1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
|
-----------------------------------------------------------------------------
--
-- Code generator utilities; mostly monadic
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------
module StgCmmUtils (
cgLit, mkSimpleLit,
emitDataLits, mkDataLits,
emitRODataLits, mkRODataLits,
emitRtsCall, emitRtsCallWithVols, emitRtsCallWithResult,
assignTemp, newTemp, withTemp,
newUnboxedTupleRegs,
mkMultiAssign, mkCmmSwitch, mkCmmLitSwitch,
emitSwitch,
tagToClosure, mkTaggedObjectLoad,
callerSaves, callerSaveVolatileRegs, get_GlobalReg_addr,
cmmAndWord, cmmOrWord, cmmNegate, cmmEqWord, cmmNeWord,
cmmUGtWord,
cmmOffsetExprW, cmmOffsetExprB,
cmmRegOffW, cmmRegOffB,
cmmLabelOffW, cmmLabelOffB,
cmmOffsetW, cmmOffsetB,
cmmOffsetLitW, cmmOffsetLitB,
cmmLoadIndexW,
cmmConstrTag, cmmConstrTag1,
cmmUntag, cmmIsTagged, cmmGetTag,
addToMem, addToMemE, addToMemLbl,
mkWordCLit,
mkStringCLit, mkByteStringCLit,
packHalfWordsCLit,
blankWord,
getSRTInfo, clHasCafRefs, srt_escape
) where
#include "HsVersions.h"
#include "../includes/stg/MachRegs.h"
import StgCmmMonad
import StgCmmClosure
import BlockId
import CmmDecl
import CmmExpr hiding (regUsedIn)
import MkGraph
import CLabel
import CmmUtils
import ForeignCall
import IdInfo
import Type
import TyCon
import Constants
import SMRep
import StgSyn ( SRT(..) )
import Module
import Literal
import Digraph
import ListSetOps
import Util
import Unique
import DynFlags
import FastString
import Outputable
import Data.Char
import Data.Bits
import Data.Word
import Data.Maybe
-------------------------------------------------------------------------
--
-- Literals
--
-------------------------------------------------------------------------
cgLit :: Literal -> FCode CmmLit
cgLit (MachStr s) = mkByteStringCLit (bytesFS s)
-- not unpackFS; we want the UTF-8 byte stream.
cgLit other_lit = return (mkSimpleLit other_lit)
mkSimpleLit :: Literal -> CmmLit
mkSimpleLit (MachChar c) = CmmInt (fromIntegral (ord c)) wordWidth
mkSimpleLit MachNullAddr = zeroCLit
mkSimpleLit (MachInt i) = CmmInt i wordWidth
mkSimpleLit (MachInt64 i) = CmmInt i W64
mkSimpleLit (MachWord i) = CmmInt i wordWidth
mkSimpleLit (MachWord64 i) = CmmInt i W64
mkSimpleLit (MachFloat r) = CmmFloat r W32
mkSimpleLit (MachDouble r) = CmmFloat r W64
mkSimpleLit (MachLabel fs ms fod)
= CmmLabel (mkForeignLabel fs ms labelSrc fod)
where
-- TODO: Literal labels might not actually be in the current package...
labelSrc = ForeignLabelInThisPackage
mkSimpleLit other = pprPanic "mkSimpleLit" (ppr other)
mkLtOp :: Literal -> MachOp
-- On signed literals we must do a signed comparison
mkLtOp (MachInt _) = MO_S_Lt wordWidth
mkLtOp (MachFloat _) = MO_F_Lt W32
mkLtOp (MachDouble _) = MO_F_Lt W64
mkLtOp lit = MO_U_Lt (typeWidth (cmmLitType (mkSimpleLit lit)))
-- ToDo: seems terribly indirect!
---------------------------------------------------
--
-- Cmm data type functions
--
---------------------------------------------------
-- The "B" variants take byte offsets
cmmRegOffB :: CmmReg -> ByteOff -> CmmExpr
cmmRegOffB = cmmRegOff
cmmOffsetB :: CmmExpr -> ByteOff -> CmmExpr
cmmOffsetB = cmmOffset
cmmOffsetExprB :: CmmExpr -> CmmExpr -> CmmExpr
cmmOffsetExprB = cmmOffsetExpr
cmmLabelOffB :: CLabel -> ByteOff -> CmmLit
cmmLabelOffB = cmmLabelOff
cmmOffsetLitB :: CmmLit -> ByteOff -> CmmLit
cmmOffsetLitB = cmmOffsetLit
-----------------------
-- The "W" variants take word offsets
cmmOffsetExprW :: CmmExpr -> CmmExpr -> CmmExpr
-- The second arg is a *word* offset; need to change it to bytes
cmmOffsetExprW e (CmmLit (CmmInt n _)) = cmmOffsetW e (fromInteger n)
cmmOffsetExprW e wd_off = cmmIndexExpr wordWidth e wd_off
cmmOffsetW :: CmmExpr -> WordOff -> CmmExpr
cmmOffsetW e n = cmmOffsetB e (wORD_SIZE * n)
cmmRegOffW :: CmmReg -> WordOff -> CmmExpr
cmmRegOffW reg wd_off = cmmRegOffB reg (wd_off * wORD_SIZE)
cmmOffsetLitW :: CmmLit -> WordOff -> CmmLit
cmmOffsetLitW lit wd_off = cmmOffsetLitB lit (wORD_SIZE * wd_off)
cmmLabelOffW :: CLabel -> WordOff -> CmmLit
cmmLabelOffW lbl wd_off = cmmLabelOffB lbl (wORD_SIZE * wd_off)
cmmLoadIndexW :: CmmExpr -> Int -> CmmType -> CmmExpr
cmmLoadIndexW base off ty = CmmLoad (cmmOffsetW base off) ty
-----------------------
cmmULtWord, cmmUGeWord, cmmUGtWord, cmmSubWord,
cmmNeWord, cmmEqWord, cmmOrWord, cmmAndWord
:: CmmExpr -> CmmExpr -> CmmExpr
cmmOrWord e1 e2 = CmmMachOp mo_wordOr [e1, e2]
cmmAndWord e1 e2 = CmmMachOp mo_wordAnd [e1, e2]
cmmNeWord e1 e2 = CmmMachOp mo_wordNe [e1, e2]
cmmEqWord e1 e2 = CmmMachOp mo_wordEq [e1, e2]
cmmULtWord e1 e2 = CmmMachOp mo_wordULt [e1, e2]
cmmUGeWord e1 e2 = CmmMachOp mo_wordUGe [e1, e2]
cmmUGtWord e1 e2 = CmmMachOp mo_wordUGt [e1, e2]
--cmmShlWord e1 e2 = CmmMachOp mo_wordShl [e1, e2]
--cmmUShrWord e1 e2 = CmmMachOp mo_wordUShr [e1, e2]
cmmSubWord e1 e2 = CmmMachOp mo_wordSub [e1, e2]
cmmNegate :: CmmExpr -> CmmExpr
cmmNegate (CmmLit (CmmInt n rep)) = CmmLit (CmmInt (-n) rep)
cmmNegate e = CmmMachOp (MO_S_Neg (cmmExprWidth e)) [e]
blankWord :: CmmStatic
blankWord = CmmUninitialised wORD_SIZE
-- Tagging --
-- Tag bits mask
--cmmTagBits = CmmLit (mkIntCLit tAG_BITS)
cmmTagMask, cmmPointerMask :: CmmExpr
cmmTagMask = CmmLit (mkIntCLit tAG_MASK)
cmmPointerMask = CmmLit (mkIntCLit (complement tAG_MASK))
-- Used to untag a possibly tagged pointer
-- A static label need not be untagged
cmmUntag, cmmGetTag :: CmmExpr -> CmmExpr
cmmUntag e@(CmmLit (CmmLabel _)) = e
-- Default case
cmmUntag e = (e `cmmAndWord` cmmPointerMask)
cmmGetTag e = (e `cmmAndWord` cmmTagMask)
-- Test if a closure pointer is untagged
cmmIsTagged :: CmmExpr -> CmmExpr
cmmIsTagged e = (e `cmmAndWord` cmmTagMask)
`cmmNeWord` CmmLit zeroCLit
cmmConstrTag, cmmConstrTag1 :: CmmExpr -> CmmExpr
cmmConstrTag e = (e `cmmAndWord` cmmTagMask) `cmmSubWord` (CmmLit (mkIntCLit 1))
-- Get constructor tag, but one based.
cmmConstrTag1 e = e `cmmAndWord` cmmTagMask
-----------------------
-- Making literals
mkWordCLit :: StgWord -> CmmLit
mkWordCLit wd = CmmInt (fromIntegral wd) wordWidth
packHalfWordsCLit :: (Integral a, Integral b) => a -> b -> CmmLit
-- Make a single word literal in which the lower_half_word is
-- at the lower address, and the upper_half_word is at the
-- higher address
-- ToDo: consider using half-word lits instead
-- but be careful: that's vulnerable when reversed
packHalfWordsCLit lower_half_word upper_half_word
#ifdef WORDS_BIGENDIAN
= mkWordCLit ((fromIntegral lower_half_word `shiftL` hALF_WORD_SIZE_IN_BITS)
.|. fromIntegral upper_half_word)
#else
= mkWordCLit ((fromIntegral lower_half_word)
.|. (fromIntegral upper_half_word `shiftL` hALF_WORD_SIZE_IN_BITS))
#endif
--------------------------------------------------------------------------
--
-- Incrementing a memory location
--
--------------------------------------------------------------------------
addToMemLbl :: CmmType -> CLabel -> Int -> CmmAGraph
addToMemLbl rep lbl n = addToMem rep (CmmLit (CmmLabel lbl)) n
addToMem :: CmmType -- rep of the counter
-> CmmExpr -- Address
-> Int -- What to add (a word)
-> CmmAGraph
addToMem rep ptr n = addToMemE rep ptr (CmmLit (CmmInt (toInteger n) (typeWidth rep)))
addToMemE :: CmmType -- rep of the counter
-> CmmExpr -- Address
-> CmmExpr -- What to add (a word-typed expression)
-> CmmAGraph
addToMemE rep ptr n
= mkStore ptr (CmmMachOp (MO_Add (typeWidth rep)) [CmmLoad ptr rep, n])
-------------------------------------------------------------------------
--
-- Loading a field from an object,
-- where the object pointer is itself tagged
--
-------------------------------------------------------------------------
mkTaggedObjectLoad :: LocalReg -> LocalReg -> WordOff -> DynTag -> CmmAGraph
-- (loadTaggedObjectField reg base off tag) generates assignment
-- reg = bitsK[ base + off - tag ]
-- where K is fixed by 'reg'
mkTaggedObjectLoad reg base offset tag
= mkAssign (CmmLocal reg)
(CmmLoad (cmmOffsetB (CmmReg (CmmLocal base))
(wORD_SIZE*offset - tag))
(localRegType reg))
-------------------------------------------------------------------------
--
-- Converting a closure tag to a closure for enumeration types
-- (this is the implementation of tagToEnum#).
--
-------------------------------------------------------------------------
tagToClosure :: TyCon -> CmmExpr -> CmmExpr
tagToClosure tycon tag
= CmmLoad (cmmOffsetExprW closure_tbl tag) bWord
where closure_tbl = CmmLit (CmmLabel lbl)
lbl = mkClosureTableLabel (tyConName tycon) NoCafRefs
-------------------------------------------------------------------------
--
-- Conditionals and rts calls
--
-------------------------------------------------------------------------
emitRtsCall :: PackageId -> FastString -> [(CmmExpr,ForeignHint)] -> Bool -> FCode ()
emitRtsCall pkg fun args safe = emitRtsCall' [] pkg fun args Nothing safe
-- The 'Nothing' says "save all global registers"
emitRtsCallWithVols :: PackageId -> FastString -> [(CmmExpr,ForeignHint)] -> [GlobalReg] -> Bool -> FCode ()
emitRtsCallWithVols pkg fun args vols safe
= emitRtsCall' [] pkg fun args (Just vols) safe
emitRtsCallWithResult :: LocalReg -> ForeignHint -> PackageId -> FastString
-> [(CmmExpr,ForeignHint)] -> Bool -> FCode ()
emitRtsCallWithResult res hint pkg fun args safe
= emitRtsCall' [(res,hint)] pkg fun args Nothing safe
-- Make a call to an RTS C procedure
emitRtsCall'
:: [(LocalReg,ForeignHint)]
-> PackageId
-> FastString
-> [(CmmExpr,ForeignHint)]
-> Maybe [GlobalReg]
-> Bool -- True <=> CmmSafe call
-> FCode ()
emitRtsCall' res pkg fun args _vols safe
= --error "emitRtsCall'"
do { updfr_off <- getUpdFrameOff
; emit caller_save
; emit $ call updfr_off
; emit caller_load }
where
call updfr_off =
if safe then
mkCmmCall fun_expr res' args' updfr_off
else
mkUnsafeCall (ForeignTarget fun_expr
(ForeignConvention CCallConv arg_hints res_hints)) res' args'
(args', arg_hints) = unzip args
(res', res_hints) = unzip res
(caller_save, caller_load) = callerSaveVolatileRegs
fun_expr = mkLblExpr (mkCmmCodeLabel pkg fun)
-----------------------------------------------------------------------------
--
-- Caller-Save Registers
--
-----------------------------------------------------------------------------
-- Here we generate the sequence of saves/restores required around a
-- foreign call instruction.
-- TODO: reconcile with includes/Regs.h
-- * Regs.h claims that BaseReg should be saved last and loaded first
-- * This might not have been tickled before since BaseReg is callee save
-- * Regs.h saves SparkHd, ParkT1, SparkBase and SparkLim
--
-- This code isn't actually used right now, because callerSaves
-- only ever returns true in the current universe for registers NOT in
-- system_regs (just do a grep for CALLER_SAVES in
-- includes/stg/MachRegs.h). It's all one giant no-op, and for
-- good reason: having to save system registers on every foreign call
-- would be very expensive, so we avoid assigning them to those
-- registers when we add support for an architecture.
--
-- Note that the old code generator actually does more work here: it
-- also saves other global registers. We can't (nor want) to do that
-- here, as we don't have liveness information. And really, we
-- shouldn't be doing the workaround at this point in the pipeline, see
-- Note [Register parameter passing] and the ToDo on CmmCall in
-- cmm/CmmNode.hs. Right now the workaround is to avoid inlining across
-- unsafe foreign calls in rewriteAssignments, but this is strictly
-- temporary.
callerSaveVolatileRegs :: (CmmAGraph, CmmAGraph)
callerSaveVolatileRegs = (caller_save, caller_load)
where
caller_save = catAGraphs (map callerSaveGlobalReg regs_to_save)
caller_load = catAGraphs (map callerRestoreGlobalReg regs_to_save)
system_regs = [ Sp,SpLim,Hp,HpLim,CurrentTSO,CurrentNursery
{- ,SparkHd,SparkTl,SparkBase,SparkLim -}
, BaseReg ]
regs_to_save = filter callerSaves system_regs
callerSaveGlobalReg reg
= mkStore (get_GlobalReg_addr reg) (CmmReg (CmmGlobal reg))
callerRestoreGlobalReg reg
= mkAssign (CmmGlobal reg)
(CmmLoad (get_GlobalReg_addr reg) (globalRegType reg))
-- -----------------------------------------------------------------------------
-- Global registers
-- We map STG registers onto appropriate CmmExprs. Either they map
-- to real machine registers or stored as offsets from BaseReg. Given
-- a GlobalReg, get_GlobalReg_addr always produces the
-- register table address for it.
-- (See also get_GlobalReg_reg_or_addr in MachRegs)
get_GlobalReg_addr :: GlobalReg -> CmmExpr
get_GlobalReg_addr BaseReg = regTableOffset 0
get_GlobalReg_addr mid = get_Regtable_addr_from_offset
(globalRegType mid) (baseRegOffset mid)
-- Calculate a literal representing an offset into the register table.
-- Used when we don't have an actual BaseReg to offset from.
regTableOffset :: Int -> CmmExpr
regTableOffset n =
CmmLit (CmmLabelOff mkMainCapabilityLabel (oFFSET_Capability_r + n))
get_Regtable_addr_from_offset :: CmmType -> Int -> CmmExpr
get_Regtable_addr_from_offset _rep offset =
#ifdef REG_Base
CmmRegOff (CmmGlobal BaseReg) offset
#else
regTableOffset offset
#endif
-- | Returns 'True' if this global register is stored in a caller-saves
-- machine register.
callerSaves :: GlobalReg -> Bool
#ifdef CALLER_SAVES_Base
callerSaves BaseReg = True
#endif
#ifdef CALLER_SAVES_R1
callerSaves (VanillaReg 1 _) = True
#endif
#ifdef CALLER_SAVES_R2
callerSaves (VanillaReg 2 _) = True
#endif
#ifdef CALLER_SAVES_R3
callerSaves (VanillaReg 3 _) = True
#endif
#ifdef CALLER_SAVES_R4
callerSaves (VanillaReg 4 _) = True
#endif
#ifdef CALLER_SAVES_R5
callerSaves (VanillaReg 5 _) = True
#endif
#ifdef CALLER_SAVES_R6
callerSaves (VanillaReg 6 _) = True
#endif
#ifdef CALLER_SAVES_R7
callerSaves (VanillaReg 7 _) = True
#endif
#ifdef CALLER_SAVES_R8
callerSaves (VanillaReg 8 _) = True
#endif
#ifdef CALLER_SAVES_F1
callerSaves (FloatReg 1) = True
#endif
#ifdef CALLER_SAVES_F2
callerSaves (FloatReg 2) = True
#endif
#ifdef CALLER_SAVES_F3
callerSaves (FloatReg 3) = True
#endif
#ifdef CALLER_SAVES_F4
callerSaves (FloatReg 4) = True
#endif
#ifdef CALLER_SAVES_D1
callerSaves (DoubleReg 1) = True
#endif
#ifdef CALLER_SAVES_D2
callerSaves (DoubleReg 2) = True
#endif
#ifdef CALLER_SAVES_L1
callerSaves (LongReg 1) = True
#endif
#ifdef CALLER_SAVES_Sp
callerSaves Sp = True
#endif
#ifdef CALLER_SAVES_SpLim
callerSaves SpLim = True
#endif
#ifdef CALLER_SAVES_Hp
callerSaves Hp = True
#endif
#ifdef CALLER_SAVES_HpLim
callerSaves HpLim = True
#endif
#ifdef CALLER_SAVES_CurrentTSO
callerSaves CurrentTSO = True
#endif
#ifdef CALLER_SAVES_CurrentNursery
callerSaves CurrentNursery = True
#endif
callerSaves _ = False
-- -----------------------------------------------------------------------------
-- Information about global registers
baseRegOffset :: GlobalReg -> Int
baseRegOffset Sp = oFFSET_StgRegTable_rSp
baseRegOffset SpLim = oFFSET_StgRegTable_rSpLim
baseRegOffset (LongReg 1) = oFFSET_StgRegTable_rL1
baseRegOffset Hp = oFFSET_StgRegTable_rHp
baseRegOffset HpLim = oFFSET_StgRegTable_rHpLim
baseRegOffset CurrentTSO = oFFSET_StgRegTable_rCurrentTSO
baseRegOffset CurrentNursery = oFFSET_StgRegTable_rCurrentNursery
baseRegOffset HpAlloc = oFFSET_StgRegTable_rHpAlloc
baseRegOffset GCEnter1 = oFFSET_stgGCEnter1
baseRegOffset GCFun = oFFSET_stgGCFun
baseRegOffset reg = pprPanic "baseRegOffset:" (ppr reg)
-------------------------------------------------------------------------
--
-- Strings generate a top-level data block
--
-------------------------------------------------------------------------
emitDataLits :: CLabel -> [CmmLit] -> FCode ()
-- Emit a data-segment data block
emitDataLits lbl lits
= emitData Data (CmmDataLabel lbl : map CmmStaticLit lits)
mkDataLits :: CLabel -> [CmmLit] -> GenCmmTop CmmStatic info stmt
-- Emit a data-segment data block
mkDataLits lbl lits
= CmmData Data (CmmDataLabel lbl : map CmmStaticLit lits)
emitRODataLits :: CLabel -> [CmmLit] -> FCode ()
-- Emit a read-only data block
emitRODataLits lbl lits
= emitData section (CmmDataLabel lbl : map CmmStaticLit lits)
where section | any needsRelocation lits = RelocatableReadOnlyData
| otherwise = ReadOnlyData
needsRelocation (CmmLabel _) = True
needsRelocation (CmmLabelOff _ _) = True
needsRelocation _ = False
mkRODataLits :: CLabel -> [CmmLit] -> GenCmmTop CmmStatic info stmt
mkRODataLits lbl lits
= CmmData section (CmmDataLabel lbl : map CmmStaticLit lits)
where section | any needsRelocation lits = RelocatableReadOnlyData
| otherwise = ReadOnlyData
needsRelocation (CmmLabel _) = True
needsRelocation (CmmLabelOff _ _) = True
needsRelocation _ = False
mkStringCLit :: String -> FCode CmmLit
-- Make a global definition for the string,
-- and return its label
mkStringCLit str = mkByteStringCLit (map (fromIntegral . ord) str)
mkByteStringCLit :: [Word8] -> FCode CmmLit
mkByteStringCLit bytes
= do { uniq <- newUnique
; let lbl = mkStringLitLabel uniq
; emitData ReadOnlyData [CmmDataLabel lbl, CmmString bytes]
; return (CmmLabel lbl) }
-------------------------------------------------------------------------
--
-- Assigning expressions to temporaries
--
-------------------------------------------------------------------------
assignTemp :: CmmExpr -> FCode LocalReg
-- Make sure the argument is in a local register
assignTemp (CmmReg (CmmLocal reg)) = return reg
assignTemp e = do { uniq <- newUnique
; let reg = LocalReg uniq (cmmExprType e)
; emit (mkAssign (CmmLocal reg) e)
; return reg }
newTemp :: CmmType -> FCode LocalReg
newTemp rep = do { uniq <- newUnique
; return (LocalReg uniq rep) }
newUnboxedTupleRegs :: Type -> FCode ([LocalReg], [ForeignHint])
-- Choose suitable local regs to use for the components
-- of an unboxed tuple that we are about to return to
-- the Sequel. If the Sequel is a join point, using the
-- regs it wants will save later assignments.
newUnboxedTupleRegs res_ty
= ASSERT( isUnboxedTupleType res_ty )
do { sequel <- getSequel
; regs <- choose_regs sequel
; ASSERT( regs `equalLength` reps )
return (regs, map primRepForeignHint reps) }
where
ty_args = tyConAppArgs (repType res_ty)
reps = [ rep
| ty <- ty_args
, let rep = typePrimRep ty
, not (isVoidRep rep) ]
choose_regs (AssignTo regs _) = return regs
choose_regs _other = mapM (newTemp . primRepCmmType) reps
-------------------------------------------------------------------------
-- mkMultiAssign
-------------------------------------------------------------------------
mkMultiAssign :: [LocalReg] -> [CmmExpr] -> CmmAGraph
-- Emit code to perform the assignments in the
-- input simultaneously, using temporary variables when necessary.
type Key = Int
type Vrtx = (Key, Stmt) -- Give each vertex a unique number,
-- for fast comparison
type Stmt = (LocalReg, CmmExpr) -- r := e
-- We use the strongly-connected component algorithm, in which
-- * the vertices are the statements
-- * an edge goes from s1 to s2 iff
-- s1 assigns to something s2 uses
-- that is, if s1 should *follow* s2 in the final order
mkMultiAssign [] [] = mkNop
mkMultiAssign [reg] [rhs] = mkAssign (CmmLocal reg) rhs
mkMultiAssign regs rhss = ASSERT( equalLength regs rhss )
unscramble ([1..] `zip` (regs `zip` rhss))
unscramble :: [Vrtx] -> CmmAGraph
unscramble vertices
= catAGraphs (map do_component components)
where
edges :: [ (Vrtx, Key, [Key]) ]
edges = [ (vertex, key1, edges_from stmt1)
| vertex@(key1, stmt1) <- vertices ]
edges_from :: Stmt -> [Key]
edges_from stmt1 = [ key2 | (key2, stmt2) <- vertices,
stmt1 `mustFollow` stmt2 ]
components :: [SCC Vrtx]
components = stronglyConnCompFromEdgedVertices edges
-- do_components deal with one strongly-connected component
-- Not cyclic, or singleton? Just do it
do_component :: SCC Vrtx -> CmmAGraph
do_component (AcyclicSCC (_,stmt)) = mk_graph stmt
do_component (CyclicSCC []) = panic "do_component"
do_component (CyclicSCC [(_,stmt)]) = mk_graph stmt
-- Cyclic? Then go via temporaries. Pick one to
-- break the loop and try again with the rest.
do_component (CyclicSCC ((_,first_stmt) : rest))
= withUnique $ \u ->
let (to_tmp, from_tmp) = split u first_stmt
in mk_graph to_tmp
<*> unscramble rest
<*> mk_graph from_tmp
split :: Unique -> Stmt -> (Stmt, Stmt)
split uniq (reg, rhs)
= ((tmp, rhs), (reg, CmmReg (CmmLocal tmp)))
where
rep = cmmExprType rhs
tmp = LocalReg uniq rep
mk_graph :: Stmt -> CmmAGraph
mk_graph (reg, rhs) = mkAssign (CmmLocal reg) rhs
mustFollow :: Stmt -> Stmt -> Bool
(reg, _) `mustFollow` (_, rhs) = reg `regUsedIn` rhs
regUsedIn :: LocalReg -> CmmExpr -> Bool
reg `regUsedIn` CmmLoad e _ = reg `regUsedIn` e
reg `regUsedIn` CmmReg (CmmLocal reg') = reg == reg'
reg `regUsedIn` CmmRegOff (CmmLocal reg') _ = reg == reg'
reg `regUsedIn` CmmMachOp _ es = any (reg `regUsedIn`) es
_reg `regUsedIn` _other = False -- The CmmGlobal cases
-------------------------------------------------------------------------
-- mkSwitch
-------------------------------------------------------------------------
emitSwitch :: CmmExpr -- Tag to switch on
-> [(ConTagZ, CmmAGraph)] -- Tagged branches
-> Maybe CmmAGraph -- Default branch (if any)
-> ConTagZ -> ConTagZ -- Min and Max possible values; behaviour
-- outside this range is undefined
-> FCode ()
emitSwitch tag_expr branches mb_deflt lo_tag hi_tag
= do { dflags <- getDynFlags
; emit (mkCmmSwitch (via_C dflags) tag_expr branches mb_deflt lo_tag hi_tag) }
where
via_C dflags | HscC <- hscTarget dflags = True
| otherwise = False
mkCmmSwitch :: Bool -- True <=> never generate a conditional tree
-> CmmExpr -- Tag to switch on
-> [(ConTagZ, CmmAGraph)] -- Tagged branches
-> Maybe CmmAGraph -- Default branch (if any)
-> ConTagZ -> ConTagZ -- Min and Max possible values; behaviour
-- outside this range is undefined
-> CmmAGraph
-- First, two rather common cases in which there is no work to do
mkCmmSwitch _ _ [] (Just code) _ _ = code
mkCmmSwitch _ _ [(_,code)] Nothing _ _ = code
-- Right, off we go
mkCmmSwitch via_C tag_expr branches mb_deflt lo_tag hi_tag
= withFreshLabel "switch join" $ \ join_lbl ->
label_default join_lbl mb_deflt $ \ mb_deflt ->
label_branches join_lbl branches $ \ branches ->
assignTemp' tag_expr $ \tag_expr' ->
mk_switch tag_expr' (sortLe le branches) mb_deflt
lo_tag hi_tag via_C
-- Sort the branches before calling mk_switch
<*> mkLabel join_lbl
where
(t1,_) `le` (t2,_) = t1 <= t2
mk_switch :: CmmExpr -> [(ConTagZ, BlockId)]
-> Maybe BlockId
-> ConTagZ -> ConTagZ -> Bool
-> CmmAGraph
-- SINGLETON TAG RANGE: no case analysis to do
mk_switch _tag_expr [(tag, lbl)] _ lo_tag hi_tag _via_C
| lo_tag == hi_tag
= ASSERT( tag == lo_tag )
mkBranch lbl
-- SINGLETON BRANCH, NO DEFAULT: no case analysis to do
mk_switch _tag_expr [(_tag,lbl)] Nothing _ _ _
= mkBranch lbl
-- The simplifier might have eliminated a case
-- so we may have e.g. case xs of
-- [] -> e
-- In that situation we can be sure the (:) case
-- can't happen, so no need to test
-- SINGLETON BRANCH: one equality check to do
mk_switch tag_expr [(tag,lbl)] (Just deflt) _ _ _
= mkCbranch cond deflt lbl
where
cond = cmmNeWord tag_expr (CmmLit (mkIntCLit tag))
-- We have lo_tag < hi_tag, but there's only one branch,
-- so there must be a default
-- ToDo: we might want to check for the two branch case, where one of
-- the branches is the tag 0, because comparing '== 0' is likely to be
-- more efficient than other kinds of comparison.
-- DENSE TAG RANGE: use a switch statment.
--
-- We also use a switch uncoditionally when compiling via C, because
-- this will get emitted as a C switch statement and the C compiler
-- should do a good job of optimising it. Also, older GCC versions
-- (2.95 in particular) have problems compiling the complicated
-- if-trees generated by this code, so compiling to a switch every
-- time works around that problem.
--
mk_switch tag_expr branches mb_deflt lo_tag hi_tag via_C
| use_switch -- Use a switch
= let
find_branch :: ConTagZ -> Maybe BlockId
find_branch i = case (assocMaybe branches i) of
Just lbl -> Just lbl
Nothing -> mb_deflt
-- NB. we have eliminated impossible branches at
-- either end of the range (see below), so the first
-- tag of a real branch is real_lo_tag (not lo_tag).
arms :: [Maybe BlockId]
arms = [ find_branch i | i <- [real_lo_tag..real_hi_tag]]
in
mkSwitch (cmmOffset tag_expr (- real_lo_tag)) arms
-- if we can knock off a bunch of default cases with one if, then do so
| Just deflt <- mb_deflt, (lowest_branch - lo_tag) >= n_branches
= mkCmmIfThenElse
(cmmULtWord tag_expr (CmmLit (mkIntCLit lowest_branch)))
(mkBranch deflt)
(mk_switch tag_expr branches mb_deflt
lowest_branch hi_tag via_C)
| Just deflt <- mb_deflt, (hi_tag - highest_branch) >= n_branches
= mkCmmIfThenElse
(cmmUGtWord tag_expr (CmmLit (mkIntCLit highest_branch)))
(mkBranch deflt)
(mk_switch tag_expr branches mb_deflt
lo_tag highest_branch via_C)
| otherwise -- Use an if-tree
= mkCmmIfThenElse
(cmmUGeWord tag_expr (CmmLit (mkIntCLit mid_tag)))
(mk_switch tag_expr hi_branches mb_deflt
mid_tag hi_tag via_C)
(mk_switch tag_expr lo_branches mb_deflt
lo_tag (mid_tag-1) via_C)
-- we test (e >= mid_tag) rather than (e < mid_tag), because
-- the former works better when e is a comparison, and there
-- are two tags 0 & 1 (mid_tag == 1). In this case, the code
-- generator can reduce the condition to e itself without
-- having to reverse the sense of the comparison: comparisons
-- can't always be easily reversed (eg. floating
-- pt. comparisons).
where
use_switch = {- pprTrace "mk_switch" (
ppr tag_expr <+> text "n_tags:" <+> int n_tags <+>
text "branches:" <+> ppr (map fst branches) <+>
text "n_branches:" <+> int n_branches <+>
text "lo_tag:" <+> int lo_tag <+>
text "hi_tag:" <+> int hi_tag <+>
text "real_lo_tag:" <+> int real_lo_tag <+>
text "real_hi_tag:" <+> int real_hi_tag) $ -}
ASSERT( n_branches > 1 && n_tags > 1 )
n_tags > 2 && (via_C || (dense && big_enough))
-- up to 4 branches we use a decision tree, otherwise
-- a switch (== jump table in the NCG). This seems to be
-- optimal, and corresponds with what gcc does.
big_enough = n_branches > 4
dense = n_branches > (n_tags `div` 2)
n_branches = length branches
-- ignore default slots at each end of the range if there's
-- no default branch defined.
lowest_branch = fst (head branches)
highest_branch = fst (last branches)
real_lo_tag
| isNothing mb_deflt = lowest_branch
| otherwise = lo_tag
real_hi_tag
| isNothing mb_deflt = highest_branch
| otherwise = hi_tag
n_tags = real_hi_tag - real_lo_tag + 1
-- INVARIANT: Provided hi_tag > lo_tag (which is true)
-- lo_tag <= mid_tag < hi_tag
-- lo_branches have tags < mid_tag
-- hi_branches have tags >= mid_tag
(mid_tag,_) = branches !! (n_branches `div` 2)
-- 2 branches => n_branches `div` 2 = 1
-- => branches !! 1 give the *second* tag
-- There are always at least 2 branches here
(lo_branches, hi_branches) = span is_lo branches
is_lo (t,_) = t < mid_tag
--------------
mkCmmLitSwitch :: CmmExpr -- Tag to switch on
-> [(Literal, CmmAGraph)] -- Tagged branches
-> CmmAGraph -- Default branch (always)
-> CmmAGraph -- Emit the code
-- Used for general literals, whose size might not be a word,
-- where there is always a default case, and where we don't know
-- the range of values for certain. For simplicity we always generate a tree.
--
-- ToDo: for integers we could do better here, perhaps by generalising
-- mk_switch and using that. --SDM 15/09/2004
mkCmmLitSwitch _scrut [] deflt = deflt
mkCmmLitSwitch scrut branches deflt
= assignTemp' scrut $ \ scrut' ->
withFreshLabel "switch join" $ \ join_lbl ->
label_code join_lbl deflt $ \ deflt ->
label_branches join_lbl branches $ \ branches ->
mk_lit_switch scrut' deflt (sortLe le branches)
<*> mkLabel join_lbl
where
le (t1,_) (t2,_) = t1 <= t2
mk_lit_switch :: CmmExpr -> BlockId
-> [(Literal,BlockId)]
-> CmmAGraph
mk_lit_switch scrut deflt [(lit,blk)]
= mkCbranch (CmmMachOp ne [scrut, CmmLit cmm_lit]) deflt blk
where
cmm_lit = mkSimpleLit lit
cmm_ty = cmmLitType cmm_lit
rep = typeWidth cmm_ty
ne = if isFloatType cmm_ty then MO_F_Ne rep else MO_Ne rep
mk_lit_switch scrut deflt_blk_id branches
= mkCmmIfThenElse cond
(mk_lit_switch scrut deflt_blk_id lo_branches)
(mk_lit_switch scrut deflt_blk_id hi_branches)
where
n_branches = length branches
(mid_lit,_) = branches !! (n_branches `div` 2)
-- See notes above re mid_tag
(lo_branches, hi_branches) = span is_lo branches
is_lo (t,_) = t < mid_lit
cond = CmmMachOp (mkLtOp mid_lit)
[scrut, CmmLit (mkSimpleLit mid_lit)]
--------------
label_default :: BlockId -> Maybe CmmAGraph
-> (Maybe BlockId -> CmmAGraph)
-> CmmAGraph
label_default _ Nothing thing_inside
= thing_inside Nothing
label_default join_lbl (Just code) thing_inside
= label_code join_lbl code $ \ lbl ->
thing_inside (Just lbl)
--------------
label_branches :: BlockId -> [(a,CmmAGraph)]
-> ([(a,BlockId)] -> CmmAGraph)
-> CmmAGraph
label_branches _join_lbl [] thing_inside
= thing_inside []
label_branches join_lbl ((tag,code):branches) thing_inside
= label_code join_lbl code $ \ lbl ->
label_branches join_lbl branches $ \ branches' ->
thing_inside ((tag,lbl):branches')
--------------
label_code :: BlockId -> CmmAGraph -> (BlockId -> CmmAGraph) -> CmmAGraph
-- (label_code J code fun)
-- generates
-- [L: code; goto J] fun L
label_code join_lbl code thing_inside
= withFreshLabel "switch" $ \lbl ->
outOfLine (mkLabel lbl <*> code <*> mkBranch join_lbl)
<*> thing_inside lbl
--------------
assignTemp' :: CmmExpr -> (CmmExpr -> CmmAGraph) -> CmmAGraph
assignTemp' e thing_inside
| isTrivialCmmExpr e = thing_inside e
| otherwise = withTemp (cmmExprType e) $ \ lreg ->
let reg = CmmLocal lreg in
mkAssign reg e <*> thing_inside (CmmReg reg)
withTemp :: CmmType -> (LocalReg -> CmmAGraph) -> CmmAGraph
withTemp rep thing_inside
= withUnique $ \uniq -> thing_inside (LocalReg uniq rep)
-------------------------------------------------------------------------
--
-- Static Reference Tables
--
-------------------------------------------------------------------------
-- There is just one SRT for each top level binding; all the nested
-- bindings use sub-sections of this SRT. The label is passed down to
-- the nested bindings via the monad.
getSRTInfo :: SRT -> FCode C_SRT
getSRTInfo (SRTEntries {}) = panic "getSRTInfo"
getSRTInfo (SRT off len bmp)
| len > hALF_WORD_SIZE_IN_BITS || bmp == [fromIntegral srt_escape]
= do { id <- newUnique
-- ; top_srt <- getSRTLabel
; let srt_desc_lbl = mkLargeSRTLabel id
-- JD: We're not constructing and emitting SRTs in the back end,
-- which renders this code wrong (it now names a now-non-existent label).
-- ; emitRODataLits srt_desc_lbl
-- ( cmmLabelOffW top_srt off
-- : mkWordCLit (fromIntegral len)
-- : map mkWordCLit bmp)
; return (C_SRT srt_desc_lbl 0 srt_escape) }
| otherwise
= do { top_srt <- getSRTLabel
; return (C_SRT top_srt off (fromIntegral (head bmp))) }
-- The fromIntegral converts to StgHalfWord
getSRTInfo NoSRT
= -- TODO: Should we panic in this case?
-- Someone obviously thinks there should be an SRT
return NoC_SRT
srt_escape :: StgHalfWord
srt_escape = -1
|