1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
|
-----------------------------------------------------------------------------
--
-- Code generator utilities; mostly monadic
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------
module StgCmmUtils (
cgLit, mkSimpleLit,
emitDataLits, mkDataLits,
emitRODataLits, mkRODataLits,
emitRtsCall, emitRtsCallWithResult, emitRtsCallGen,
assignTemp, newTemp,
newUnboxedTupleRegs,
emitMultiAssign, emitCmmLitSwitch, emitSwitch,
tagToClosure, mkTaggedObjectLoad,
callerSaves, callerSaveVolatileRegs, get_GlobalReg_addr,
cmmAndWord, cmmOrWord, cmmNegate, cmmEqWord, cmmNeWord,
cmmUGtWord, cmmSubWord, cmmMulWord, cmmAddWord, cmmUShrWord,
cmmOffsetExprW, cmmOffsetExprB,
cmmRegOffW, cmmRegOffB,
cmmLabelOffW, cmmLabelOffB,
cmmOffsetW, cmmOffsetB,
cmmOffsetLitW, cmmOffsetLitB,
cmmLoadIndexW,
cmmConstrTag1,
cmmUntag, cmmIsTagged,
addToMem, addToMemE, addToMemLblE, addToMemLbl,
mkWordCLit,
newStringCLit, newByteStringCLit,
blankWord
) where
#include "HsVersions.h"
import StgCmmMonad
import StgCmmClosure
import Cmm
import BlockId
import MkGraph
import CodeGen.Platform
import CLabel
import CmmUtils
import ForeignCall
import IdInfo
import Type
import TyCon
import SMRep
import Module
import Literal
import Digraph
import ListSetOps
import Util
import Unique
import DynFlags
import FastString
import Outputable
import qualified Data.ByteString as BS
import Data.Char
import Data.List
import Data.Ord
import Data.Word
import Data.Maybe
-------------------------------------------------------------------------
--
-- Literals
--
-------------------------------------------------------------------------
cgLit :: Literal -> FCode CmmLit
cgLit (MachStr s) = newByteStringCLit (BS.unpack s)
-- not unpackFS; we want the UTF-8 byte stream.
cgLit other_lit = do dflags <- getDynFlags
return (mkSimpleLit dflags other_lit)
mkLtOp :: DynFlags -> Literal -> MachOp
-- On signed literals we must do a signed comparison
mkLtOp dflags (MachInt _) = MO_S_Lt (wordWidth dflags)
mkLtOp _ (MachFloat _) = MO_F_Lt W32
mkLtOp _ (MachDouble _) = MO_F_Lt W64
mkLtOp dflags lit = MO_U_Lt (typeWidth (cmmLitType dflags (mkSimpleLit dflags lit)))
-- ToDo: seems terribly indirect!
mkSimpleLit :: DynFlags -> Literal -> CmmLit
mkSimpleLit dflags (MachChar c) = CmmInt (fromIntegral (ord c)) (wordWidth dflags)
mkSimpleLit dflags MachNullAddr = zeroCLit dflags
mkSimpleLit dflags (MachInt i) = CmmInt i (wordWidth dflags)
mkSimpleLit _ (MachInt64 i) = CmmInt i W64
mkSimpleLit dflags (MachWord i) = CmmInt i (wordWidth dflags)
mkSimpleLit _ (MachWord64 i) = CmmInt i W64
mkSimpleLit _ (MachFloat r) = CmmFloat r W32
mkSimpleLit _ (MachDouble r) = CmmFloat r W64
mkSimpleLit _ (MachLabel fs ms fod)
= CmmLabel (mkForeignLabel fs ms labelSrc fod)
where
-- TODO: Literal labels might not actually be in the current package...
labelSrc = ForeignLabelInThisPackage
mkSimpleLit _ other = pprPanic "mkSimpleLit" (ppr other)
--------------------------------------------------------------------------
--
-- Incrementing a memory location
--
--------------------------------------------------------------------------
addToMemLbl :: CmmType -> CLabel -> Int -> CmmAGraph
addToMemLbl rep lbl n = addToMem rep (CmmLit (CmmLabel lbl)) n
addToMemLblE :: CmmType -> CLabel -> CmmExpr -> CmmAGraph
addToMemLblE rep lbl = addToMemE rep (CmmLit (CmmLabel lbl))
addToMem :: CmmType -- rep of the counter
-> CmmExpr -- Address
-> Int -- What to add (a word)
-> CmmAGraph
addToMem rep ptr n = addToMemE rep ptr (CmmLit (CmmInt (toInteger n) (typeWidth rep)))
addToMemE :: CmmType -- rep of the counter
-> CmmExpr -- Address
-> CmmExpr -- What to add (a word-typed expression)
-> CmmAGraph
addToMemE rep ptr n
= mkStore ptr (CmmMachOp (MO_Add (typeWidth rep)) [CmmLoad ptr rep, n])
-------------------------------------------------------------------------
--
-- Loading a field from an object,
-- where the object pointer is itself tagged
--
-------------------------------------------------------------------------
mkTaggedObjectLoad
:: DynFlags -> LocalReg -> LocalReg -> ByteOff -> DynTag -> CmmAGraph
-- (loadTaggedObjectField reg base off tag) generates assignment
-- reg = bitsK[ base + off - tag ]
-- where K is fixed by 'reg'
mkTaggedObjectLoad dflags reg base offset tag
= mkAssign (CmmLocal reg)
(CmmLoad (cmmOffsetB dflags
(CmmReg (CmmLocal base))
(offset - tag))
(localRegType reg))
-------------------------------------------------------------------------
--
-- Converting a closure tag to a closure for enumeration types
-- (this is the implementation of tagToEnum#).
--
-------------------------------------------------------------------------
tagToClosure :: DynFlags -> TyCon -> CmmExpr -> CmmExpr
tagToClosure dflags tycon tag
= CmmLoad (cmmOffsetExprW dflags closure_tbl tag) (bWord dflags)
where closure_tbl = CmmLit (CmmLabel lbl)
lbl = mkClosureTableLabel (tyConName tycon) NoCafRefs
-------------------------------------------------------------------------
--
-- Conditionals and rts calls
--
-------------------------------------------------------------------------
emitRtsCall :: PackageId -> FastString -> [(CmmExpr,ForeignHint)] -> Bool -> FCode ()
emitRtsCall pkg fun args safe = emitRtsCallGen [] (mkCmmCodeLabel pkg fun) args safe
emitRtsCallWithResult :: LocalReg -> ForeignHint -> PackageId -> FastString
-> [(CmmExpr,ForeignHint)] -> Bool -> FCode ()
emitRtsCallWithResult res hint pkg fun args safe
= emitRtsCallGen [(res,hint)] (mkCmmCodeLabel pkg fun) args safe
-- Make a call to an RTS C procedure
emitRtsCallGen
:: [(LocalReg,ForeignHint)]
-> CLabel
-> [(CmmExpr,ForeignHint)]
-> Bool -- True <=> CmmSafe call
-> FCode ()
emitRtsCallGen res lbl args safe
= do { dflags <- getDynFlags
; updfr_off <- getUpdFrameOff
; let (caller_save, caller_load) = callerSaveVolatileRegs dflags
; emit caller_save
; call updfr_off
; emit caller_load }
where
call updfr_off =
if safe then
emit =<< mkCmmCall fun_expr res' args' updfr_off
else do
let conv = ForeignConvention CCallConv arg_hints res_hints CmmMayReturn
emit $ mkUnsafeCall (ForeignTarget fun_expr conv) res' args'
(args', arg_hints) = unzip args
(res', res_hints) = unzip res
fun_expr = mkLblExpr lbl
-----------------------------------------------------------------------------
--
-- Caller-Save Registers
--
-----------------------------------------------------------------------------
-- Here we generate the sequence of saves/restores required around a
-- foreign call instruction.
-- TODO: reconcile with includes/Regs.h
-- * Regs.h claims that BaseReg should be saved last and loaded first
-- * This might not have been tickled before since BaseReg is callee save
-- * Regs.h saves SparkHd, ParkT1, SparkBase and SparkLim
--
-- This code isn't actually used right now, because callerSaves
-- only ever returns true in the current universe for registers NOT in
-- system_regs (just do a grep for CALLER_SAVES in
-- includes/stg/MachRegs.h). It's all one giant no-op, and for
-- good reason: having to save system registers on every foreign call
-- would be very expensive, so we avoid assigning them to those
-- registers when we add support for an architecture.
--
-- Note that the old code generator actually does more work here: it
-- also saves other global registers. We can't (nor want) to do that
-- here, as we don't have liveness information. And really, we
-- shouldn't be doing the workaround at this point in the pipeline, see
-- Note [Register parameter passing] and the ToDo on CmmCall in
-- cmm/CmmNode.hs. Right now the workaround is to avoid inlining across
-- unsafe foreign calls in rewriteAssignments, but this is strictly
-- temporary.
callerSaveVolatileRegs :: DynFlags -> (CmmAGraph, CmmAGraph)
callerSaveVolatileRegs dflags = (caller_save, caller_load)
where
platform = targetPlatform dflags
caller_save = catAGraphs (map callerSaveGlobalReg regs_to_save)
caller_load = catAGraphs (map callerRestoreGlobalReg regs_to_save)
system_regs = [ Sp,SpLim,Hp,HpLim,CCCS,CurrentTSO,CurrentNursery
{- ,SparkHd,SparkTl,SparkBase,SparkLim -}
, BaseReg ]
regs_to_save = filter (callerSaves platform) system_regs
callerSaveGlobalReg reg
= mkStore (get_GlobalReg_addr dflags reg) (CmmReg (CmmGlobal reg))
callerRestoreGlobalReg reg
= mkAssign (CmmGlobal reg)
(CmmLoad (get_GlobalReg_addr dflags reg) (globalRegType dflags reg))
-- -----------------------------------------------------------------------------
-- Global registers
-- We map STG registers onto appropriate CmmExprs. Either they map
-- to real machine registers or stored as offsets from BaseReg. Given
-- a GlobalReg, get_GlobalReg_addr always produces the
-- register table address for it.
-- (See also get_GlobalReg_reg_or_addr in MachRegs)
get_GlobalReg_addr :: DynFlags -> GlobalReg -> CmmExpr
get_GlobalReg_addr dflags BaseReg = regTableOffset dflags 0
get_GlobalReg_addr dflags mid
= get_Regtable_addr_from_offset dflags
(globalRegType dflags mid) (baseRegOffset dflags mid)
-- Calculate a literal representing an offset into the register table.
-- Used when we don't have an actual BaseReg to offset from.
regTableOffset :: DynFlags -> Int -> CmmExpr
regTableOffset dflags n =
CmmLit (CmmLabelOff mkMainCapabilityLabel (oFFSET_Capability_r dflags + n))
get_Regtable_addr_from_offset :: DynFlags -> CmmType -> Int -> CmmExpr
get_Regtable_addr_from_offset dflags _rep offset =
if haveRegBase (targetPlatform dflags)
then CmmRegOff (CmmGlobal BaseReg) offset
else regTableOffset dflags offset
-- -----------------------------------------------------------------------------
-- Information about global registers
baseRegOffset :: DynFlags -> GlobalReg -> Int
baseRegOffset dflags Sp = oFFSET_StgRegTable_rSp dflags
baseRegOffset dflags SpLim = oFFSET_StgRegTable_rSpLim dflags
baseRegOffset dflags (LongReg 1) = oFFSET_StgRegTable_rL1 dflags
baseRegOffset dflags Hp = oFFSET_StgRegTable_rHp dflags
baseRegOffset dflags HpLim = oFFSET_StgRegTable_rHpLim dflags
baseRegOffset dflags CCCS = oFFSET_StgRegTable_rCCCS dflags
baseRegOffset dflags CurrentTSO = oFFSET_StgRegTable_rCurrentTSO dflags
baseRegOffset dflags CurrentNursery = oFFSET_StgRegTable_rCurrentNursery dflags
baseRegOffset dflags HpAlloc = oFFSET_StgRegTable_rHpAlloc dflags
baseRegOffset dflags GCEnter1 = oFFSET_stgGCEnter1 dflags
baseRegOffset dflags GCFun = oFFSET_stgGCFun dflags
baseRegOffset _ reg = pprPanic "baseRegOffset:" (ppr reg)
-------------------------------------------------------------------------
--
-- Strings generate a top-level data block
--
-------------------------------------------------------------------------
emitDataLits :: CLabel -> [CmmLit] -> FCode ()
-- Emit a data-segment data block
emitDataLits lbl lits = emitDecl (mkDataLits Data lbl lits)
emitRODataLits :: CLabel -> [CmmLit] -> FCode ()
-- Emit a read-only data block
emitRODataLits lbl lits = emitDecl (mkRODataLits lbl lits)
newStringCLit :: String -> FCode CmmLit
-- Make a global definition for the string,
-- and return its label
newStringCLit str = newByteStringCLit (map (fromIntegral . ord) str)
newByteStringCLit :: [Word8] -> FCode CmmLit
newByteStringCLit bytes
= do { uniq <- newUnique
; let (lit, decl) = mkByteStringCLit uniq bytes
; emitDecl decl
; return lit }
-------------------------------------------------------------------------
--
-- Assigning expressions to temporaries
--
-------------------------------------------------------------------------
assignTemp :: CmmExpr -> FCode LocalReg
-- Make sure the argument is in a local register.
-- We don't bother being particularly aggressive with avoiding
-- unnecessary local registers, since we can rely on a later
-- optimization pass to inline as necessary (and skipping out
-- on things like global registers can be a little dangerous
-- due to them being trashed on foreign calls--though it means
-- the optimization pass doesn't have to do as much work)
assignTemp (CmmReg (CmmLocal reg)) = return reg
assignTemp e = do { dflags <- getDynFlags
; uniq <- newUnique
; let reg = LocalReg uniq (cmmExprType dflags e)
; emitAssign (CmmLocal reg) e
; return reg }
newTemp :: CmmType -> FCode LocalReg
newTemp rep = do { uniq <- newUnique
; return (LocalReg uniq rep) }
newUnboxedTupleRegs :: Type -> FCode ([LocalReg], [ForeignHint])
-- Choose suitable local regs to use for the components
-- of an unboxed tuple that we are about to return to
-- the Sequel. If the Sequel is a join point, using the
-- regs it wants will save later assignments.
newUnboxedTupleRegs res_ty
= ASSERT( isUnboxedTupleType res_ty )
do { dflags <- getDynFlags
; sequel <- getSequel
; regs <- choose_regs dflags sequel
; ASSERT( regs `equalLength` reps )
return (regs, map primRepForeignHint reps) }
where
UbxTupleRep ty_args = repType res_ty
reps = [ rep
| ty <- ty_args
, let rep = typePrimRep ty
, not (isVoidRep rep) ]
choose_regs _ (AssignTo regs _) = return regs
choose_regs dflags _ = mapM (newTemp . primRepCmmType dflags) reps
-------------------------------------------------------------------------
-- emitMultiAssign
-------------------------------------------------------------------------
emitMultiAssign :: [LocalReg] -> [CmmExpr] -> FCode ()
-- Emit code to perform the assignments in the
-- input simultaneously, using temporary variables when necessary.
type Key = Int
type Vrtx = (Key, Stmt) -- Give each vertex a unique number,
-- for fast comparison
type Stmt = (LocalReg, CmmExpr) -- r := e
-- We use the strongly-connected component algorithm, in which
-- * the vertices are the statements
-- * an edge goes from s1 to s2 iff
-- s1 assigns to something s2 uses
-- that is, if s1 should *follow* s2 in the final order
emitMultiAssign [] [] = return ()
emitMultiAssign [reg] [rhs] = emitAssign (CmmLocal reg) rhs
emitMultiAssign regs rhss = ASSERT( equalLength regs rhss )
unscramble ([1..] `zip` (regs `zip` rhss))
unscramble :: [Vrtx] -> FCode ()
unscramble vertices = mapM_ do_component components
where
edges :: [ (Vrtx, Key, [Key]) ]
edges = [ (vertex, key1, edges_from stmt1)
| vertex@(key1, stmt1) <- vertices ]
edges_from :: Stmt -> [Key]
edges_from stmt1 = [ key2 | (key2, stmt2) <- vertices,
stmt1 `mustFollow` stmt2 ]
components :: [SCC Vrtx]
components = stronglyConnCompFromEdgedVertices edges
-- do_components deal with one strongly-connected component
-- Not cyclic, or singleton? Just do it
do_component :: SCC Vrtx -> FCode ()
do_component (AcyclicSCC (_,stmt)) = mk_graph stmt
do_component (CyclicSCC []) = panic "do_component"
do_component (CyclicSCC [(_,stmt)]) = mk_graph stmt
-- Cyclic? Then go via temporaries. Pick one to
-- break the loop and try again with the rest.
do_component (CyclicSCC ((_,first_stmt) : rest)) = do
dflags <- getDynFlags
u <- newUnique
let (to_tmp, from_tmp) = split dflags u first_stmt
mk_graph to_tmp
unscramble rest
mk_graph from_tmp
split :: DynFlags -> Unique -> Stmt -> (Stmt, Stmt)
split dflags uniq (reg, rhs)
= ((tmp, rhs), (reg, CmmReg (CmmLocal tmp)))
where
rep = cmmExprType dflags rhs
tmp = LocalReg uniq rep
mk_graph :: Stmt -> FCode ()
mk_graph (reg, rhs) = emitAssign (CmmLocal reg) rhs
mustFollow :: Stmt -> Stmt -> Bool
(reg, _) `mustFollow` (_, rhs) = CmmLocal reg `regUsedIn` rhs
-------------------------------------------------------------------------
-- mkSwitch
-------------------------------------------------------------------------
emitSwitch :: CmmExpr -- Tag to switch on
-> [(ConTagZ, CmmAGraph)] -- Tagged branches
-> Maybe CmmAGraph -- Default branch (if any)
-> ConTagZ -> ConTagZ -- Min and Max possible values; behaviour
-- outside this range is undefined
-> FCode ()
emitSwitch tag_expr branches mb_deflt lo_tag hi_tag
= do { dflags <- getDynFlags
; mkCmmSwitch (via_C dflags) tag_expr branches mb_deflt lo_tag hi_tag }
where
via_C dflags | HscC <- hscTarget dflags = True
| otherwise = False
mkCmmSwitch :: Bool -- True <=> never generate a
-- conditional tree
-> CmmExpr -- Tag to switch on
-> [(ConTagZ, CmmAGraph)] -- Tagged branches
-> Maybe CmmAGraph -- Default branch (if any)
-> ConTagZ -> ConTagZ -- Min and Max possible values; behaviour
-- outside this range is undefined
-> FCode ()
-- First, two rather common cases in which there is no work to do
mkCmmSwitch _ _ [] (Just code) _ _ = emit code
mkCmmSwitch _ _ [(_,code)] Nothing _ _ = emit code
-- Right, off we go
mkCmmSwitch via_C tag_expr branches mb_deflt lo_tag hi_tag = do
join_lbl <- newLabelC
mb_deflt_lbl <- label_default join_lbl mb_deflt
branches_lbls <- label_branches join_lbl branches
tag_expr' <- assignTemp' tag_expr
emit =<< mk_switch tag_expr' (sortBy (comparing fst) branches_lbls)
mb_deflt_lbl lo_tag hi_tag via_C
-- Sort the branches before calling mk_switch
emitLabel join_lbl
mk_switch :: CmmExpr -> [(ConTagZ, BlockId)]
-> Maybe BlockId
-> ConTagZ -> ConTagZ -> Bool
-> FCode CmmAGraph
-- SINGLETON TAG RANGE: no case analysis to do
mk_switch _tag_expr [(tag, lbl)] _ lo_tag hi_tag _via_C
| lo_tag == hi_tag
= ASSERT( tag == lo_tag )
return (mkBranch lbl)
-- SINGLETON BRANCH, NO DEFAULT: no case analysis to do
mk_switch _tag_expr [(_tag,lbl)] Nothing _ _ _
= return (mkBranch lbl)
-- The simplifier might have eliminated a case
-- so we may have e.g. case xs of
-- [] -> e
-- In that situation we can be sure the (:) case
-- can't happen, so no need to test
-- SINGLETON BRANCH: one equality check to do
mk_switch tag_expr [(tag,lbl)] (Just deflt) _ _ _
= do dflags <- getDynFlags
let cond = cmmNeWord dflags tag_expr (mkIntExpr dflags tag)
-- We have lo_tag < hi_tag, but there's only one branch,
-- so there must be a default
return (mkCbranch cond deflt lbl)
-- ToDo: we might want to check for the two branch case, where one of
-- the branches is the tag 0, because comparing '== 0' is likely to be
-- more efficient than other kinds of comparison.
-- DENSE TAG RANGE: use a switch statment.
--
-- We also use a switch uncoditionally when compiling via C, because
-- this will get emitted as a C switch statement and the C compiler
-- should do a good job of optimising it. Also, older GCC versions
-- (2.95 in particular) have problems compiling the complicated
-- if-trees generated by this code, so compiling to a switch every
-- time works around that problem.
--
mk_switch tag_expr branches mb_deflt lo_tag hi_tag via_C
| use_switch -- Use a switch
= do let
find_branch :: ConTagZ -> Maybe BlockId
find_branch i = case (assocMaybe branches i) of
Just lbl -> Just lbl
Nothing -> mb_deflt
-- NB. we have eliminated impossible branches at
-- either end of the range (see below), so the first
-- tag of a real branch is real_lo_tag (not lo_tag).
arms :: [Maybe BlockId]
arms = [ find_branch i | i <- [real_lo_tag..real_hi_tag]]
dflags <- getDynFlags
return (mkSwitch (cmmOffset dflags tag_expr (- real_lo_tag)) arms)
-- if we can knock off a bunch of default cases with one if, then do so
| Just deflt <- mb_deflt, (lowest_branch - lo_tag) >= n_branches
= do dflags <- getDynFlags
stmts <- mk_switch tag_expr branches mb_deflt
lowest_branch hi_tag via_C
mkCmmIfThenElse
(cmmULtWord dflags tag_expr (mkIntExpr dflags lowest_branch))
(mkBranch deflt)
stmts
| Just deflt <- mb_deflt, (hi_tag - highest_branch) >= n_branches
= do dflags <- getDynFlags
stmts <- mk_switch tag_expr branches mb_deflt
lo_tag highest_branch via_C
mkCmmIfThenElse
(cmmUGtWord dflags tag_expr (mkIntExpr dflags highest_branch))
(mkBranch deflt)
stmts
| otherwise -- Use an if-tree
= do dflags <- getDynFlags
lo_stmts <- mk_switch tag_expr lo_branches mb_deflt
lo_tag (mid_tag-1) via_C
hi_stmts <- mk_switch tag_expr hi_branches mb_deflt
mid_tag hi_tag via_C
mkCmmIfThenElse
(cmmUGeWord dflags tag_expr (mkIntExpr dflags mid_tag))
hi_stmts
lo_stmts
-- we test (e >= mid_tag) rather than (e < mid_tag), because
-- the former works better when e is a comparison, and there
-- are two tags 0 & 1 (mid_tag == 1). In this case, the code
-- generator can reduce the condition to e itself without
-- having to reverse the sense of the comparison: comparisons
-- can't always be easily reversed (eg. floating
-- pt. comparisons).
where
use_switch = {- pprTrace "mk_switch" (
ppr tag_expr <+> text "n_tags:" <+> int n_tags <+>
text "branches:" <+> ppr (map fst branches) <+>
text "n_branches:" <+> int n_branches <+>
text "lo_tag:" <+> int lo_tag <+>
text "hi_tag:" <+> int hi_tag <+>
text "real_lo_tag:" <+> int real_lo_tag <+>
text "real_hi_tag:" <+> int real_hi_tag) $ -}
ASSERT( n_branches > 1 && n_tags > 1 )
n_tags > 2 && (via_C || (dense && big_enough))
-- up to 4 branches we use a decision tree, otherwise
-- a switch (== jump table in the NCG). This seems to be
-- optimal, and corresponds with what gcc does.
big_enough = n_branches > 4
dense = n_branches > (n_tags `div` 2)
n_branches = length branches
-- ignore default slots at each end of the range if there's
-- no default branch defined.
lowest_branch = fst (head branches)
highest_branch = fst (last branches)
real_lo_tag
| isNothing mb_deflt = lowest_branch
| otherwise = lo_tag
real_hi_tag
| isNothing mb_deflt = highest_branch
| otherwise = hi_tag
n_tags = real_hi_tag - real_lo_tag + 1
-- INVARIANT: Provided hi_tag > lo_tag (which is true)
-- lo_tag <= mid_tag < hi_tag
-- lo_branches have tags < mid_tag
-- hi_branches have tags >= mid_tag
(mid_tag,_) = branches !! (n_branches `div` 2)
-- 2 branches => n_branches `div` 2 = 1
-- => branches !! 1 give the *second* tag
-- There are always at least 2 branches here
(lo_branches, hi_branches) = span is_lo branches
is_lo (t,_) = t < mid_tag
--------------
emitCmmLitSwitch :: CmmExpr -- Tag to switch on
-> [(Literal, CmmAGraph)] -- Tagged branches
-> CmmAGraph -- Default branch (always)
-> FCode () -- Emit the code
-- Used for general literals, whose size might not be a word,
-- where there is always a default case, and where we don't know
-- the range of values for certain. For simplicity we always generate a tree.
--
-- ToDo: for integers we could do better here, perhaps by generalising
-- mk_switch and using that. --SDM 15/09/2004
emitCmmLitSwitch _scrut [] deflt = emit deflt
emitCmmLitSwitch scrut branches deflt = do
scrut' <- assignTemp' scrut
join_lbl <- newLabelC
deflt_lbl <- label_code join_lbl deflt
branches_lbls <- label_branches join_lbl branches
emit =<< mk_lit_switch scrut' deflt_lbl
(sortBy (comparing fst) branches_lbls)
emitLabel join_lbl
mk_lit_switch :: CmmExpr -> BlockId
-> [(Literal,BlockId)]
-> FCode CmmAGraph
mk_lit_switch scrut deflt [(lit,blk)]
= do
dflags <- getDynFlags
let
cmm_lit = mkSimpleLit dflags lit
cmm_ty = cmmLitType dflags cmm_lit
rep = typeWidth cmm_ty
ne = if isFloatType cmm_ty then MO_F_Ne rep else MO_Ne rep
return (mkCbranch (CmmMachOp ne [scrut, CmmLit cmm_lit]) deflt blk)
mk_lit_switch scrut deflt_blk_id branches
= do dflags <- getDynFlags
lo_blk <- mk_lit_switch scrut deflt_blk_id lo_branches
hi_blk <- mk_lit_switch scrut deflt_blk_id hi_branches
mkCmmIfThenElse (cond dflags) lo_blk hi_blk
where
n_branches = length branches
(mid_lit,_) = branches !! (n_branches `div` 2)
-- See notes above re mid_tag
(lo_branches, hi_branches) = span is_lo branches
is_lo (t,_) = t < mid_lit
cond dflags = CmmMachOp (mkLtOp dflags mid_lit)
[scrut, CmmLit (mkSimpleLit dflags mid_lit)]
--------------
label_default :: BlockId -> Maybe CmmAGraph -> FCode (Maybe BlockId)
label_default _ Nothing
= return Nothing
label_default join_lbl (Just code)
= do lbl <- label_code join_lbl code
return (Just lbl)
--------------
label_branches :: BlockId -> [(a,CmmAGraph)] -> FCode [(a,BlockId)]
label_branches _join_lbl []
= return []
label_branches join_lbl ((tag,code):branches)
= do lbl <- label_code join_lbl code
branches' <- label_branches join_lbl branches
return ((tag,lbl):branches')
--------------
label_code :: BlockId -> CmmAGraph -> FCode BlockId
-- label_code J code
-- generates
-- [L: code; goto J]
-- and returns L
label_code join_lbl code = do
lbl <- newLabelC
emitOutOfLine lbl (code <*> mkBranch join_lbl)
return lbl
--------------
assignTemp' :: CmmExpr -> FCode CmmExpr
assignTemp' e
| isTrivialCmmExpr e = return e
| otherwise = do
dflags <- getDynFlags
lreg <- newTemp (cmmExprType dflags e)
let reg = CmmLocal lreg
emitAssign reg e
return (CmmReg reg)
|