nothing (bWord dflags) res args
emitPrimOp _ res ReadOffAddrOp_Float args = doIndexOffAddrOp Nothing f32 res args
emitPrimOp _ res ReadOffAddrOp_Double args = doIndexOffAddrOp Nothing f64 res args
emitPrimOp dflags res ReadOffAddrOp_StablePtr args = doIndexOffAddrOp Nothing (bWord dflags) res args
emitPrimOp dflags res ReadOffAddrOp_Int8 args = doIndexOffAddrOp (Just (mo_s_8ToWord dflags)) b8 res args
emitPrimOp dflags res ReadOffAddrOp_Int16 args = doIndexOffAddrOp (Just (mo_s_16ToWord dflags)) b16 res args
emitPrimOp dflags res ReadOffAddrOp_Int32 args = doIndexOffAddrOp (Just (mo_s_32ToWord dflags)) b32 res args
emitPrimOp _ res ReadOffAddrOp_Int64 args = doIndexOffAddrOp Nothing b64 res args
emitPrimOp dflags res ReadOffAddrOp_Word8 args = doIndexOffAddrOp (Just (mo_u_8ToWord dflags)) b8 res args
emitPrimOp dflags res ReadOffAddrOp_Word16 args = doIndexOffAddrOp (Just (mo_u_16ToWord dflags)) b16 res args
emitPrimOp dflags res ReadOffAddrOp_Word32 args = doIndexOffAddrOp (Just (mo_u_32ToWord dflags)) b32 res args
emitPrimOp _ res ReadOffAddrOp_Word64 args = doIndexOffAddrOp Nothing b64 res args
-- IndexXXXArray
emitPrimOp dflags res IndexByteArrayOp_Char args = doIndexByteArrayOp (Just (mo_u_8ToWord dflags)) b8 res args
emitPrimOp dflags res IndexByteArrayOp_WideChar args = doIndexByteArrayOp (Just (mo_u_32ToWord dflags)) b32 res args
emitPrimOp dflags res IndexByteArrayOp_Int args = doIndexByteArrayOp Nothing (bWord dflags) res args
emitPrimOp dflags res IndexByteArrayOp_Word args = doIndexByteArrayOp Nothing (bWord dflags) res args
emitPrimOp dflags res IndexByteArrayOp_Addr args = doIndexByteArrayOp Nothing (bWord dflags) res args
emitPrimOp _ res IndexByteArrayOp_Float args = doIndexByteArrayOp Nothing f32 res args
emitPrimOp _ res IndexByteArrayOp_Double args = doIndexByteArrayOp Nothing f64 res args
emitPrimOp dflags res IndexByteArrayOp_StablePtr args = doIndexByteArrayOp Nothing (bWord dflags) res args
emitPrimOp dflags res IndexByteArrayOp_Int8 args = doIndexByteArrayOp (Just (mo_s_8ToWord dflags)) b8 res args
emitPrimOp dflags res IndexByteArrayOp_Int16 args = doIndexByteArrayOp (Just (mo_s_16ToWord dflags)) b16 res args
emitPrimOp dflags res IndexByteArrayOp_Int32 args = doIndexByteArrayOp (Just (mo_s_32ToWord dflags)) b32 res args
emitPrimOp _ res IndexByteArrayOp_Int64 args = doIndexByteArrayOp Nothing b64 res args
emitPrimOp dflags res IndexByteArrayOp_Word8 args = doIndexByteArrayOp (Just (mo_u_8ToWord dflags)) b8 res args
emitPrimOp dflags res IndexByteArrayOp_Word16 args = doIndexByteArrayOp (Just (mo_u_16ToWord dflags)) b16 res args
emitPrimOp dflags res IndexByteArrayOp_Word32 args = doIndexByteArrayOp (Just (mo_u_32ToWord dflags)) b32 res args
emitPrimOp _ res IndexByteArrayOp_Word64 args = doIndexByteArrayOp Nothing b64 res args
-- ReadXXXArray, identical to IndexXXXArray.
emitPrimOp dflags res ReadByteArrayOp_Char args = doIndexByteArrayOp (Just (mo_u_8ToWord dflags)) b8 res args
emitPrimOp dflags res ReadByteArrayOp_WideChar args = doIndexByteArrayOp (Just (mo_u_32ToWord dflags)) b32 res args
emitPrimOp dflags res ReadByteArrayOp_Int args = doIndexByteArrayOp Nothing (bWord dflags) res args
emitPrimOp dflags res ReadByteArrayOp_Word args = doIndexByteArrayOp Nothing (bWord dflags) res args
emitPrimOp dflags res ReadByteArrayOp_Addr args = doIndexByteArrayOp Nothing (bWord dflags) res args
emitPrimOp _ res ReadByteArrayOp_Float args = doIndexByteArrayOp Nothing f32 res args
emitPrimOp _ res ReadByteArrayOp_Double args = doIndexByteArrayOp Nothing f64 res args
emitPrimOp dflags res ReadByteArrayOp_StablePtr args = doIndexByteArrayOp Nothing (bWord dflags) res args
emitPrimOp dflags res ReadByteArrayOp_Int8 args = doIndexByteArrayOp (Just (mo_s_8ToWord dflags)) b8 res args
emitPrimOp dflags res ReadByteArrayOp_Int16 args = doIndexByteArrayOp (Just (mo_s_16ToWord dflags)) b16 res args
emitPrimOp dflags res ReadByteArrayOp_Int32 args = doIndexByteArrayOp (Just (mo_s_32ToWord dflags)) b32 res args
emitPrimOp _ res ReadByteArrayOp_Int64 args = doIndexByteArrayOp Nothing b64 res args
emitPrimOp dflags res ReadByteArrayOp_Word8 args = doIndexByteArrayOp (Just (mo_u_8ToWord dflags)) b8 res args
emitPrimOp dflags res ReadByteArrayOp_Word16 args = doIndexByteArrayOp (Just (mo_u_16ToWord dflags)) b16 res args
emitPrimOp dflags res ReadByteArrayOp_Word32 args = doIndexByteArrayOp (Just (mo_u_32ToWord dflags)) b32 res args
emitPrimOp _ res ReadByteArrayOp_Word64 args = doIndexByteArrayOp Nothing b64 res args
-- IndexWord8ArrayAsXXX
emitPrimOp dflags res IndexByteArrayOp_Word8AsChar args = doIndexByteArrayOpAs (Just (mo_u_8ToWord dflags)) b8 b8 res args
emitPrimOp dflags res IndexByteArrayOp_Word8AsWideChar args = doIndexByteArrayOpAs (Just (mo_u_32ToWord dflags)) b32 b8 res args
emitPrimOp dflags res IndexByteArrayOp_Word8AsInt args = doIndexByteArrayOpAs Nothing (bWord dflags) b8 res args
emitPrimOp dflags res IndexByteArrayOp_Word8AsWord args = doIndexByteArrayOpAs Nothing (bWord dflags) b8 res args
emitPrimOp dflags res IndexByteArrayOp_Word8AsAddr args = doIndexByteArrayOpAs Nothing (bWord dflags) b8 res args
emitPrimOp _ res IndexByteArrayOp_Word8AsFloat args = doIndexByteArrayOpAs Nothing f32 b8 res args
emitPrimOp _ res IndexByteArrayOp_Word8AsDouble args = doIndexByteArrayOpAs Nothing f64 b8 res args
emitPrimOp dflags res IndexByteArrayOp_Word8AsStablePtr args = doIndexByteArrayOpAs Nothing (bWord dflags) b8 res args
emitPrimOp dflags res IndexByteArrayOp_Word8AsInt16 args = doIndexByteArrayOpAs (Just (mo_s_16ToWord dflags)) b16 b8 res args
emitPrimOp dflags res IndexByteArrayOp_Word8AsInt32 args = doIndexByteArrayOpAs (Just (mo_s_32ToWord dflags)) b32 b8 res args
emitPrimOp _ res IndexByteArrayOp_Word8AsInt64 args = doIndexByteArrayOpAs Nothing b64 b8 res args
emitPrimOp dflags res IndexByteArrayOp_Word8AsWord16 args = doIndexByteArrayOpAs (Just (mo_u_16ToWord dflags)) b16 b8 res args
emitPrimOp dflags res IndexByteArrayOp_Word8AsWord32 args = doIndexByteArrayOpAs (Just (mo_u_32ToWord dflags)) b32 b8 res args
emitPrimOp _ res IndexByteArrayOp_Word8AsWord64 args = doIndexByteArrayOpAs Nothing b64 b8 res args
-- ReadInt8ArrayAsXXX, identical to IndexInt8ArrayAsXXX
emitPrimOp dflags res ReadByteArrayOp_Word8AsChar args = doIndexByteArrayOpAs (Just (mo_u_8ToWord dflags)) b8 b8 res args
emitPrimOp dflags res ReadByteArrayOp_Word8AsWideChar args = doIndexByteArrayOpAs (Just (mo_u_32ToWord dflags)) b32 b8 res args
emitPrimOp dflags res ReadByteArrayOp_Word8AsInt args = doIndexByteArrayOpAs Nothing (bWord dflags) b8 res args
emitPrimOp dflags res ReadByteArrayOp_Word8AsWord args = doIndexByteArrayOpAs Nothing (bWord dflags) b8 res args
emitPrimOp dflags res ReadByteArrayOp_Word8AsAddr args = doIndexByteArrayOpAs Nothing (bWord dflags) b8 res args
emitPrimOp _ res ReadByteArrayOp_Word8AsFloat args = doIndexByteArrayOpAs Nothing f32 b8 res args
emitPrimOp _ res ReadByteArrayOp_Word8AsDouble args = doIndexByteArrayOpAs Nothing f64 b8 res args
emitPrimOp dflags res ReadByteArrayOp_Word8AsStablePtr args = doIndexByteArrayOpAs Nothing (bWord dflags) b8 res args
emitPrimOp dflags res ReadByteArrayOp_Word8AsInt16 args = doIndexByteArrayOpAs (Just (mo_s_16ToWord dflags)) b16 b8 res args
emitPrimOp dflags res ReadByteArrayOp_Word8AsInt32 args = doIndexByteArrayOpAs (Just (mo_s_32ToWord dflags)) b32 b8 res args
emitPrimOp _ res ReadByteArrayOp_Word8AsInt64 args = doIndexByteArrayOpAs Nothing b64 b8 res args
emitPrimOp dflags res ReadByteArrayOp_Word8AsWord16 args = doIndexByteArrayOpAs (Just (mo_u_16ToWord dflags)) b16 b8 res args
emitPrimOp dflags res ReadByteArrayOp_Word8AsWord32 args = doIndexByteArrayOpAs (Just (mo_u_32ToWord dflags)) b32 b8 res args
emitPrimOp _ res ReadByteArrayOp_Word8AsWord64 args = doIndexByteArrayOpAs Nothing b64 b8 res args
-- WriteXXXoffAddr
emitPrimOp dflags res WriteOffAddrOp_Char args = doWriteOffAddrOp (Just (mo_WordTo8 dflags)) b8 res args
emitPrimOp dflags res WriteOffAddrOp_WideChar args = doWriteOffAddrOp (Just (mo_WordTo32 dflags)) b32 res args
emitPrimOp dflags res WriteOffAddrOp_Int args = doWriteOffAddrOp Nothing (bWord dflags) res args
emitPrimOp dflags res WriteOffAddrOp_Word args = doWriteOffAddrOp Nothing (bWord dflags) res args
emitPrimOp dflags res WriteOffAddrOp_Addr args = doWriteOffAddrOp Nothing (bWord dflags) res args
emitPrimOp _ res WriteOffAddrOp_Float args = doWriteOffAddrOp Nothing f32 res args
emitPrimOp _ res WriteOffAddrOp_Double args = doWriteOffAddrOp Nothing f64 res args
emitPrimOp dflags res WriteOffAddrOp_StablePtr args = doWriteOffAddrOp Nothing (bWord dflags) res args
emitPrimOp dflags res WriteOffAddrOp_Int8 args = doWriteOffAddrOp (Just (mo_WordTo8 dflags)) b8 res args
emitPrimOp dflags res WriteOffAddrOp_Int16 args = doWriteOffAddrOp (Just (mo_WordTo16 dflags)) b16 res args
emitPrimOp dflags res WriteOffAddrOp_Int32 args = doWriteOffAddrOp (Just (mo_WordTo32 dflags)) b32 res args
emitPrimOp _ res WriteOffAddrOp_Int64 args = doWriteOffAddrOp Nothing b64 res args
emitPrimOp dflags res WriteOffAddrOp_Word8 args = doWriteOffAddrOp (Just (mo_WordTo8 dflags)) b8 res args
emitPrimOp dflags res WriteOffAddrOp_Word16 args = doWriteOffAddrOp (Just (mo_WordTo16 dflags)) b16 res args
emitPrimOp dflags res WriteOffAddrOp_Word32 args = doWriteOffAddrOp (Just (mo_WordTo32 dflags)) b32 res args
emitPrimOp _ res WriteOffAddrOp_Word64 args = doWriteOffAddrOp Nothing b64 res args
-- WriteXXXArray
emitPrimOp dflags res WriteByteArrayOp_Char args = doWriteByteArrayOp (Just (mo_WordTo8 dflags)) b8 res args
emitPrimOp dflags res WriteByteArrayOp_WideChar args = doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b32 res args
emitPrimOp dflags res WriteByteArrayOp_Int args = doWriteByteArrayOp Nothing (bWord dflags) res args
emitPrimOp dflags res WriteByteArrayOp_Word args = doWriteByteArrayOp Nothing (bWord dflags) res args
emitPrimOp dflags res WriteByteArrayOp_Addr args = doWriteByteArrayOp Nothing (bWord dflags) res args
emitPrimOp _ res WriteByteArrayOp_Float args = doWriteByteArrayOp Nothing f32 res args
emitPrimOp _ res WriteByteArrayOp_Double args = doWriteByteArrayOp Nothing f64 res args
emitPrimOp dflags res WriteByteArrayOp_StablePtr args = doWriteByteArrayOp Nothing (bWord dflags) res args
emitPrimOp dflags res WriteByteArrayOp_Int8 args = doWriteByteArrayOp (Just (mo_WordTo8 dflags)) b8 res args
emitPrimOp dflags res WriteByteArrayOp_Int16 args = doWriteByteArrayOp (Just (mo_WordTo16 dflags)) b16 res args
emitPrimOp dflags res WriteByteArrayOp_Int32 args = doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b32 res args
emitPrimOp _ res WriteByteArrayOp_Int64 args = doWriteByteArrayOp Nothing b64 res args
emitPrimOp dflags res WriteByteArrayOp_Word8 args = doWriteByteArrayOp (Just (mo_WordTo8 dflags)) b8 res args
emitPrimOp dflags res WriteByteArrayOp_Word16 args = doWriteByteArrayOp (Just (mo_WordTo16 dflags)) b16 res args
emitPrimOp dflags res WriteByteArrayOp_Word32 args = doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b32 res args
emitPrimOp _ res WriteByteArrayOp_Word64 args = doWriteByteArrayOp Nothing b64 res args
-- WriteInt8ArrayAsXXX
emitPrimOp dflags res WriteByteArrayOp_Word8AsChar args = doWriteByteArrayOp (Just (mo_WordTo8 dflags)) b8 res args
emitPrimOp dflags res WriteByteArrayOp_Word8AsWideChar args = doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b8 res args
emitPrimOp _ res WriteByteArrayOp_Word8AsInt args = doWriteByteArrayOp Nothing b8 res args
emitPrimOp _ res WriteByteArrayOp_Word8AsWord args = doWriteByteArrayOp Nothing b8 res args
emitPrimOp _ res WriteByteArrayOp_Word8AsAddr args = doWriteByteArrayOp Nothing b8 res args
emitPrimOp _ res WriteByteArrayOp_Word8AsFloat args = doWriteByteArrayOp Nothing b8 res args
emitPrimOp _ res WriteByteArrayOp_Word8AsDouble args = doWriteByteArrayOp Nothing b8 res args
emitPrimOp _ res WriteByteArrayOp_Word8AsStablePtr args = doWriteByteArrayOp Nothing b8 res args
emitPrimOp dflags res WriteByteArrayOp_Word8AsInt16 args = doWriteByteArrayOp (Just (mo_WordTo16 dflags)) b8 res args
emitPrimOp dflags res WriteByteArrayOp_Word8AsInt32 args = doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b8 res args
emitPrimOp _ res WriteByteArrayOp_Word8AsInt64 args = doWriteByteArrayOp Nothing b8 res args
emitPrimOp dflags res WriteByteArrayOp_Word8AsWord16 args = doWriteByteArrayOp (Just (mo_WordTo16 dflags)) b8 res args
emitPrimOp dflags res WriteByteArrayOp_Word8AsWord32 args = doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b8 res args
emitPrimOp _ res WriteByteArrayOp_Word8AsWord64 args = doWriteByteArrayOp Nothing b8 res args
-- Copying and setting byte arrays
emitPrimOp _ [] CopyByteArrayOp [src,src_off,dst,dst_off,n] =
doCopyByteArrayOp src src_off dst dst_off n
emitPrimOp _ [] CopyMutableByteArrayOp [src,src_off,dst,dst_off,n] =
doCopyMutableByteArrayOp src src_off dst dst_off n
emitPrimOp _ [] CopyByteArrayToAddrOp [src,src_off,dst,n] =
doCopyByteArrayToAddrOp src src_off dst n
emitPrimOp _ [] CopyMutableByteArrayToAddrOp [src,src_off,dst,n] =
doCopyMutableByteArrayToAddrOp src src_off dst n
emitPrimOp _ [] CopyAddrToByteArrayOp [src,dst,dst_off,n] =
doCopyAddrToByteArrayOp src dst dst_off n
emitPrimOp _ [] SetByteArrayOp [ba,off,len,c] =
doSetByteArrayOp ba off len c
-- Comparing byte arrays
emitPrimOp _ [res] CompareByteArraysOp [ba1,ba1_off,ba2,ba2_off,n] =
doCompareByteArraysOp res ba1 ba1_off ba2 ba2_off n
emitPrimOp _ [res] BSwap16Op [w] = emitBSwapCall res w W16
emitPrimOp _ [res] BSwap32Op [w] = emitBSwapCall res w W32
emitPrimOp _ [res] BSwap64Op [w] = emitBSwapCall res w W64
emitPrimOp dflags [res] BSwapOp [w] = emitBSwapCall res w (wordWidth dflags)
-- Population count
emitPrimOp _ [res] PopCnt8Op [w] = emitPopCntCall res w W8
emitPrimOp _ [res] PopCnt16Op [w] = emitPopCntCall res w W16
emitPrimOp _ [res] PopCnt32Op [w] = emitPopCntCall res w W32
emitPrimOp _ [res] PopCnt64Op [w] = emitPopCntCall res w W64
emitPrimOp dflags [res] PopCntOp [w] = emitPopCntCall res w (wordWidth dflags)
-- Parallel bit deposit
emitPrimOp _ [res] Pdep8Op [src, mask] = emitPdepCall res src mask W8
emitPrimOp _ [res] Pdep16Op [src, mask] = emitPdepCall res src mask W16
emitPrimOp _ [res] Pdep32Op [src, mask] = emitPdepCall res src mask W32
emitPrimOp _ [res] Pdep64Op [src, mask] = emitPdepCall res src mask W64
emitPrimOp dflags [res] PdepOp [src, mask] = emitPdepCall res src mask (wordWidth dflags)
-- Parallel bit extract
emitPrimOp _ [res] Pext8Op [src, mask] = emitPextCall res src mask W8
emitPrimOp _ [res] Pext16Op [src, mask] = emitPextCall res src mask W16
emitPrimOp _ [res] Pext32Op [src, mask] = emitPextCall res src mask W32
emitPrimOp _ [res] Pext64Op [src, mask] = emitPextCall res src mask W64
emitPrimOp dflags [res] PextOp [src, mask] = emitPextCall res src mask (wordWidth dflags)
-- count leading zeros
emitPrimOp _ [res] Clz8Op [w] = emitClzCall res w W8
emitPrimOp _ [res] Clz16Op [w] = emitClzCall res w W16
emitPrimOp _ [res] Clz32Op [w] = emitClzCall res w W32
emitPrimOp _ [res] Clz64Op [w] = emitClzCall res w W64
emitPrimOp dflags [res] ClzOp [w] = emitClzCall res w (wordWidth dflags)
-- count trailing zeros
emitPrimOp _ [res] Ctz8Op [w] = emitCtzCall res w W8
emitPrimOp _ [res] Ctz16Op [w] = emitCtzCall res w W16
emitPrimOp _ [res] Ctz32Op [w] = emitCtzCall res w W32
emitPrimOp _ [res] Ctz64Op [w] = emitCtzCall res w W64
emitPrimOp dflags [res] CtzOp [w] = emitCtzCall res w (wordWidth dflags)
-- Unsigned int to floating point conversions
emitPrimOp _ [res] Word2FloatOp [w] = emitPrimCall [res]
(MO_UF_Conv W32) [w]
emitPrimOp _ [res] Word2DoubleOp [w] = emitPrimCall [res]
(MO_UF_Conv W64) [w]
-- SIMD primops
emitPrimOp dflags [res] (VecBroadcastOp vcat n w) [e] = do
checkVecCompatibility dflags vcat n w
doVecPackOp (vecElemInjectCast dflags vcat w) ty zeros (replicate n e) res
where
zeros :: CmmExpr
zeros = CmmLit $ CmmVec (replicate n zero)
zero :: CmmLit
zero = case vcat of
IntVec -> CmmInt 0 w
WordVec -> CmmInt 0 w
FloatVec -> CmmFloat 0 w
ty :: CmmType
ty = vecVmmType vcat n w
emitPrimOp dflags [res] (VecPackOp vcat n w) es = do
checkVecCompatibility dflags vcat n w
when (es `lengthIsNot` n) $
panic "emitPrimOp: VecPackOp has wrong number of arguments"
doVecPackOp (vecElemInjectCast dflags vcat w) ty zeros es res
where
zeros :: CmmExpr
zeros = CmmLit $ CmmVec (replicate n zero)
zero :: CmmLit
zero = case vcat of
IntVec -> CmmInt 0 w
WordVec -> CmmInt 0 w
FloatVec -> CmmFloat 0 w
ty :: CmmType
ty = vecVmmType vcat n w
emitPrimOp dflags res (VecUnpackOp vcat n w) [arg] = do
checkVecCompatibility dflags vcat n w
when (res `lengthIsNot` n) $
panic "emitPrimOp: VecUnpackOp has wrong number of results"
doVecUnpackOp (vecElemProjectCast dflags vcat w) ty arg res
where
ty :: CmmType
ty = vecVmmType vcat n w
emitPrimOp dflags [res] (VecInsertOp vcat n w) [v,e,i] = do
checkVecCompatibility dflags vcat n w
doVecInsertOp (vecElemInjectCast dflags vcat w) ty v e i res
where
ty :: CmmType
ty = vecVmmType vcat n w
emitPrimOp dflags res (VecIndexByteArrayOp vcat n w) args = do
checkVecCompatibility dflags vcat n w
doIndexByteArrayOp Nothing ty res args
where
ty :: CmmType
ty = vecVmmType vcat n w
emitPrimOp dflags res (VecReadByteArrayOp vcat n w) args = do
checkVecCompatibility dflags vcat n w
doIndexByteArrayOp Nothing ty res args
where
ty :: CmmType
ty = vecVmmType vcat n w
emitPrimOp dflags res (VecWriteByteArrayOp vcat n w) args = do
checkVecCompatibility dflags vcat n w
doWriteByteArrayOp Nothing ty res args
where
ty :: CmmType
ty = vecVmmType vcat n w
emitPrimOp dflags res (VecIndexOffAddrOp vcat n w) args = do
checkVecCompatibility dflags vcat n w
doIndexOffAddrOp Nothing ty res args
where
ty :: CmmType
ty = vecVmmType vcat n w
emitPrimOp dflags res (VecReadOffAddrOp vcat n w) args = do
checkVecCompatibility dflags vcat n w
doIndexOffAddrOp Nothing ty res args
where
ty :: CmmType
ty = vecVmmType vcat n w
emitPrimOp dflags res (VecWriteOffAddrOp vcat n w) args = do
checkVecCompatibility dflags vcat n w
doWriteOffAddrOp Nothing ty res args
where
ty :: CmmType
ty = vecVmmType vcat n w
emitPrimOp dflags res (VecIndexScalarByteArrayOp vcat n w) args = do
checkVecCompatibility dflags vcat n w
doIndexByteArrayOpAs Nothing vecty ty res args
where
vecty :: CmmType
vecty = vecVmmType vcat n w
ty :: CmmType
ty = vecCmmCat vcat w
emitPrimOp dflags res (VecReadScalarByteArrayOp vcat n w) args = do
checkVecCompatibility dflags vcat n w
doIndexByteArrayOpAs Nothing vecty ty res args
where
vecty :: CmmType
vecty = vecVmmType vcat n w
ty :: CmmType
ty = vecCmmCat vcat w
emitPrimOp dflags res (VecWriteScalarByteArrayOp vcat n w) args = do
checkVecCompatibility dflags vcat n w
doWriteByteArrayOp Nothing ty res args
where
ty :: CmmType
ty = vecCmmCat vcat w
emitPrimOp dflags res (VecIndexScalarOffAddrOp vcat n w) args = do
checkVecCompatibility dflags vcat n w
doIndexOffAddrOpAs Nothing vecty ty res args
where
vecty :: CmmType
vecty = vecVmmType vcat n w
ty :: CmmType
ty = vecCmmCat vcat w
emitPrimOp dflags res (VecReadScalarOffAddrOp vcat n w) args = do
checkVecCompatibility dflags vcat n w
doIndexOffAddrOpAs Nothing vecty ty res args
where
vecty :: CmmType
vecty = vecVmmType vcat n w
ty :: CmmType
ty = vecCmmCat vcat w
emitPrimOp dflags res (VecWriteScalarOffAddrOp vcat n w) args = do
checkVecCompatibility dflags vcat n w
doWriteOffAddrOp Nothing ty res args
where
ty :: CmmType
ty = vecCmmCat vcat w
-- Prefetch
emitPrimOp _ [] PrefetchByteArrayOp3 args = doPrefetchByteArrayOp 3 args
emitPrimOp _ [] PrefetchMutableByteArrayOp3 args = doPrefetchMutableByteArrayOp 3 args
emitPrimOp _ [] PrefetchAddrOp3 args = doPrefetchAddrOp 3 args
emitPrimOp _ [] PrefetchValueOp3 args = doPrefetchValueOp 3 args
emitPrimOp _ [] PrefetchByteArrayOp2 args = doPrefetchByteArrayOp 2 args
emitPrimOp _ [] PrefetchMutableByteArrayOp2 args = doPrefetchMutableByteArrayOp 2 args
emitPrimOp _ [] PrefetchAddrOp2 args = doPrefetchAddrOp 2 args
emitPrimOp _ [] PrefetchValueOp2 args = doPrefetchValueOp 2 args
emitPrimOp _ [] PrefetchByteArrayOp1 args = doPrefetchByteArrayOp 1 args
emitPrimOp _ [] PrefetchMutableByteArrayOp1 args = doPrefetchMutableByteArrayOp 1 args
emitPrimOp _ [] PrefetchAddrOp1 args = doPrefetchAddrOp 1 args
emitPrimOp _ [] PrefetchValueOp1 args = doPrefetchValueOp 1 args
emitPrimOp _ [] PrefetchByteArrayOp0 args = doPrefetchByteArrayOp 0 args
emitPrimOp _ [] PrefetchMutableByteArrayOp0 args = doPrefetchMutableByteArrayOp 0 args
emitPrimOp _ [] PrefetchAddrOp0 args = doPrefetchAddrOp 0 args
emitPrimOp _ [] PrefetchValueOp0 args = doPrefetchValueOp 0 args
-- Atomic read-modify-write
emitPrimOp dflags [res] FetchAddByteArrayOp_Int [mba, ix, n] =
doAtomicRMW res AMO_Add mba ix (bWord dflags) n
emitPrimOp dflags [res] FetchSubByteArrayOp_Int [mba, ix, n] =
doAtomicRMW res AMO_Sub mba ix (bWord dflags) n
emitPrimOp dflags [res] FetchAndByteArrayOp_Int [mba, ix, n] =
doAtomicRMW res AMO_And mba ix (bWord dflags) n
emitPrimOp dflags [res] FetchNandByteArrayOp_Int [mba, ix, n] =
doAtomicRMW res AMO_Nand mba ix (bWord dflags) n
emitPrimOp dflags [res] FetchOrByteArrayOp_Int [mba, ix, n] =
doAtomicRMW res AMO_Or mba ix (bWord dflags) n
emitPrimOp dflags [res] FetchXorByteArrayOp_Int [mba, ix, n] =
doAtomicRMW res AMO_Xor mba ix (bWord dflags) n
emitPrimOp dflags [res] AtomicReadByteArrayOp_Int [mba, ix] =
doAtomicReadByteArray res mba ix (bWord dflags)
emitPrimOp dflags [] AtomicWriteByteArrayOp_Int [mba, ix, val] =
doAtomicWriteByteArray mba ix (bWord dflags) val
emitPrimOp dflags [res] CasByteArrayOp_Int [mba, ix, old, new] =
doCasByteArray res mba ix (bWord dflags) old new
-- The rest just translate straightforwardly
emitPrimOp dflags [res] op [arg]
| nopOp op
= emitAssign (CmmLocal res) arg
| Just (mop,rep) <- narrowOp op
= emitAssign (CmmLocal res) $
CmmMachOp (mop rep (wordWidth dflags)) [CmmMachOp (mop (wordWidth dflags) rep) [arg]]
emitPrimOp dflags r@[res] op args
| Just prim <- callishOp op
= do emitPrimCall r prim args
| Just mop <- translateOp dflags op
= let stmt = mkAssign (CmmLocal res) (CmmMachOp mop args) in
emit stmt
emitPrimOp dflags results op args
= case callishPrimOpSupported dflags op of
Left op -> emit $ mkUnsafeCall (PrimTarget op) results args
Right gen -> gen results args
type GenericOp = [CmmFormal] -> [CmmActual] -> FCode ()
callishPrimOpSupported :: DynFlags -> PrimOp -> Either CallishMachOp GenericOp
callishPrimOpSupported dflags op
= case op of
IntQuotRemOp | ncg && (x86ish
|| ppc) -> Left (MO_S_QuotRem (wordWidth dflags))
| otherwise -> Right (genericIntQuotRemOp dflags)
WordQuotRemOp | ncg && (x86ish
|| ppc) -> Left (MO_U_QuotRem (wordWidth dflags))
| otherwise -> Right (genericWordQuotRemOp dflags)
WordQuotRem2Op | (ncg && (x86ish
|| ppc))
|| llvm -> Left (MO_U_QuotRem2 (wordWidth dflags))
| otherwise -> Right (genericWordQuotRem2Op dflags)
WordAdd2Op | (ncg && (x86ish
|| ppc))
|| llvm -> Left (MO_Add2 (wordWidth dflags))
| otherwise -> Right genericWordAdd2Op
WordAddCOp | (ncg && (x86ish
|| ppc))
|| llvm -> Left (MO_AddWordC (wordWidth dflags))
| otherwise -> Right genericWordAddCOp
WordSubCOp | (ncg && (x86ish
|| ppc))
|| llvm -> Left (MO_SubWordC (wordWidth dflags))
| otherwise -> Right genericWordSubCOp
IntAddCOp | (ncg && (x86ish
|| ppc))
|| llvm -> Left (MO_AddIntC (wordWidth dflags))
| otherwise -> Right genericIntAddCOp
IntSubCOp | (ncg && (x86ish
|| ppc))
|| llvm -> Left (MO_SubIntC (wordWidth dflags))
| otherwise -> Right genericIntSubCOp
WordMul2Op | ncg && (x86ish
|| ppc)
|| llvm -> Left (MO_U_Mul2 (wordWidth dflags))
| otherwise -> Right genericWordMul2Op
FloatFabsOp | (ncg && x86ish
|| ppc)
|| llvm -> Left MO_F32_Fabs
| otherwise -> Right $ genericFabsOp W32
DoubleFabsOp | (ncg && x86ish
|| ppc)
|| llvm -> Left MO_F64_Fabs
| otherwise -> Right $ genericFabsOp W64
_ -> pprPanic "emitPrimOp: can't translate PrimOp " (ppr op)
where
ncg = case hscTarget dflags of
HscAsm -> True
_ -> False
llvm = case hscTarget dflags of
HscLlvm -> True
_ -> False
x86ish = case platformArch (targetPlatform dflags) of
ArchX86 -> True
ArchX86_64 -> True
_ -> False
ppc = case platformArch (targetPlatform dflags) of
ArchPPC -> True
ArchPPC_64 _ -> True
_ -> False
genericIntQuotRemOp :: DynFlags -> GenericOp
genericIntQuotRemOp dflags [res_q, res_r] [arg_x, arg_y]
= emit $ mkAssign (CmmLocal res_q)
(CmmMachOp (MO_S_Quot (wordWidth dflags)) [arg_x, arg_y]) <*>
mkAssign (CmmLocal res_r)
(CmmMachOp (MO_S_Rem (wordWidth dflags)) [arg_x, arg_y])
genericIntQuotRemOp _ _ _ = panic "genericIntQuotRemOp"
genericWordQuotRemOp :: DynFlags -> GenericOp
genericWordQuotRemOp dflags [res_q, res_r] [arg_x, arg_y]
= emit $ mkAssign (CmmLocal res_q)
(CmmMachOp (MO_U_Quot (wordWidth dflags)) [arg_x, arg_y]) <*>
mkAssign (CmmLocal res_r)
(CmmMachOp (MO_U_Rem (wordWidth dflags)) [arg_x, arg_y])
genericWordQuotRemOp _ _ _ = panic "genericWordQuotRemOp"
genericWordQuotRem2Op :: DynFlags -> GenericOp
genericWordQuotRem2Op dflags [res_q, res_r] [arg_x_high, arg_x_low, arg_y]
= emit =<< f (widthInBits (wordWidth dflags)) zero arg_x_high arg_x_low
where ty = cmmExprType dflags arg_x_high
shl x i = CmmMachOp (MO_Shl (wordWidth dflags)) [x, i]
shr x i = CmmMachOp (MO_U_Shr (wordWidth dflags)) [x, i]
or x y = CmmMachOp (MO_Or (wordWidth dflags)) [x, y]
ge x y = CmmMachOp (MO_U_Ge (wordWidth dflags)) [x, y]
ne x y = CmmMachOp (MO_Ne (wordWidth dflags)) [x, y]
minus x y = CmmMachOp (MO_Sub (wordWidth dflags)) [x, y]
times x y = CmmMachOp (MO_Mul (wordWidth dflags)) [x, y]
zero = lit 0
one = lit 1
negone = lit (fromIntegral (widthInBits (wordWidth dflags)) - 1)
lit i = CmmLit (CmmInt i (wordWidth dflags))
f :: Int -> CmmExpr -> CmmExpr -> CmmExpr -> FCode CmmAGraph
f 0 acc high _ = return (mkAssign (CmmLocal res_q) acc <*>
mkAssign (CmmLocal res_r) high)
f i acc high low =
do roverflowedBit <- newTemp ty
rhigh' <- newTemp ty
rhigh'' <- newTemp ty
rlow' <- newTemp ty
risge <- newTemp ty
racc' <- newTemp ty
let high' = CmmReg (CmmLocal rhigh')
isge = CmmReg (CmmLocal risge)
overflowedBit = CmmReg (CmmLocal roverflowedBit)
let this = catAGraphs
[mkAssign (CmmLocal roverflowedBit)
(shr high negone),
mkAssign (CmmLocal rhigh')
(or (shl high one) (shr low negone)),
mkAssign (CmmLocal rlow')
(shl low one),
mkAssign (CmmLocal risge)
(or (overflowedBit `ne` zero)
(high' `ge` arg_y)),
mkAssign (CmmLocal rhigh'')
(high' `minus` (arg_y `times` isge)),
mkAssign (CmmLocal racc')
(or (shl acc one) isge)]
rest <- f (i - 1) (CmmReg (CmmLocal racc'))
(CmmReg (CmmLocal rhigh''))
(CmmReg (CmmLocal rlow'))
return (this <*> rest)
genericWordQuotRem2Op _ _ _ = panic "genericWordQuotRem2Op"
genericWordAdd2Op :: GenericOp
genericWordAdd2Op [res_h, res_l] [arg_x, arg_y]
= do dflags <- getDynFlags
r1 <- newTemp (cmmExprType dflags arg_x)
r2 <- newTemp (cmmExprType dflags arg_x)
let topHalf x = CmmMachOp (MO_U_Shr (wordWidth dflags)) [x, hww]
toTopHalf x = CmmMachOp (MO_Shl (wordWidth dflags)) [x, hww]
bottomHalf x = CmmMachOp (MO_And (wordWidth dflags)) [x, hwm]
add x y = CmmMachOp (MO_Add (wordWidth dflags)) [x, y]
or x y = CmmMachOp (MO_Or (wordWidth dflags)) [x, y]
hww = CmmLit (CmmInt (fromIntegral (widthInBits (halfWordWidth dflags)))
(wordWidth dflags))
hwm = CmmLit (CmmInt (halfWordMask dflags) (wordWidth dflags))
emit $ catAGraphs
[mkAssign (CmmLocal r1)
(add (bottomHalf arg_x) (bottomHalf arg_y)),
mkAssign (CmmLocal r2)
(add (topHalf (CmmReg (CmmLocal r1)))
(add (topHalf arg_x) (topHalf arg_y))),
mkAssign (CmmLocal res_h)
(topHalf (CmmReg (CmmLocal r2))),
mkAssign (CmmLocal res_l)
(or (toTopHalf (CmmReg (CmmLocal r2)))
(bottomHalf (CmmReg (CmmLocal r1))))]
genericWordAdd2Op _ _ = panic "genericWordAdd2Op"
-- | Implements branchless recovery of the carry flag @c@ by checking the
-- leftmost bits of both inputs @a@ and @b@ and result @r = a + b@:
--
-- @
-- c = a&b | (a|b)&~r
-- @
--
-- https://brodowsky.it-sky.net/2015/04/02/how-to-recover-the-carry-bit/
genericWordAddCOp :: GenericOp
genericWordAddCOp [res_r, res_c] [aa, bb]
= do dflags <- getDynFlags
emit $ catAGraphs [
mkAssign (CmmLocal res_r) (CmmMachOp (mo_wordAdd dflags) [aa,bb]),
mkAssign (CmmLocal res_c) $
CmmMachOp (mo_wordUShr dflags) [
CmmMachOp (mo_wordOr dflags) [
CmmMachOp (mo_wordAnd dflags) [aa,bb],
CmmMachOp (mo_wordAnd dflags) [
CmmMachOp (mo_wordOr dflags) [aa,bb],
CmmMachOp (mo_wordNot dflags) [CmmReg (CmmLocal res_r)]
]
],
mkIntExpr dflags (wORD_SIZE_IN_BITS dflags - 1)
]
]
genericWordAddCOp _ _ = panic "genericWordAddCOp"
-- | Implements branchless recovery of the carry flag @c@ by checking the
-- leftmost bits of both inputs @a@ and @b@ and result @r = a - b@:
--
-- @
-- c = ~a&b | (~a|b)&r
-- @
--
-- https://brodowsky.it-sky.net/2015/04/02/how-to-recover-the-carry-bit/
genericWordSubCOp :: GenericOp
genericWordSubCOp [res_r, res_c] [aa, bb]
= do dflags <- getDynFlags
emit $ catAGraphs [
mkAssign (CmmLocal res_r) (CmmMachOp (mo_wordSub dflags) [aa,bb]),
mkAssign (CmmLocal res_c) $
CmmMachOp (mo_wordUShr dflags) [
CmmMachOp (mo_wordOr dflags) [
CmmMachOp (mo_wordAnd dflags) [
CmmMachOp (mo_wordNot dflags) [aa],
bb
],
CmmMachOp (mo_wordAnd dflags) [
CmmMachOp (mo_wordOr dflags) [
CmmMachOp (mo_wordNot dflags) [aa],
bb
],
CmmReg (CmmLocal res_r)
]
],
mkIntExpr dflags (wORD_SIZE_IN_BITS dflags - 1)
]
]
genericWordSubCOp _ _ = panic "genericWordSubCOp"
genericIntAddCOp :: GenericOp
genericIntAddCOp [res_r, res_c] [aa, bb]
{-
With some bit-twiddling, we can define int{Add,Sub}Czh portably in
C, and without needing any comparisons. This may not be the
fastest way to do it - if you have better code, please send it! --SDM
Return : r = a + b, c = 0 if no overflow, 1 on overflow.
We currently don't make use of the r value if c is != 0 (i.e.
overflow), we just convert to big integers and try again. This
could be improved by making r and c the correct values for
plugging into a new J#.
{ r = ((I_)(a)) + ((I_)(b)); \
c = ((StgWord)(~(((I_)(a))^((I_)(b))) & (((I_)(a))^r))) \
>> (BITS_IN (I_) - 1); \
}
Wading through the mass of bracketry, it seems to reduce to:
c = ( (~(a^b)) & (a^r) ) >>unsigned (BITS_IN(I_)-1)
-}
= do dflags <- getDynFlags
emit $ catAGraphs [
mkAssign (CmmLocal res_r) (CmmMachOp (mo_wordAdd dflags) [aa,bb]),
mkAssign (CmmLocal res_c) $
CmmMachOp (mo_wordUShr dflags) [
CmmMachOp (mo_wordAnd dflags) [
CmmMachOp (mo_wordNot dflags) [CmmMachOp (mo_wordXor dflags) [aa,bb]],
CmmMachOp (mo_wordXor dflags) [aa, CmmReg (CmmLocal res_r)]
],
mkIntExpr dflags (wORD_SIZE_IN_BITS dflags - 1)
]
]
genericIntAddCOp _ _ = panic "genericIntAddCOp"
genericIntSubCOp :: GenericOp
genericIntSubCOp [res_r, res_c] [aa, bb]
{- Similarly:
#define subIntCzh(r,c,a,b) \
{ r = ((I_)(a)) - ((I_)(b)); \
c = ((StgWord)((((I_)(a))^((I_)(b))) & (((I_)(a))^r))) \
>> (BITS_IN (I_) - 1); \
}
c = ((a^b) & (a^r)) >>unsigned (BITS_IN(I_)-1)
-}
= do dflags <- getDynFlags
emit $ catAGraphs [
mkAssign (CmmLocal res_r) (CmmMachOp (mo_wordSub dflags) [aa,bb]),
mkAssign (CmmLocal res_c) $
CmmMachOp (mo_wordUShr dflags) [
CmmMachOp (mo_wordAnd dflags) [
CmmMachOp (mo_wordXor dflags) [aa,bb],
CmmMachOp (mo_wordXor dflags) [aa, CmmReg (CmmLocal res_r)]
],
mkIntExpr dflags (wORD_SIZE_IN_BITS dflags - 1)
]
]
genericIntSubCOp _ _ = panic "genericIntSubCOp"
genericWordMul2Op :: GenericOp
genericWordMul2Op [res_h, res_l] [arg_x, arg_y]
= do dflags <- getDynFlags
let t = cmmExprType dflags arg_x
xlyl <- liftM CmmLocal $ newTemp t
xlyh <- liftM CmmLocal $ newTemp t
xhyl <- liftM CmmLocal $ newTemp t
r <- liftM CmmLocal $ newTemp t
-- This generic implementation is very simple and slow. We might
-- well be able to do better, but for now this at least works.
let topHalf x = CmmMachOp (MO_U_Shr (wordWidth dflags)) [x, hww]
toTopHalf x = CmmMachOp (MO_Shl (wordWidth dflags)) [x, hww]
bottomHalf x = CmmMachOp (MO_And (wordWidth dflags)) [x, hwm]
add x y = CmmMachOp (MO_Add (wordWidth dflags)) [x, y]
sum = foldl1 add
mul x y = CmmMachOp (MO_Mul (wordWidth dflags)) [x, y]
or x y = CmmMachOp (MO_Or (wordWidth dflags)) [x, y]
hww = CmmLit (CmmInt (fromIntegral (widthInBits (halfWordWidth dflags)))
(wordWidth dflags))
hwm = CmmLit (CmmInt (halfWordMask dflags) (wordWidth dflags))
emit $ catAGraphs
[mkAssign xlyl
(mul (bottomHalf arg_x) (bottomHalf arg_y)),
mkAssign xlyh
(mul (bottomHalf arg_x) (topHalf arg_y)),
mkAssign xhyl
(mul (topHalf arg_x) (bottomHalf arg_y)),
mkAssign r
(sum [topHalf (CmmReg xlyl),
bottomHalf (CmmReg xhyl),
bottomHalf (CmmReg xlyh)]),
mkAssign (CmmLocal res_l)
(or (bottomHalf (CmmReg xlyl))
(toTopHalf (CmmReg r))),
mkAssign (CmmLocal res_h)
(sum [mul (topHalf arg_x) (topHalf arg_y),
topHalf (CmmReg xhyl),
topHalf (CmmReg xlyh),
topHalf (CmmReg r)])]
genericWordMul2Op _ _ = panic "genericWordMul2Op"
-- This replicates what we had in libraries/base/GHC/Float.hs:
--
-- abs x | x == 0 = 0 -- handles (-0.0)
-- | x > 0 = x
-- | otherwise = negateFloat x
genericFabsOp :: Width -> GenericOp
genericFabsOp w [res_r] [aa]
= do dflags <- getDynFlags
let zero = CmmLit (CmmFloat 0 w)
eq x y = CmmMachOp (MO_F_Eq w) [x, y]
gt x y = CmmMachOp (MO_F_Gt w) [x, y]
neg x = CmmMachOp (MO_F_Neg w) [x]
g1 = catAGraphs [mkAssign (CmmLocal res_r) zero]
g2 = catAGraphs [mkAssign (CmmLocal res_r) aa]
res_t <- CmmLocal <$> newTemp (cmmExprType dflags aa)
let g3 = catAGraphs [mkAssign res_t aa,
mkAssign (CmmLocal res_r) (neg (CmmReg res_t))]
g4 <- mkCmmIfThenElse (gt aa zero) g2 g3
emit =<< mkCmmIfThenElse (eq aa zero) g1 g4
genericFabsOp _ _ _ = panic "genericFabsOp"
-- These PrimOps are NOPs in Cmm
nopOp :: PrimOp -> Bool
nopOp Int2WordOp = True
nopOp Word2IntOp = True
nopOp Int2AddrOp = True
nopOp Addr2IntOp = True
nopOp ChrOp = True -- Int# and Char# are rep'd the same
nopOp OrdOp = True
nopOp _ = False
-- These PrimOps turn into double casts
narrowOp :: PrimOp -> Maybe (Width -> Width -> MachOp, Width)
narrowOp Narrow8IntOp = Just (MO_SS_Conv, W8)
narrowOp Narrow16IntOp = Just (MO_SS_Conv, W16)
narrowOp Narrow32IntOp = Just (MO_SS_Conv, W32)
narrowOp Narrow8WordOp = Just (MO_UU_Conv, W8)
narrowOp Narrow16WordOp = Just (MO_UU_Conv, W16)
narrowOp Narrow32WordOp = Just (MO_UU_Conv, W32)
narrowOp _ = Nothing
-- Native word signless ops
translateOp :: DynFlags -> PrimOp -> Maybe MachOp
translateOp dflags IntAddOp = Just (mo_wordAdd dflags)
translateOp dflags IntSubOp = Just (mo_wordSub dflags)
translateOp dflags WordAddOp = Just (mo_wordAdd dflags)
translateOp dflags WordSubOp = Just (mo_wordSub dflags)
translateOp dflags AddrAddOp = Just (mo_wordAdd dflags)
translateOp dflags AddrSubOp = Just (mo_wordSub dflags)
translateOp dflags IntEqOp = Just (mo_wordEq dflags)
translateOp dflags IntNeOp = Just (mo_wordNe dflags)
translateOp dflags WordEqOp = Just (mo_wordEq dflags)
translateOp dflags WordNeOp = Just (mo_wordNe dflags)
translateOp dflags AddrEqOp = Just (mo_wordEq dflags)
translateOp dflags AddrNeOp = Just (mo_wordNe dflags)
translateOp dflags AndOp = Just (mo_wordAnd dflags)
translateOp dflags OrOp = Just (mo_wordOr dflags)
translateOp dflags XorOp = Just (mo_wordXor dflags)
translateOp dflags NotOp = Just (mo_wordNot dflags)
translateOp dflags SllOp = Just (mo_wordShl dflags)
translateOp dflags SrlOp = Just (mo_wordUShr dflags)
translateOp dflags AddrRemOp = Just (mo_wordURem dflags)
-- Native word signed ops
translateOp dflags IntMulOp = Just (mo_wordMul dflags)
translateOp dflags IntMulMayOfloOp = Just (MO_S_MulMayOflo (wordWidth dflags))
translateOp dflags IntQuotOp = Just (mo_wordSQuot dflags)
translateOp dflags IntRemOp = Just (mo_wordSRem dflags)
translateOp dflags IntNegOp = Just (mo_wordSNeg dflags)
translateOp dflags IntGeOp = Just (mo_wordSGe dflags)
translateOp dflags IntLeOp = Just (mo_wordSLe dflags)
translateOp dflags IntGtOp = Just (mo_wordSGt dflags)
translateOp dflags IntLtOp = Just (mo_wordSLt dflags)
translateOp dflags AndIOp = Just (mo_wordAnd dflags)
translateOp dflags OrIOp = Just (mo_wordOr dflags)
translateOp dflags XorIOp = Just (mo_wordXor dflags)
translateOp dflags NotIOp = Just (mo_wordNot dflags)
translateOp dflags ISllOp = Just (mo_wordShl dflags)
translateOp dflags ISraOp = Just (mo_wordSShr dflags)
translateOp dflags ISrlOp = Just (mo_wordUShr dflags)
-- Native word unsigned ops
translateOp dflags WordGeOp = Just (mo_wordUGe dflags)
translateOp dflags WordLeOp = Just (mo_wordULe dflags)
translateOp dflags WordGtOp = Just (mo_wordUGt dflags)
translateOp dflags WordLtOp = Just (mo_wordULt dflags)
translateOp dflags WordMulOp = Just (mo_wordMul dflags)
translateOp dflags WordQuotOp = Just (mo_wordUQuot dflags)
translateOp dflags WordRemOp = Just (mo_wordURem dflags)
translateOp dflags AddrGeOp = Just (mo_wordUGe dflags)
translateOp dflags AddrLeOp = Just (mo_wordULe dflags)
translateOp dflags AddrGtOp = Just (mo_wordUGt dflags)
translateOp dflags AddrLtOp = Just (mo_wordULt dflags)
-- Char# ops
translateOp dflags CharEqOp = Just (MO_Eq (wordWidth dflags))
translateOp dflags CharNeOp = Just (MO_Ne (wordWidth dflags))
translateOp dflags CharGeOp = Just (MO_U_Ge (wordWidth dflags))
translateOp dflags CharLeOp = Just (MO_U_Le (wordWidth dflags))
translateOp dflags CharGtOp = Just (MO_U_Gt (wordWidth dflags))
translateOp dflags CharLtOp = Just (MO_U_Lt (wordWidth dflags))
-- Double ops
translateOp _ DoubleEqOp = Just (MO_F_Eq W64)
translateOp _ DoubleNeOp = Just (MO_F_Ne W64)
translateOp _ DoubleGeOp = Just (MO_F_Ge W64)
translateOp _ DoubleLeOp = Just (MO_F_Le W64)
translateOp _ DoubleGtOp = Just (MO_F_Gt W64)
translateOp _ DoubleLtOp = Just (MO_F_Lt W64)
translateOp _ DoubleAddOp = Just (MO_F_Add W64)
translateOp _ DoubleSubOp = Just (MO_F_Sub W64)
translateOp _ DoubleMulOp = Just (MO_F_Mul W64)
translateOp _ DoubleDivOp = Just (MO_F_Quot W64)
translateOp _ DoubleNegOp = Just (MO_F_Neg W64)
-- Float ops
translateOp _ FloatEqOp = Just (MO_F_Eq W32)
translateOp _ FloatNeOp = Just (MO_F_Ne W32)
translateOp _ FloatGeOp = Just (MO_F_Ge W32)
translateOp _ FloatLeOp = Just (MO_F_Le W32)
translateOp _ FloatGtOp = Just (MO_F_Gt W32)
translateOp _ FloatLtOp = Just (MO_F_Lt W32)
translateOp _ FloatAddOp = Just (MO_F_Add W32)
translateOp _ FloatSubOp = Just (MO_F_Sub W32)
translateOp _ FloatMulOp = Just (MO_F_Mul W32)
translateOp _ FloatDivOp = Just (MO_F_Quot W32)
translateOp _ FloatNegOp = Just (MO_F_Neg W32)
-- Vector ops
translateOp _ (VecAddOp FloatVec n w) = Just (MO_VF_Add n w)
translateOp _ (VecSubOp FloatVec n w) = Just (MO_VF_Sub n w)
translateOp _ (VecMulOp FloatVec n w) = Just (MO_VF_Mul n w)
translateOp _ (VecDivOp FloatVec n w) = Just (MO_VF_Quot n w)
translateOp _ (VecNegOp FloatVec n w) = Just (MO_VF_Neg n w)
translateOp _ (VecAddOp IntVec n w) = Just (MO_V_Add n w)
translateOp _ (VecSubOp IntVec n w) = Just (MO_V_Sub n w)
translateOp _ (VecMulOp IntVec n w) = Just (MO_V_Mul n w)
translateOp _ (VecQuotOp IntVec n w) = Just (MO_VS_Quot n w)
translateOp _ (VecRemOp IntVec n w) = Just (MO_VS_Rem n w)
translateOp _ (VecNegOp IntVec n w) = Just (MO_VS_Neg n w)
translateOp _ (VecAddOp WordVec n w) = Just (MO_V_Add n w)
translateOp _ (VecSubOp WordVec n w) = Just (MO_V_Sub n w)
translateOp _ (VecMulOp WordVec n w) = Just (MO_V_Mul n w)
translateOp _ (VecQuotOp WordVec n w) = Just (MO_VU_Quot n w)
translateOp _ (VecRemOp WordVec n w) = Just (MO_VU_Rem n w)
-- Conversions
translateOp dflags Int2DoubleOp = Just (MO_SF_Conv (wordWidth dflags) W64)
translateOp dflags Double2IntOp = Just (MO_FS_Conv W64 (wordWidth dflags))
translateOp dflags Int2FloatOp = Just (MO_SF_Conv (wordWidth dflags) W32)
translateOp dflags Float2IntOp = Just (MO_FS_Conv W32 (wordWidth dflags))
translateOp _ Float2DoubleOp = Just (MO_FF_Conv W32 W64)
translateOp _ Double2FloatOp = Just (MO_FF_Conv W64 W32)
-- Word comparisons masquerading as more exotic things.
translateOp dflags SameMutVarOp = Just (mo_wordEq dflags)
translateOp dflags SameMVarOp = Just (mo_wordEq dflags)
translateOp dflags SameMutableArrayOp = Just (mo_wordEq dflags)
translateOp dflags SameMutableByteArrayOp = Just (mo_wordEq dflags)
translateOp dflags SameMutableArrayArrayOp= Just (mo_wordEq dflags)
translateOp dflags SameSmallMutableArrayOp= Just (mo_wordEq dflags)
translateOp dflags SameTVarOp = Just (mo_wordEq dflags)
translateOp dflags EqStablePtrOp = Just (mo_wordEq dflags)
-- See Note [Comparing stable names]
translateOp dflags EqStableNameOp = Just (mo_wordEq dflags)
translateOp _ _ = Nothing
-- Note [Comparing stable names]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- A StableName# is actually a pointer to a stable name object (SNO)
-- containing an index into the stable name table (SNT). We
-- used to compare StableName#s by following the pointers to the
-- SNOs and checking whether they held the same SNT indices. However,
-- this is not necessary: there is a one-to-one correspondence
-- between SNOs and entries in the SNT, so simple pointer equality
-- does the trick.
-- These primops are implemented by CallishMachOps, because they sometimes
-- turn into foreign calls depending on the backend.
callishOp :: PrimOp -> Maybe CallishMachOp
callishOp DoublePowerOp = Just MO_F64_Pwr
callishOp DoubleSinOp = Just MO_F64_Sin
callishOp DoubleCosOp = Just MO_F64_Cos
callishOp DoubleTanOp = Just MO_F64_Tan
callishOp DoubleSinhOp = Just MO_F64_Sinh
callishOp DoubleCoshOp = Just MO_F64_Cosh
callishOp DoubleTanhOp = Just MO_F64_Tanh
callishOp DoubleAsinOp = Just MO_F64_Asin
callishOp DoubleAcosOp = Just MO_F64_Acos
callishOp DoubleAtanOp = Just MO_F64_Atan
callishOp DoubleAsinhOp = Just MO_F64_Asinh
callishOp DoubleAcoshOp = Just MO_F64_Acosh
callishOp DoubleAtanhOp = Just MO_F64_Atanh
callishOp DoubleLogOp = Just MO_F64_Log
callishOp DoubleExpOp = Just MO_F64_Exp
callishOp DoubleSqrtOp = Just MO_F64_Sqrt
callishOp FloatPowerOp = Just MO_F32_Pwr
callishOp FloatSinOp = Just MO_F32_Sin
callishOp FloatCosOp = Just MO_F32_Cos
callishOp FloatTanOp = Just MO_F32_Tan
callishOp FloatSinhOp = Just MO_F32_Sinh
callishOp FloatCoshOp = Just MO_F32_Cosh
callishOp FloatTanhOp = Just MO_F32_Tanh
callishOp FloatAsinOp = Just MO_F32_Asin
callishOp FloatAcosOp = Just MO_F32_Acos
callishOp FloatAtanOp = Just MO_F32_Atan
callishOp FloatAsinhOp = Just MO_F32_Asinh
callishOp FloatAcoshOp = Just MO_F32_Acosh
callishOp FloatAtanhOp = Just MO_F32_Atanh
callishOp FloatLogOp = Just MO_F32_Log
callishOp FloatExpOp = Just MO_F32_Exp
callishOp FloatSqrtOp = Just MO_F32_Sqrt
callishOp _ = Nothing
------------------------------------------------------------------------------
-- Helpers for translating various minor variants of array indexing.
doIndexOffAddrOp :: Maybe MachOp
-> CmmType
-> [LocalReg]
-> [CmmExpr]
-> FCode ()
doIndexOffAddrOp maybe_post_read_cast rep [res] [addr,idx]
= mkBasicIndexedRead 0 maybe_post_read_cast rep res addr rep idx
doIndexOffAddrOp _ _ _ _
= panic "StgCmmPrim: doIndexOffAddrOp"
doIndexOffAddrOpAs :: Maybe MachOp
-> CmmType
-> CmmType
-> [LocalReg]
-> [CmmExpr]
-> FCode ()
doIndexOffAddrOpAs maybe_post_read_cast rep idx_rep [res] [addr,idx]
= mkBasicIndexedRead 0 maybe_post_read_cast rep res addr idx_rep idx
doIndexOffAddrOpAs _ _ _ _ _
= panic "StgCmmPrim: doIndexOffAddrOpAs"
doIndexByteArrayOp :: Maybe MachOp
-> CmmType
-> [LocalReg]
-> [CmmExpr]
-> FCode ()
doIndexByteArrayOp maybe_post_read_cast rep [res] [addr,idx]
= do dflags <- getDynFlags
mkBasicIndexedRead (arrWordsHdrSize dflags) maybe_post_read_cast rep res addr rep idx
doIndexByteArrayOp _ _ _ _
= panic "StgCmmPrim: doIndexByteArrayOp"
doIndexByteArrayOpAs :: Maybe MachOp
-> CmmType
-> CmmType
-> [LocalReg]
-> [CmmExpr]
-> FCode ()
doIndexByteArrayOpAs maybe_post_read_cast rep idx_rep [res] [addr,idx]
= do dflags <- getDynFlags
mkBasicIndexedRead (arrWordsHdrSize dflags) maybe_post_read_cast rep res addr idx_rep idx
doIndexByteArrayOpAs _ _ _ _ _
= panic "StgCmmPrim: doIndexByteArrayOpAs"
doReadPtrArrayOp :: LocalReg
-> CmmExpr
-> CmmExpr
-> FCode ()
doReadPtrArrayOp res addr idx
= do dflags <- getDynFlags
mkBasicIndexedRead (arrPtrsHdrSize dflags) Nothing (gcWord dflags) res addr (gcWord dflags) idx
doWriteOffAddrOp :: Maybe MachOp
-> CmmType
-> [LocalReg]
-> [CmmExpr]
-> FCode ()
doWriteOffAddrOp maybe_pre_write_cast idx_ty [] [addr,idx,val]
= mkBasicIndexedWrite 0 maybe_pre_write_cast addr idx_ty idx val
doWriteOffAddrOp _ _ _ _
= panic "StgCmmPrim: doWriteOffAddrOp"
doWriteByteArrayOp :: Maybe MachOp
-> CmmType
-> [LocalReg]
-> [CmmExpr]
-> FCode ()
doWriteByteArrayOp maybe_pre_write_cast idx_ty [] [addr,idx,val]
= do dflags <- getDynFlags
mkBasicIndexedWrite (arrWordsHdrSize dflags) maybe_pre_write_cast addr idx_ty idx val
doWriteByteArrayOp _ _ _ _
= panic "StgCmmPrim: doWriteByteArrayOp"
doWritePtrArrayOp :: CmmExpr
-> CmmExpr
-> CmmExpr
-> FCode ()
doWritePtrArrayOp addr idx val
= do dflags <- getDynFlags
let ty = cmmExprType dflags val
-- This write barrier is to ensure that the heap writes to the object
-- referred to by val have happened before we write val into the array.
-- See #12469 for details.
emitPrimCall [] MO_WriteBarrier []
mkBasicIndexedWrite (arrPtrsHdrSize dflags) Nothing addr ty idx val
emit (setInfo addr (CmmLit (CmmLabel mkMAP_DIRTY_infoLabel)))
-- the write barrier. We must write a byte into the mark table:
-- bits8[a + header_size + StgMutArrPtrs_size(a) + x >> N]
emit $ mkStore (
cmmOffsetExpr dflags
(cmmOffsetExprW dflags (cmmOffsetB dflags addr (arrPtrsHdrSize dflags))
(loadArrPtrsSize dflags addr))
(CmmMachOp (mo_wordUShr dflags) [idx,
mkIntExpr dflags (mUT_ARR_PTRS_CARD_BITS dflags)])
) (CmmLit (CmmInt 1 W8))
loadArrPtrsSize :: DynFlags -> CmmExpr -> CmmExpr
loadArrPtrsSize dflags addr = CmmLoad (cmmOffsetB dflags addr off) (bWord dflags)
where off = fixedHdrSize dflags + oFFSET_StgMutArrPtrs_ptrs dflags
mkBasicIndexedRead :: ByteOff -- Initial offset in bytes
-> Maybe MachOp -- Optional result cast
-> CmmType -- Type of element we are accessing
-> LocalReg -- Destination
-> CmmExpr -- Base address
-> CmmType -- Type of element by which we are indexing
-> CmmExpr -- Index
-> FCode ()
mkBasicIndexedRead off Nothing ty res base idx_ty idx
= do dflags <- getDynFlags
emitAssign (CmmLocal res) (cmmLoadIndexOffExpr dflags off ty base idx_ty idx)
mkBasicIndexedRead off (Just cast) ty res base idx_ty idx
= do dflags <- getDynFlags
emitAssign (CmmLocal res) (CmmMachOp cast [
cmmLoadIndexOffExpr dflags off ty base idx_ty idx])
mkBasicIndexedWrite :: ByteOff -- Initial offset in bytes
-> Maybe MachOp -- Optional value cast
-> CmmExpr -- Base address
-> CmmType -- Type of element by which we are indexing
-> CmmExpr -- Index
-> CmmExpr -- Value to write
-> FCode ()
mkBasicIndexedWrite off Nothing base idx_ty idx val
= do dflags <- getDynFlags
emitStore (cmmIndexOffExpr dflags off (typeWidth idx_ty) base idx) val
mkBasicIndexedWrite off (Just cast) base idx_ty idx val
= mkBasicIndexedWrite off Nothing base idx_ty idx (CmmMachOp cast [val])
-- ----------------------------------------------------------------------------
-- Misc utils
cmmIndexOffExpr :: DynFlags
-> ByteOff -- Initial offset in bytes
-> Width -- Width of element by which we are indexing
-> CmmExpr -- Base address
-> CmmExpr -- Index
-> CmmExpr
cmmIndexOffExpr dflags off width base idx
= cmmIndexExpr dflags width (cmmOffsetB dflags base off) idx
cmmLoadIndexOffExpr :: DynFlags
-> ByteOff -- Initial offset in bytes
-> CmmType -- Type of element we are accessing
-> CmmExpr -- Base address
-> CmmType -- Type of element by which we are indexing
-> CmmExpr -- Index
-> CmmExpr
cmmLoadIndexOffExpr dflags off ty base idx_ty idx
= CmmLoad (cmmIndexOffExpr dflags off (typeWidth idx_ty) base idx) ty
setInfo :: CmmExpr -> CmmExpr -> CmmAGraph
setInfo closure_ptr info_ptr = mkStore closure_ptr info_ptr
------------------------------------------------------------------------------
-- Helpers for translating vector primops.
vecVmmType :: PrimOpVecCat -> Length -> Width -> CmmType
vecVmmType pocat n w = vec n (vecCmmCat pocat w)
vecCmmCat :: PrimOpVecCat -> Width -> CmmType
vecCmmCat IntVec = cmmBits
vecCmmCat WordVec = cmmBits
vecCmmCat FloatVec = cmmFloat
vecElemInjectCast :: DynFlags -> PrimOpVecCat -> Width -> Maybe MachOp
vecElemInjectCast _ FloatVec _ = Nothing
vecElemInjectCast dflags IntVec W8 = Just (mo_WordTo8 dflags)
vecElemInjectCast dflags IntVec W16 = Just (mo_WordTo16 dflags)
vecElemInjectCast dflags IntVec W32 = Just (mo_WordTo32 dflags)
vecElemInjectCast _ IntVec W64 = Nothing
vecElemInjectCast dflags WordVec W8 = Just (mo_WordTo8 dflags)
vecElemInjectCast dflags WordVec W16 = Just (mo_WordTo16 dflags)
vecElemInjectCast dflags WordVec W32 = Just (mo_WordTo32 dflags)
vecElemInjectCast _ WordVec W64 = Nothing
vecElemInjectCast _ _ _ = Nothing
vecElemProjectCast :: DynFlags -> PrimOpVecCat -> Width -> Maybe MachOp
vecElemProjectCast _ FloatVec _ = Nothing
vecElemProjectCast dflags IntVec W8 = Just (mo_s_8ToWord dflags)
vecElemProjectCast dflags IntVec W16 = Just (mo_s_16ToWord dflags)
vecElemProjectCast dflags IntVec W32 = Just (mo_s_32ToWord dflags)
vecElemProjectCast _ IntVec W64 = Nothing
vecElemProjectCast dflags WordVec W8 = Just (mo_u_8ToWord dflags)
vecElemProjectCast dflags WordVec W16 = Just (mo_u_16ToWord dflags)
vecElemProjectCast dflags WordVec W32 = Just (mo_u_32ToWord dflags)
vecElemProjectCast _ WordVec W64 = Nothing
vecElemProjectCast _ _ _ = Nothing
-- Check to make sure that we can generate code for the specified vector type
-- given the current set of dynamic flags.
checkVecCompatibility :: DynFlags -> PrimOpVecCat -> Length -> Width -> FCode ()
checkVecCompatibility dflags vcat l w = do
when (hscTarget dflags /= HscLlvm) $ do
sorry $ unlines ["SIMD vector instructions require the LLVM back-end."
,"Please use -fllvm."]
check vecWidth vcat l w
where
check :: Width -> PrimOpVecCat -> Length -> Width -> FCode ()
check W128 FloatVec 4 W32 | not (isSseEnabled dflags) =
sorry $ "128-bit wide single-precision floating point " ++
"SIMD vector instructions require at least -msse."
check W128 _ _ _ | not (isSse2Enabled dflags) =
sorry $ "128-bit wide integer and double precision " ++
"SIMD vector instructions require at least -msse2."
check W256 FloatVec _ _ | not (isAvxEnabled dflags) =
sorry $ "256-bit wide floating point " ++
"SIMD vector instructions require at least -mavx."
check W256 _ _ _ | not (isAvx2Enabled dflags) =
sorry $ "256-bit wide integer " ++
"SIMD vector instructions require at least -mavx2."
check W512 _ _ _ | not (isAvx512fEnabled dflags) =
sorry $ "512-bit wide " ++
"SIMD vector instructions require -mavx512f."
check _ _ _ _ = return ()
vecWidth = typeWidth (vecVmmType vcat l w)
------------------------------------------------------------------------------
-- Helpers for translating vector packing and unpacking.
doVecPackOp :: Maybe MachOp -- Cast from element to vector component
-> CmmType -- Type of vector
-> CmmExpr -- Initial vector
-> [CmmExpr] -- Elements
-> CmmFormal -- Destination for result
-> FCode ()
doVecPackOp maybe_pre_write_cast ty z es res = do
dst <- newTemp ty
emitAssign (CmmLocal dst) z
vecPack dst es 0
where
vecPack :: CmmFormal -> [CmmExpr] -> Int -> FCode ()
vecPack src [] _ =
emitAssign (CmmLocal res) (CmmReg (CmmLocal src))
vecPack src (e : es) i = do
dst <- newTemp ty
if isFloatType (vecElemType ty)
then emitAssign (CmmLocal dst) (CmmMachOp (MO_VF_Insert len wid)
[CmmReg (CmmLocal src), cast e, iLit])
else emitAssign (CmmLocal dst) (CmmMachOp (MO_V_Insert len wid)
[CmmReg (CmmLocal src), cast e, iLit])
vecPack dst es (i + 1)
where
-- vector indices are always 32-bits
iLit = CmmLit (CmmInt (toInteger i) W32)
cast :: CmmExpr -> CmmExpr
cast val = case maybe_pre_write_cast of
Nothing -> val
Just cast -> CmmMachOp cast [val]
len :: Length
len = vecLength ty
wid :: Width
wid = typeWidth (vecElemType ty)
doVecUnpackOp :: Maybe MachOp -- Cast from vector component to element result
-> CmmType -- Type of vector
-> CmmExpr -- Vector
-> [CmmFormal] -- Element results
-> FCode ()
doVecUnpackOp maybe_post_read_cast ty e res =
vecUnpack res 0
where
vecUnpack :: [CmmFormal] -> Int -> FCode ()
vecUnpack [] _ =
return ()
vecUnpack (r : rs) i = do
if isFloatType (vecElemType ty)
then emitAssign (CmmLocal r) (cast (CmmMachOp (MO_VF_Extract len wid)
[e, iLit]))
else emitAssign (CmmLocal r) (cast (CmmMachOp (MO_V_Extract len wid)
[e, iLit]))
vecUnpack rs (i + 1)
where
-- vector indices are always 32-bits
iLit = CmmLit (CmmInt (toInteger i) W32)
cast :: CmmExpr -> CmmExpr
cast val = case maybe_post_read_cast of
Nothing -> val
Just cast -> CmmMachOp cast [val]
len :: Length
len = vecLength ty
wid :: Width
wid = typeWidth (vecElemType ty)
doVecInsertOp :: Maybe MachOp -- Cast from element to vector component
-> CmmType -- Vector type
-> CmmExpr -- Source vector
-> CmmExpr -- Element
-> CmmExpr -- Index at which to insert element
-> CmmFormal -- Destination for result
-> FCode ()
doVecInsertOp maybe_pre_write_cast ty src e idx res = do
dflags <- getDynFlags
-- vector indices are always 32-bits
let idx' :: CmmExpr
idx' = CmmMachOp (MO_SS_Conv (wordWidth dflags) W32) [idx]
if isFloatType (vecElemType ty)
then emitAssign (CmmLocal res) (CmmMachOp (MO_VF_Insert len wid) [src, cast e, idx'])
else emitAssign (CmmLocal res) (CmmMachOp (MO_V_Insert len wid) [src, cast e, idx'])
where
cast :: CmmExpr -> CmmExpr
cast val = case maybe_pre_write_cast of
Nothing -> val
Just cast -> CmmMachOp cast [val]
len :: Length
len = vecLength ty
wid :: Width
wid = typeWidth (vecElemType ty)
------------------------------------------------------------------------------
-- Helpers for translating prefetching.
-- | Translate byte array prefetch operations into proper primcalls.
doPrefetchByteArrayOp :: Int
-> [CmmExpr]
-> FCode ()
doPrefetchByteArrayOp locality [addr,idx]
= do dflags <- getDynFlags
mkBasicPrefetch locality (arrWordsHdrSize dflags) addr idx
doPrefetchByteArrayOp _ _
= panic "StgCmmPrim: doPrefetchByteArrayOp"
-- | Translate mutable byte array prefetch operations into proper primcalls.
doPrefetchMutableByteArrayOp :: Int
-> [CmmExpr]
-> FCode ()
doPrefetchMutableByteArrayOp locality [addr,idx]
= do dflags <- getDynFlags
mkBasicPrefetch locality (arrWordsHdrSize dflags) addr idx
doPrefetchMutableByteArrayOp _ _
= panic "StgCmmPrim: doPrefetchByteArrayOp"
-- | Translate address prefetch operations into proper primcalls.
doPrefetchAddrOp ::Int
-> [CmmExpr]
-> FCode ()
doPrefetchAddrOp locality [addr,idx]
= mkBasicPrefetch locality 0 addr idx
doPrefetchAddrOp _ _
= panic "StgCmmPrim: doPrefetchAddrOp"
-- | Translate value prefetch operations into proper primcalls.
doPrefetchValueOp :: Int
-> [CmmExpr]
-> FCode ()
doPrefetchValueOp locality [addr]
= do dflags <- getDynFlags
mkBasicPrefetch locality 0 addr (CmmLit (CmmInt 0 (wordWidth dflags)))
doPrefetchValueOp _ _
= panic "StgCmmPrim: doPrefetchValueOp"
-- | helper to generate prefetch primcalls
mkBasicPrefetch :: Int -- Locality level 0-3
-> ByteOff -- Initial offset in bytes
-> CmmExpr -- Base address
-> CmmExpr -- Index
-> FCode ()
mkBasicPrefetch locality off base idx
= do dflags <- getDynFlags
emitPrimCall [] (MO_Prefetch_Data locality) [cmmIndexExpr dflags W8 (cmmOffsetB dflags base off) idx]
return ()
-- ----------------------------------------------------------------------------
-- Allocating byte arrays
-- | Takes a register to return the newly allocated array in and the
-- size of the new array in bytes. Allocates a new
-- 'MutableByteArray#'.
doNewByteArrayOp :: CmmFormal -> ByteOff -> FCode ()
doNewByteArrayOp res_r n = do
dflags <- getDynFlags
let info_ptr = mkLblExpr mkArrWords_infoLabel
rep = arrWordsRep dflags n
tickyAllocPrim (mkIntExpr dflags (arrWordsHdrSize dflags))
(mkIntExpr dflags (nonHdrSize dflags rep))
(zeroExpr dflags)
let hdr_size = fixedHdrSize dflags
base <- allocHeapClosure rep info_ptr cccsExpr
[ (mkIntExpr dflags n,
hdr_size + oFFSET_StgArrBytes_bytes dflags)
]
emit $ mkAssign (CmmLocal res_r) base
-- ----------------------------------------------------------------------------
-- Comparing byte arrays
doCompareByteArraysOp :: LocalReg -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr
-> FCode ()
doCompareByteArraysOp res ba1 ba1_off ba2 ba2_off n = do
dflags <- getDynFlags
ba1_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags ba1 (arrWordsHdrSize dflags)) ba1_off
ba2_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags ba2 (arrWordsHdrSize dflags)) ba2_off
-- short-cut in case of equal pointers avoiding a costly
-- subroutine call to the memcmp(3) routine; the Cmm logic below
-- results in assembly code being generated for
--
-- cmpPrefix10 :: ByteArray# -> ByteArray# -> Int#
-- cmpPrefix10 ba1 ba2 = compareByteArrays# ba1 0# ba2 0# 10#
--
-- that looks like
--
-- leaq 16(%r14),%rax
-- leaq 16(%rsi),%rbx
-- xorl %ecx,%ecx
-- cmpq %rbx,%rax
-- je l_ptr_eq
--
-- ; NB: the common case (unequal pointers) falls-through
-- ; the conditional jump, and therefore matches the
-- ; usual static branch prediction convention of modern cpus
--
-- subq $8,%rsp
-- movq %rbx,%rsi
-- movq %rax,%rdi
-- movl $10,%edx
-- xorl %eax,%eax
-- call memcmp
-- addq $8,%rsp
-- movslq %eax,%rax
-- movq %rax,%rcx
-- l_ptr_eq:
-- movq %rcx,%rbx
-- jmp *(%rbp)
l_ptr_eq <- newBlockId
l_ptr_ne <- newBlockId
emit (mkAssign (CmmLocal res) (zeroExpr dflags))
emit (mkCbranch (cmmEqWord dflags ba1_p ba2_p)
l_ptr_eq l_ptr_ne (Just False))
emitLabel l_ptr_ne
emitMemcmpCall res ba1_p ba2_p n 1
emitLabel l_ptr_eq
-- ----------------------------------------------------------------------------
-- Copying byte arrays
-- | Takes a source 'ByteArray#', an offset in the source array, a
-- destination 'MutableByteArray#', an offset into the destination
-- array, and the number of bytes to copy. Copies the given number of
-- bytes from the source array to the destination array.
doCopyByteArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr
-> FCode ()
doCopyByteArrayOp = emitCopyByteArray copy
where
-- Copy data (we assume the arrays aren't overlapping since
-- they're of different types)
copy _src _dst dst_p src_p bytes =
emitMemcpyCall dst_p src_p bytes 1
-- | Takes a source 'MutableByteArray#', an offset in the source
-- array, a destination 'MutableByteArray#', an offset into the
-- destination array, and the number of bytes to copy. Copies the
-- given number of bytes from the source array to the destination
-- array.
doCopyMutableByteArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr
-> FCode ()
doCopyMutableByteArrayOp = emitCopyByteArray copy
where
-- The only time the memory might overlap is when the two arrays
-- we were provided are the same array!
-- TODO: Optimize branch for common case of no aliasing.
copy src dst dst_p src_p bytes = do
dflags <- getDynFlags
(moveCall, cpyCall) <- forkAltPair
(getCode $ emitMemmoveCall dst_p src_p bytes 1)
(getCode $ emitMemcpyCall dst_p src_p bytes 1)
emit =<< mkCmmIfThenElse (cmmEqWord dflags src dst) moveCall cpyCall
emitCopyByteArray :: (CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr
-> FCode ())
-> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr
-> FCode ()
emitCopyByteArray copy src src_off dst dst_off n = do
dflags <- getDynFlags
dst_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags dst (arrWordsHdrSize dflags)) dst_off
src_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags src (arrWordsHdrSize dflags)) src_off
copy src dst dst_p src_p n
-- | Takes a source 'ByteArray#', an offset in the source array, a
-- destination 'Addr#', and the number of bytes to copy. Copies the given
-- number of bytes from the source array to the destination memory region.
doCopyByteArrayToAddrOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> FCode ()
doCopyByteArrayToAddrOp src src_off dst_p bytes = do
-- Use memcpy (we are allowed to assume the arrays aren't overlapping)
dflags <- getDynFlags
src_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags src (arrWordsHdrSize dflags)) src_off
emitMemcpyCall dst_p src_p bytes 1
-- | Takes a source 'MutableByteArray#', an offset in the source array, a
-- destination 'Addr#', and the number of bytes to copy. Copies the given
-- number of bytes from the source array to the destination memory region.
doCopyMutableByteArrayToAddrOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr
-> FCode ()
doCopyMutableByteArrayToAddrOp = doCopyByteArrayToAddrOp
-- | Takes a source 'Addr#', a destination 'MutableByteArray#', an offset into
-- the destination array, and the number of bytes to copy. Copies the given
-- number of bytes from the source memory region to the destination array.
doCopyAddrToByteArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> FCode ()
doCopyAddrToByteArrayOp src_p dst dst_off bytes = do
-- Use memcpy (we are allowed to assume the arrays aren't overlapping)
dflags <- getDynFlags
dst_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags dst (arrWordsHdrSize dflags)) dst_off
emitMemcpyCall dst_p src_p bytes 1
-- ----------------------------------------------------------------------------
-- Setting byte arrays
-- | Takes a 'MutableByteArray#', an offset into the array, a length,
-- and a byte, and sets each of the selected bytes in the array to the
-- character.
doSetByteArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr
-> FCode ()
doSetByteArrayOp ba off len c
= do dflags <- getDynFlags
p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags ba (arrWordsHdrSize dflags)) off
emitMemsetCall p c len 1
-- ----------------------------------------------------------------------------
-- Allocating arrays
-- | Allocate a new array.
doNewArrayOp :: CmmFormal -- ^ return register
-> SMRep -- ^ representation of the array
-> CLabel -- ^ info pointer
-> [(CmmExpr, ByteOff)] -- ^ header payload
-> WordOff -- ^ array size
-> CmmExpr -- ^ initial element
-> FCode ()
doNewArrayOp res_r rep info payload n init = do
dflags <- getDynFlags
let info_ptr = mkLblExpr info
tickyAllocPrim (mkIntExpr dflags (hdrSize dflags rep))
(mkIntExpr dflags (nonHdrSize dflags rep))
(zeroExpr dflags)
base <- allocHeapClosure rep info_ptr cccsExpr payload
arr <- CmmLocal `fmap` newTemp (bWord dflags)
emit $ mkAssign arr base
-- Initialise all elements of the array
p <- assignTemp $ cmmOffsetB dflags (CmmReg arr) (hdrSize dflags rep)
for <- newBlockId
emitLabel for
let loopBody =
[ mkStore (CmmReg (CmmLocal p)) init
, mkAssign (CmmLocal p) (cmmOffsetW dflags (CmmReg (CmmLocal p)) 1)
, mkBranch for ]
emit =<< mkCmmIfThen
(cmmULtWord dflags (CmmReg (CmmLocal p))
(cmmOffsetW dflags (CmmReg arr)
(hdrSizeW dflags rep + n)))
(catAGraphs loopBody)
emit $ mkAssign (CmmLocal res_r) (CmmReg arr)
-- ----------------------------------------------------------------------------
-- Copying pointer arrays
-- EZY: This code has an unusually high amount of assignTemp calls, seen
-- nowhere else in the code generator. This is mostly because these
-- "primitive" ops result in a surprisingly large amount of code. It
-- will likely be worthwhile to optimize what is emitted here, so that
-- our optimization passes don't waste time repeatedly optimizing the
-- same bits of code.
-- More closely imitates 'assignTemp' from the old code generator, which
-- returns a CmmExpr rather than a LocalReg.
assignTempE :: CmmExpr -> FCode CmmExpr
assignTempE e = do
t <- assignTemp e
return (CmmReg (CmmLocal t))
-- | Takes a source 'Array#', an offset in the source array, a
-- destination 'MutableArray#', an offset into the destination array,
-- and the number of elements to copy. Copies the given number of
-- elements from the source array to the destination array.
doCopyArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> WordOff
-> FCode ()
doCopyArrayOp = emitCopyArray copy
where
-- Copy data (we assume the arrays aren't overlapping since
-- they're of different types)
copy _src _dst dst_p src_p bytes =
do dflags <- getDynFlags
emitMemcpyCall dst_p src_p (mkIntExpr dflags bytes)
(wORD_SIZE dflags)
-- | Takes a source 'MutableArray#', an offset in the source array, a
-- destination 'MutableArray#', an offset into the destination array,
-- and the number of elements to copy. Copies the given number of
-- elements from the source array to the destination array.
doCopyMutableArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> WordOff
-> FCode ()
doCopyMutableArrayOp = emitCopyArray copy
where
-- The only time the memory might overlap is when the two arrays
-- we were provided are the same array!
-- TODO: Optimize branch for common case of no aliasing.
copy src dst dst_p src_p bytes = do
dflags <- getDynFlags
(moveCall, cpyCall) <- forkAltPair
(getCode $ emitMemmoveCall dst_p src_p (mkIntExpr dflags bytes)
(wORD_SIZE dflags))
(getCode $ emitMemcpyCall dst_p src_p (mkIntExpr dflags bytes)
(wORD_SIZE dflags))
emit =<< mkCmmIfThenElse (cmmEqWord dflags src dst) moveCall cpyCall
emitCopyArray :: (CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> ByteOff
-> FCode ()) -- ^ copy function
-> CmmExpr -- ^ source array
-> CmmExpr -- ^ offset in source array
-> CmmExpr -- ^ destination array
-> CmmExpr -- ^ offset in destination array
-> WordOff -- ^ number of elements to copy
-> FCode ()
emitCopyArray copy src0 src_off dst0 dst_off0 n = do
dflags <- getDynFlags
when (n /= 0) $ do
-- Passed as arguments (be careful)
src <- assignTempE src0
dst <- assignTempE dst0
dst_off <- assignTempE dst_off0
-- Set the dirty bit in the header.
emit (setInfo dst (CmmLit (CmmLabel mkMAP_DIRTY_infoLabel)))
dst_elems_p <- assignTempE $ cmmOffsetB dflags dst
(arrPtrsHdrSize dflags)
dst_p <- assignTempE $ cmmOffsetExprW dflags dst_elems_p dst_off
src_p <- assignTempE $ cmmOffsetExprW dflags
(cmmOffsetB dflags src (arrPtrsHdrSize dflags)) src_off
let bytes = wordsToBytes dflags n
copy src dst dst_p src_p bytes
-- The base address of the destination card table
dst_cards_p <- assignTempE $ cmmOffsetExprW dflags dst_elems_p
(loadArrPtrsSize dflags dst)
emitSetCards dst_off dst_cards_p n
doCopySmallArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> WordOff
-> FCode ()
doCopySmallArrayOp = emitCopySmallArray copy
where
-- Copy data (we assume the arrays aren't overlapping since
-- they're of different types)
copy _src _dst dst_p src_p bytes =
do dflags <- getDynFlags
emitMemcpyCall dst_p src_p (mkIntExpr dflags bytes)
(wORD_SIZE dflags)
doCopySmallMutableArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> WordOff
-> FCode ()
doCopySmallMutableArrayOp = emitCopySmallArray copy
where
-- The only time the memory might overlap is when the two arrays
-- we were provided are the same array!
-- TODO: Optimize branch for common case of no aliasing.
copy src dst dst_p src_p bytes = do
dflags <- getDynFlags
(moveCall, cpyCall) <- forkAltPair
(getCode $ emitMemmoveCall dst_p src_p (mkIntExpr dflags bytes)
(wORD_SIZE dflags))
(getCode $ emitMemcpyCall dst_p src_p (mkIntExpr dflags bytes)
(wORD_SIZE dflags))
emit =<< mkCmmIfThenElse (cmmEqWord dflags src dst) moveCall cpyCall
emitCopySmallArray :: (CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> ByteOff
-> FCode ()) -- ^ copy function
-> CmmExpr -- ^ source array
-> CmmExpr -- ^ offset in source array
-> CmmExpr -- ^ destination array
-> CmmExpr -- ^ offset in destination array
-> WordOff -- ^ number of elements to copy
-> FCode ()
emitCopySmallArray copy src0 src_off dst0 dst_off n = do
dflags <- getDynFlags
-- Passed as arguments (be careful)
src <- assignTempE src0
dst <- assignTempE dst0
-- Set the dirty bit in the header.
emit (setInfo dst (CmmLit (CmmLabel mkSMAP_DIRTY_infoLabel)))
dst_p <- assignTempE $ cmmOffsetExprW dflags
(cmmOffsetB dflags dst (smallArrPtrsHdrSize dflags)) dst_off
src_p <- assignTempE $ cmmOffsetExprW dflags
(cmmOffsetB dflags src (smallArrPtrsHdrSize dflags)) src_off
let bytes = wordsToBytes dflags n
copy src dst dst_p src_p bytes
-- | Takes an info table label, a register to return the newly
-- allocated array in, a source array, an offset in the source array,
-- and the number of elements to copy. Allocates a new array and
-- initializes it from the source array.
emitCloneArray :: CLabel -> CmmFormal -> CmmExpr -> CmmExpr -> WordOff
-> FCode ()
emitCloneArray info_p res_r src src_off n = do
dflags <- getDynFlags
let info_ptr = mkLblExpr info_p
rep = arrPtrsRep dflags n
tickyAllocPrim (mkIntExpr dflags (arrPtrsHdrSize dflags))
(mkIntExpr dflags (nonHdrSize dflags rep))
(zeroExpr dflags)
let hdr_size = fixedHdrSize dflags
base <- allocHeapClosure rep info_ptr cccsExpr
[ (mkIntExpr dflags n,
hdr_size + oFFSET_StgMutArrPtrs_ptrs dflags)
, (mkIntExpr dflags (nonHdrSizeW rep),
hdr_size + oFFSET_StgMutArrPtrs_size dflags)
]
arr <- CmmLocal `fmap` newTemp (bWord dflags)
emit $ mkAssign arr base
dst_p <- assignTempE $ cmmOffsetB dflags (CmmReg arr)
(arrPtrsHdrSize dflags)
src_p <- assignTempE $ cmmOffsetExprW dflags src
(cmmAddWord dflags
(mkIntExpr dflags (arrPtrsHdrSizeW dflags)) src_off)
emitMemcpyCall dst_p src_p (mkIntExpr dflags (wordsToBytes dflags n))
(wORD_SIZE dflags)
emit $ mkAssign (CmmLocal res_r) (CmmReg arr)
-- | Takes an info table label, a register to return the newly
-- allocated array in, a source array, an offset in the source array,
-- and the number of elements to copy. Allocates a new array and
-- initializes it from the source array.
emitCloneSmallArray :: CLabel -> CmmFormal -> CmmExpr -> CmmExpr -> WordOff
-> FCode ()
emitCloneSmallArray info_p res_r src src_off n = do
dflags <- getDynFlags
let info_ptr = mkLblExpr info_p
rep = smallArrPtrsRep n
tickyAllocPrim (mkIntExpr dflags (smallArrPtrsHdrSize dflags))
(mkIntExpr dflags (nonHdrSize dflags rep))
(zeroExpr dflags)
let hdr_size = fixedHdrSize dflags
base <- allocHeapClosure rep info_ptr cccsExpr
[ (mkIntExpr dflags n,
hdr_size + oFFSET_StgSmallMutArrPtrs_ptrs dflags)
]
arr <- CmmLocal `fmap` newTemp (bWord dflags)
emit $ mkAssign arr base
dst_p <- assignTempE $ cmmOffsetB dflags (CmmReg arr)
(smallArrPtrsHdrSize dflags)
src_p <- assignTempE $ cmmOffsetExprW dflags src
(cmmAddWord dflags
(mkIntExpr dflags (smallArrPtrsHdrSizeW dflags)) src_off)
emitMemcpyCall dst_p src_p (mkIntExpr dflags (wordsToBytes dflags n))
(wORD_SIZE dflags)
emit $ mkAssign (CmmLocal res_r) (CmmReg arr)
-- | Takes and offset in the destination array, the base address of
-- the card table, and the number of elements affected (*not* the
-- number of cards). The number of elements may not be zero.
-- Marks the relevant cards as dirty.
emitSetCards :: CmmExpr -> CmmExpr -> WordOff -> FCode ()
emitSetCards dst_start dst_cards_start n = do
dflags <- getDynFlags
start_card <- assignTempE $ cardCmm dflags dst_start
let end_card = cardCmm dflags
(cmmSubWord dflags
(cmmAddWord dflags dst_start (mkIntExpr dflags n))
(mkIntExpr dflags 1))
emitMemsetCall (cmmAddWord dflags dst_cards_start start_card)
(mkIntExpr dflags 1)
(cmmAddWord dflags (cmmSubWord dflags end_card start_card) (mkIntExpr dflags 1))
1 -- no alignment (1 byte)
-- Convert an element index to a card index
cardCmm :: DynFlags -> CmmExpr -> CmmExpr
cardCmm dflags i =
cmmUShrWord dflags i (mkIntExpr dflags (mUT_ARR_PTRS_CARD_BITS dflags))
------------------------------------------------------------------------------
-- SmallArray PrimOp implementations
doReadSmallPtrArrayOp :: LocalReg
-> CmmExpr
-> CmmExpr
-> FCode ()
doReadSmallPtrArrayOp res addr idx = do
dflags <- getDynFlags
mkBasicIndexedRead (smallArrPtrsHdrSize dflags) Nothing (gcWord dflags) res addr
(gcWord dflags) idx
doWriteSmallPtrArrayOp :: CmmExpr
-> CmmExpr
-> CmmExpr
-> FCode ()
doWriteSmallPtrArrayOp addr idx val = do
dflags <- getDynFlags
let ty = cmmExprType dflags val
mkBasicIndexedWrite (smallArrPtrsHdrSize dflags) Nothing addr ty idx val
emit (setInfo addr (CmmLit (CmmLabel mkSMAP_DIRTY_infoLabel)))
------------------------------------------------------------------------------
-- Atomic read-modify-write
-- | Emit an atomic modification to a byte array element. The result
-- reg contains that previous value of the element. Implies a full
-- memory barrier.
doAtomicRMW :: LocalReg -- ^ Result reg
-> AtomicMachOp -- ^ Atomic op (e.g. add)
-> CmmExpr -- ^ MutableByteArray#
-> CmmExpr -- ^ Index
-> CmmType -- ^ Type of element by which we are indexing
-> CmmExpr -- ^ Op argument (e.g. amount to add)
-> FCode ()
doAtomicRMW res amop mba idx idx_ty n = do
dflags <- getDynFlags
let width = typeWidth idx_ty
addr = cmmIndexOffExpr dflags (arrWordsHdrSize dflags)
width mba idx
emitPrimCall
[ res ]
(MO_AtomicRMW width amop)
[ addr, n ]
-- | Emit an atomic read to a byte array that acts as a memory barrier.
doAtomicReadByteArray
:: LocalReg -- ^ Result reg
-> CmmExpr -- ^ MutableByteArray#
-> CmmExpr -- ^ Index
-> CmmType -- ^ Type of element by which we are indexing
-> FCode ()
doAtomicReadByteArray res mba idx idx_ty = do
dflags <- getDynFlags
let width = typeWidth idx_ty
addr = cmmIndexOffExpr dflags (arrWordsHdrSize dflags)
width mba idx
emitPrimCall
[ res ]
(MO_AtomicRead width)
[ addr ]
-- | Emit an atomic write to a byte array that acts as a memory barrier.
doAtomicWriteByteArray
:: CmmExpr -- ^ MutableByteArray#
-> CmmExpr -- ^ Index
-> CmmType -- ^ Type of element by which we are indexing
-> CmmExpr -- ^ Value to write
-> FCode ()
doAtomicWriteByteArray mba idx idx_ty val = do
dflags <- getDynFlags
let width = typeWidth idx_ty
addr = cmmIndexOffExpr dflags (arrWordsHdrSize dflags)
width mba idx
emitPrimCall
[ {- no results -} ]
(MO_AtomicWrite width)
[ addr, val ]
doCasByteArray
:: LocalReg -- ^ Result reg
-> CmmExpr -- ^ MutableByteArray#
-> CmmExpr -- ^ Index
-> CmmType -- ^ Type of element by which we are indexing
-> CmmExpr -- ^ Old value
-> CmmExpr -- ^ New value
-> FCode ()
doCasByteArray res mba idx idx_ty old new = do
dflags <- getDynFlags
let width = (typeWidth idx_ty)
addr = cmmIndexOffExpr dflags (arrWordsHdrSize dflags)
width mba idx
emitPrimCall
[ res ]
(MO_Cmpxchg width)
[ addr, old, new ]
------------------------------------------------------------------------------
-- Helpers for emitting function calls
-- | Emit a call to @memcpy@.
emitMemcpyCall :: CmmExpr -> CmmExpr -> CmmExpr -> Int -> FCode ()
emitMemcpyCall dst src n align = do
emitPrimCall
[ {-no results-} ]
(MO_Memcpy align)
[ dst, src, n ]
-- | Emit a call to @memmove@.
emitMemmoveCall :: CmmExpr -> CmmExpr -> CmmExpr -> Int -> FCode ()
emitMemmoveCall dst src n align = do
emitPrimCall
[ {- no results -} ]
(MO_Memmove align)
[ dst, src, n ]
-- | Emit a call to @memset@. The second argument must fit inside an
-- unsigned char.
emitMemsetCall :: CmmExpr -> CmmExpr -> CmmExpr -> Int -> FCode ()
emitMemsetCall dst c n align = do
emitPrimCall
[ {- no results -} ]
(MO_Memset align)
[ dst, c, n ]
emitMemcmpCall :: LocalReg -> CmmExpr -> CmmExpr -> CmmExpr -> Int -> FCode ()
emitMemcmpCall res ptr1 ptr2 n align = do
-- 'MO_Memcmp' is assumed to return an 32bit 'CInt' because all
-- code-gens currently call out to the @memcmp(3)@ C function.
-- This was easier than moving the sign-extensions into
-- all the code-gens.
dflags <- getDynFlags
let is32Bit = typeWidth (localRegType res) == W32
cres <- if is32Bit
then return res
else newTemp b32
emitPrimCall
[ cres ]
(MO_Memcmp align)
[ ptr1, ptr2, n ]
unless is32Bit $ do
emit $ mkAssign (CmmLocal res)
(CmmMachOp
(mo_s_32ToWord dflags)
[(CmmReg (CmmLocal cres))])
emitBSwapCall :: LocalReg -> CmmExpr -> Width -> FCode ()
emitBSwapCall res x width = do
emitPrimCall
[ res ]
(MO_BSwap width)
[ x ]
emitPopCntCall :: LocalReg -> CmmExpr -> Width -> FCode ()
emitPopCntCall res x width = do
emitPrimCall
[ res ]
(MO_PopCnt width)
[ x ]
emitPdepCall :: LocalReg -> CmmExpr -> CmmExpr -> Width -> FCode ()
emitPdepCall res x y width = do
emitPrimCall
[ res ]
(MO_Pdep width)
[ x, y ]
emitPextCall :: LocalReg -> CmmExpr -> CmmExpr -> Width -> FCode ()
emitPextCall res x y width = do
emitPrimCall
[ res ]
(MO_Pext width)
[ x, y ]
emitClzCall :: LocalReg -> CmmExpr -> Width -> FCode ()
emitClzCall res x width = do
emitPrimCall
[ res ]
(MO_Clz width)
[ x ]
emitCtzCall :: LocalReg -> CmmExpr -> Width -> FCode ()
emitCtzCall res x width = do
emitPrimCall
[ res ]
(MO_Ctz width)
[ x ]
|