summaryrefslogtreecommitdiff
path: root/compiler/coreSyn/CoreSubst.hs
blob: f69e512ab2678be4c70c94fd230ec872f0bee52e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998


Utility functions on @Core@ syntax
-}

{-# LANGUAGE CPP #-}
module CoreSubst (
        -- * Main data types
        Subst(..), -- Implementation exported for supercompiler's Renaming.hs only
        TvSubstEnv, IdSubstEnv, InScopeSet,

        -- ** Substituting into expressions and related types
        deShadowBinds, substSpec, substRulesForImportedIds,
        substTy, substCo, substExpr, substExprSC, substBind, substBindSC,
        substUnfolding, substUnfoldingSC,
        lookupIdSubst, lookupTvSubst, lookupCvSubst, substIdOcc,
        substTickish, substVarSet,

        -- ** Operations on substitutions
        emptySubst, mkEmptySubst, mkSubst, mkOpenSubst, substInScope, isEmptySubst,
        extendIdSubst, extendIdSubstList, extendTvSubst, extendTvSubstList,
        extendCvSubst, extendCvSubstList,
        extendSubst, extendSubstList, extendSubstWithVar, zapSubstEnv,
        addInScopeSet, extendInScope, extendInScopeList, extendInScopeIds,
        isInScope, setInScope,
        delBndr, delBndrs,

        -- ** Substituting and cloning binders
        substBndr, substBndrs, substRecBndrs,
        cloneBndr, cloneBndrs, cloneIdBndr, cloneIdBndrs, cloneRecIdBndrs,

        -- ** Simple expression optimiser
        simpleOptPgm, simpleOptExpr, simpleOptExprWith,
        exprIsConApp_maybe, exprIsLiteral_maybe, exprIsLambda_maybe,
    ) where

#include "HsVersions.h"

import CoreSyn
import CoreFVs
import CoreSeq
import CoreUtils
import Literal  ( Literal(MachStr) )
import qualified Data.ByteString as BS
import OccurAnal( occurAnalyseExpr, occurAnalysePgm )

import qualified Type
import qualified Coercion

        -- We are defining local versions
import Type     hiding ( substTy, extendTvSubst, extendTvSubstList
                       , isInScope, substTyVarBndr, cloneTyVarBndr )
import Coercion hiding ( substTy, substCo, extendTvSubst, substTyVarBndr, substCoVarBndr )

import TyCon       ( tyConArity )
import DataCon
import PrelNames   ( eqBoxDataConKey, coercibleDataConKey, unpackCStringIdKey
                   , unpackCStringUtf8IdKey, instanceOfTyConKey )
import OptCoercion ( optCoercion )
import PprCore     ( pprCoreBindings, pprRules )
import Module      ( Module )
import VarSet
import VarEnv
import Id
import Name     ( Name )
import Var
import IdInfo
import Unique
import UniqSupply
import Maybes
import ErrUtils
import DynFlags
import BasicTypes ( isAlwaysActive )
import Util
import Pair
import Outputable
import PprCore          ()              -- Instances
import FastString

import Data.List

import TysWiredIn

{-
************************************************************************
*                                                                      *
\subsection{Substitutions}
*                                                                      *
************************************************************************
-}

-- | A substitution environment, containing both 'Id' and 'TyVar' substitutions.
--
-- Some invariants apply to how you use the substitution:
--
-- 1. #in_scope_invariant# The in-scope set contains at least those 'Id's and 'TyVar's that will be in scope /after/
-- applying the substitution to a term. Precisely, the in-scope set must be a superset of the free vars of the
-- substitution range that might possibly clash with locally-bound variables in the thing being substituted in.
--
-- 2. #apply_once# You may apply the substitution only /once/
--
-- There are various ways of setting up the in-scope set such that the first of these invariants hold:
--
-- * Arrange that the in-scope set really is all the things in scope
--
-- * Arrange that it's the free vars of the range of the substitution
--
-- * Make it empty, if you know that all the free vars of the substitution are fresh, and hence can't possibly clash
data Subst
  = Subst InScopeSet  -- Variables in in scope (both Ids and TyVars) /after/
                      -- applying the substitution
          IdSubstEnv  -- Substitution for Ids
          TvSubstEnv  -- Substitution from TyVars to Types
          CvSubstEnv  -- Substitution from CoVars to Coercions

        -- INVARIANT 1: See #in_scope_invariant#
        -- This is what lets us deal with name capture properly
        -- It's a hard invariant to check...
        --
        -- INVARIANT 2: The substitution is apply-once; see Note [Apply once] with
        --              Types.TvSubstEnv
        --
        -- INVARIANT 3: See Note [Extending the Subst]

{-
Note [Extending the Subst]
~~~~~~~~~~~~~~~~~~~~~~~~~~
For a core Subst, which binds Ids as well, we make a different choice for Ids
than we do for TyVars.

For TyVars, see Note [Extending the TvSubst] with Type.TvSubstEnv

For Ids, we have a different invariant
        The IdSubstEnv is extended *only* when the Unique on an Id changes
        Otherwise, we just extend the InScopeSet

In consequence:

* If the TvSubstEnv and IdSubstEnv are both empty, substExpr would be a
  no-op, so substExprSC ("short cut") does nothing.

  However, substExpr still goes ahead and substitutes.  Reason: we may
  want to replace existing Ids with new ones from the in-scope set, to
  avoid space leaks.

* In substIdBndr, we extend the IdSubstEnv only when the unique changes

* If the CvSubstEnv, TvSubstEnv and IdSubstEnv are all empty,
  substExpr does nothing (Note that the above rule for substIdBndr
  maintains this property.  If the incoming envts are both empty, then
  substituting the type and IdInfo can't change anything.)

* In lookupIdSubst, we *must* look up the Id in the in-scope set, because
  it may contain non-trivial changes.  Example:
        (/\a. \x:a. ...x...) Int
  We extend the TvSubstEnv with [a |-> Int]; but x's unique does not change
  so we only extend the in-scope set.  Then we must look up in the in-scope
  set when we find the occurrence of x.

* The requirement to look up the Id in the in-scope set means that we
  must NOT take no-op short cut when the IdSubst is empty.
  We must still look up every Id in the in-scope set.

* (However, we don't need to do so for expressions found in the IdSubst
  itself, whose range is assumed to be correct wrt the in-scope set.)

Why do we make a different choice for the IdSubstEnv than the
TvSubstEnv and CvSubstEnv?

* For Ids, we change the IdInfo all the time (e.g. deleting the
  unfolding), and adding it back later, so using the TyVar convention
  would entail extending the substitution almost all the time

* The simplifier wants to look up in the in-scope set anyway, in case it
  can see a better unfolding from an enclosing case expression

* For TyVars, only coercion variables can possibly change, and they are
  easy to spot
-}

-- | An environment for substituting for 'Id's
type IdSubstEnv = IdEnv CoreExpr

----------------------------
isEmptySubst :: Subst -> Bool
isEmptySubst (Subst _ id_env tv_env cv_env)
  = isEmptyVarEnv id_env && isEmptyVarEnv tv_env && isEmptyVarEnv cv_env

emptySubst :: Subst
emptySubst = Subst emptyInScopeSet emptyVarEnv emptyVarEnv emptyVarEnv

mkEmptySubst :: InScopeSet -> Subst
mkEmptySubst in_scope = Subst in_scope emptyVarEnv emptyVarEnv emptyVarEnv

mkSubst :: InScopeSet -> TvSubstEnv -> CvSubstEnv -> IdSubstEnv -> Subst
mkSubst in_scope tvs cvs ids = Subst in_scope ids tvs cvs

-- | Find the in-scope set: see "CoreSubst#in_scope_invariant"
substInScope :: Subst -> InScopeSet
substInScope (Subst in_scope _ _ _) = in_scope

-- | Remove all substitutions for 'Id's and 'Var's that might have been built up
-- while preserving the in-scope set
zapSubstEnv :: Subst -> Subst
zapSubstEnv (Subst in_scope _ _ _) = Subst in_scope emptyVarEnv emptyVarEnv emptyVarEnv

-- | Add a substitution for an 'Id' to the 'Subst': you must ensure that the in-scope set is
-- such that the "CoreSubst#in_scope_invariant" is true after extending the substitution like this
extendIdSubst :: Subst -> Id -> CoreExpr -> Subst
-- ToDo: add an ASSERT that fvs(subst-result) is already in the in-scope set
extendIdSubst (Subst in_scope ids tvs cvs) v r
  = Subst in_scope (extendVarEnv ids v r) tvs cvs

-- | Adds multiple 'Id' substitutions to the 'Subst': see also 'extendIdSubst'
extendIdSubstList :: Subst -> [(Id, CoreExpr)] -> Subst
extendIdSubstList (Subst in_scope ids tvs cvs) prs
  = Subst in_scope (extendVarEnvList ids prs) tvs cvs

-- | Add a substitution for a 'TyVar' to the 'Subst': you must ensure that the in-scope set is
-- such that the "CoreSubst#in_scope_invariant" is true after extending the substitution like this
extendTvSubst :: Subst -> TyVar -> Type -> Subst
extendTvSubst (Subst in_scope ids tvs cvs) v r = Subst in_scope ids (extendVarEnv tvs v r) cvs

-- | Adds multiple 'TyVar' substitutions to the 'Subst': see also 'extendTvSubst'
extendTvSubstList :: Subst -> [(TyVar,Type)] -> Subst
extendTvSubstList (Subst in_scope ids tvs cvs) prs = Subst in_scope ids (extendVarEnvList tvs prs) cvs

-- | Add a substitution from a 'CoVar' to a 'Coercion' to the 'Subst': you must ensure that the in-scope set is
-- such that the "CoreSubst#in_scope_invariant" is true after extending the substitution like this
extendCvSubst :: Subst -> CoVar -> Coercion -> Subst
extendCvSubst (Subst in_scope ids tvs cvs) v r = Subst in_scope ids tvs (extendVarEnv cvs v r)

-- | Adds multiple 'CoVar' -> 'Coercion' substitutions to the
-- 'Subst': see also 'extendCvSubst'
extendCvSubstList :: Subst -> [(CoVar,Coercion)] -> Subst
extendCvSubstList (Subst in_scope ids tvs cvs) prs = Subst in_scope ids tvs (extendVarEnvList cvs prs)

-- | Add a substitution appropriate to the thing being substituted
--   (whether an expression, type, or coercion). See also
--   'extendIdSubst', 'extendTvSubst', and 'extendCvSubst'.
extendSubst :: Subst -> Var -> CoreArg -> Subst
extendSubst subst var arg
  = case arg of
      Type ty     -> ASSERT( isTyVar var ) extendTvSubst subst var ty
      Coercion co -> ASSERT( isCoVar var ) extendCvSubst subst var co
      _           -> ASSERT( isId    var ) extendIdSubst subst var arg

extendSubstWithVar :: Subst -> Var -> Var -> Subst
extendSubstWithVar subst v1 v2
  | isTyVar v1 = ASSERT( isTyVar v2 ) extendTvSubst subst v1 (mkTyVarTy v2)
  | isCoVar v1 = ASSERT( isCoVar v2 ) extendCvSubst subst v1 (mkCoVarCo v2)
  | otherwise  = ASSERT( isId    v2 ) extendIdSubst subst v1 (Var v2)

-- | Add a substitution as appropriate to each of the terms being
--   substituted (whether expressions, types, or coercions). See also
--   'extendSubst'.
extendSubstList :: Subst -> [(Var,CoreArg)] -> Subst
extendSubstList subst []              = subst
extendSubstList subst ((var,rhs):prs) = extendSubstList (extendSubst subst var rhs) prs

-- | Find the substitution for an 'Id' in the 'Subst'
lookupIdSubst :: SDoc -> Subst -> Id -> CoreExpr
lookupIdSubst doc (Subst in_scope ids _ _) v
  | not (isLocalId v) = Var v
  | Just e  <- lookupVarEnv ids       v = e
  | Just v' <- lookupInScope in_scope v = Var v'
        -- Vital! See Note [Extending the Subst]
  | otherwise = WARN( True, ptext (sLit "CoreSubst.lookupIdSubst") <+> doc <+> ppr v
                            $$ ppr in_scope)
                Var v

-- | Find the substitution for a 'TyVar' in the 'Subst'
lookupTvSubst :: Subst -> TyVar -> Type
lookupTvSubst (Subst _ _ tvs _) v = ASSERT( isTyVar v) lookupVarEnv tvs v `orElse` Type.mkTyVarTy v

-- | Find the coercion substitution for a 'CoVar' in the 'Subst'
lookupCvSubst :: Subst -> CoVar -> Coercion
lookupCvSubst (Subst _ _ _ cvs) v = ASSERT( isCoVar v ) lookupVarEnv cvs v `orElse` mkCoVarCo v

delBndr :: Subst -> Var -> Subst
delBndr (Subst in_scope ids tvs cvs) v
  | isCoVar v = Subst in_scope ids tvs (delVarEnv cvs v)
  | isTyVar v = Subst in_scope ids (delVarEnv tvs v) cvs
  | otherwise = Subst in_scope (delVarEnv ids v) tvs cvs

delBndrs :: Subst -> [Var] -> Subst
delBndrs (Subst in_scope ids tvs cvs) vs
  = Subst in_scope (delVarEnvList ids vs) (delVarEnvList tvs vs) (delVarEnvList cvs vs)
      -- Easiest thing is just delete all from all!

-- | Simultaneously substitute for a bunch of variables
--   No left-right shadowing
--   ie the substitution for   (\x \y. e) a1 a2
--      so neither x nor y scope over a1 a2
mkOpenSubst :: InScopeSet -> [(Var,CoreArg)] -> Subst
mkOpenSubst in_scope pairs = Subst in_scope
                                   (mkVarEnv [(id,e)  | (id, e) <- pairs, isId id])
                                   (mkVarEnv [(tv,ty) | (tv, Type ty) <- pairs])
                                   (mkVarEnv [(v,co)  | (v, Coercion co) <- pairs])

------------------------------
isInScope :: Var -> Subst -> Bool
isInScope v (Subst in_scope _ _ _) = v `elemInScopeSet` in_scope

-- | Add the 'Var' to the in-scope set, but do not remove
-- any existing substitutions for it
addInScopeSet :: Subst -> VarSet -> Subst
addInScopeSet (Subst in_scope ids tvs cvs) vs
  = Subst (in_scope `extendInScopeSetSet` vs) ids tvs cvs

-- | Add the 'Var' to the in-scope set: as a side effect,
-- and remove any existing substitutions for it
extendInScope :: Subst -> Var -> Subst
extendInScope (Subst in_scope ids tvs cvs) v
  = Subst (in_scope `extendInScopeSet` v)
          (ids `delVarEnv` v) (tvs `delVarEnv` v) (cvs `delVarEnv` v)

-- | Add the 'Var's to the in-scope set: see also 'extendInScope'
extendInScopeList :: Subst -> [Var] -> Subst
extendInScopeList (Subst in_scope ids tvs cvs) vs
  = Subst (in_scope `extendInScopeSetList` vs)
          (ids `delVarEnvList` vs) (tvs `delVarEnvList` vs) (cvs `delVarEnvList` vs)

-- | Optimized version of 'extendInScopeList' that can be used if you are certain
-- all the things being added are 'Id's and hence none are 'TyVar's or 'CoVar's
extendInScopeIds :: Subst -> [Id] -> Subst
extendInScopeIds (Subst in_scope ids tvs cvs) vs
  = Subst (in_scope `extendInScopeSetList` vs)
          (ids `delVarEnvList` vs) tvs cvs

setInScope :: Subst -> InScopeSet -> Subst
setInScope (Subst _ ids tvs cvs) in_scope = Subst in_scope ids tvs cvs

-- Pretty printing, for debugging only

instance Outputable Subst where
  ppr (Subst in_scope ids tvs cvs)
        =  ptext (sLit "<InScope =") <+> braces (fsep (map ppr (varEnvElts (getInScopeVars in_scope))))
        $$ ptext (sLit " IdSubst   =") <+> ppr ids
        $$ ptext (sLit " TvSubst   =") <+> ppr tvs
        $$ ptext (sLit " CvSubst   =") <+> ppr cvs
         <> char '>'

{-
************************************************************************
*                                                                      *
        Substituting expressions
*                                                                      *
************************************************************************
-}

-- | Apply a substitution to an entire 'CoreExpr'. Remember, you may only
-- apply the substitution /once/: see "CoreSubst#apply_once"
--
-- Do *not* attempt to short-cut in the case of an empty substitution!
-- See Note [Extending the Subst]
substExprSC :: SDoc -> Subst -> CoreExpr -> CoreExpr
substExprSC _doc subst orig_expr
  | isEmptySubst subst = orig_expr
  | otherwise          = -- pprTrace "enter subst-expr" (doc $$ ppr orig_expr) $
                         subst_expr subst orig_expr

substExpr :: SDoc -> Subst -> CoreExpr -> CoreExpr
substExpr _doc subst orig_expr = subst_expr subst orig_expr

subst_expr :: Subst -> CoreExpr -> CoreExpr
subst_expr subst expr
  = go expr
  where
    go (Var v)         = lookupIdSubst (text "subst_expr") subst v
    go (Type ty)       = Type (substTy subst ty)
    go (Coercion co)   = Coercion (substCo subst co)
    go (Lit lit)       = Lit lit
    go (App fun arg)   = App (go fun) (go arg)
    go (Tick tickish e) = mkTick (substTickish subst tickish) (go e)
    go (Cast e co)     = Cast (go e) (substCo subst co)
       -- Do not optimise even identity coercions
       -- Reason: substitution applies to the LHS of RULES, and
       --         if you "optimise" an identity coercion, you may
       --         lose a binder. We optimise the LHS of rules at
       --         construction time

    go (Lam bndr body) = Lam bndr' (subst_expr subst' body)
                       where
                         (subst', bndr') = substBndr subst bndr

    go (Let bind body) = Let bind' (subst_expr subst' body)
                       where
                         (subst', bind') = substBind subst bind

    go (Case scrut bndr ty alts) = Case (go scrut) bndr' (substTy subst ty) (map (go_alt subst') alts)
                                 where
                                 (subst', bndr') = substBndr subst bndr

    go_alt subst (con, bndrs, rhs) = (con, bndrs', subst_expr subst' rhs)
                                 where
                                   (subst', bndrs') = substBndrs subst bndrs

-- | Apply a substitution to an entire 'CoreBind', additionally returning an updated 'Subst'
-- that should be used by subsequent substitutions.
substBind, substBindSC :: Subst -> CoreBind -> (Subst, CoreBind)

substBindSC subst bind    -- Short-cut if the substitution is empty
  | not (isEmptySubst subst)
  = substBind subst bind
  | otherwise
  = case bind of
       NonRec bndr rhs -> (subst', NonRec bndr' rhs)
          where
            (subst', bndr') = substBndr subst bndr
       Rec pairs -> (subst', Rec (bndrs' `zip` rhss'))
          where
            (bndrs, rhss)    = unzip pairs
            (subst', bndrs') = substRecBndrs subst bndrs
            rhss' | isEmptySubst subst' = rhss
                  | otherwise           = map (subst_expr subst') rhss

substBind subst (NonRec bndr rhs) = (subst', NonRec bndr' (subst_expr subst rhs))
                                  where
                                    (subst', bndr') = substBndr subst bndr

substBind subst (Rec pairs) = (subst', Rec (bndrs' `zip` rhss'))
                            where
                                (bndrs, rhss)    = unzip pairs
                                (subst', bndrs') = substRecBndrs subst bndrs
                                rhss' = map (subst_expr subst') rhss

-- | De-shadowing the program is sometimes a useful pre-pass. It can be done simply
-- by running over the bindings with an empty substitution, because substitution
-- returns a result that has no-shadowing guaranteed.
--
-- (Actually, within a single /type/ there might still be shadowing, because
-- 'substTy' is a no-op for the empty substitution, but that's probably OK.)
--
-- [Aug 09] This function is not used in GHC at the moment, but seems so
--          short and simple that I'm going to leave it here
deShadowBinds :: CoreProgram -> CoreProgram
deShadowBinds binds = snd (mapAccumL substBind emptySubst binds)

{-
************************************************************************
*                                                                      *
        Substituting binders
*                                                                      *
************************************************************************

Remember that substBndr and friends are used when doing expression
substitution only.  Their only business is substitution, so they
preserve all IdInfo (suitably substituted).  For example, we *want* to
preserve occ info in rules.
-}

-- | Substitutes a 'Var' for another one according to the 'Subst' given, returning
-- the result and an updated 'Subst' that should be used by subsequent substitutions.
-- 'IdInfo' is preserved by this process, although it is substituted into appropriately.
substBndr :: Subst -> Var -> (Subst, Var)
substBndr subst bndr
  | isTyVar bndr  = substTyVarBndr subst bndr
  | isCoVar bndr  = substCoVarBndr subst bndr
  | otherwise     = substIdBndr (text "var-bndr") subst subst bndr

-- | Applies 'substBndr' to a number of 'Var's, accumulating a new 'Subst' left-to-right
substBndrs :: Subst -> [Var] -> (Subst, [Var])
substBndrs subst bndrs = mapAccumL substBndr subst bndrs

-- | Substitute in a mutually recursive group of 'Id's
substRecBndrs :: Subst -> [Id] -> (Subst, [Id])
substRecBndrs subst bndrs
  = (new_subst, new_bndrs)
  where         -- Here's the reason we need to pass rec_subst to subst_id
    (new_subst, new_bndrs) = mapAccumL (substIdBndr (text "rec-bndr") new_subst) subst bndrs

substIdBndr :: SDoc
            -> Subst            -- ^ Substitution to use for the IdInfo
            -> Subst -> Id      -- ^ Substitution and Id to transform
            -> (Subst, Id)      -- ^ Transformed pair
                                -- NB: unfolding may be zapped

substIdBndr _doc rec_subst subst@(Subst in_scope env tvs cvs) old_id
  = -- pprTrace "substIdBndr" (doc $$ ppr old_id $$ ppr in_scope) $
    (Subst (in_scope `extendInScopeSet` new_id) new_env tvs cvs, new_id)
  where
    id1 = uniqAway in_scope old_id      -- id1 is cloned if necessary
    id2 | no_type_change = id1
        | otherwise      = setIdType id1 (substTy subst old_ty)

    old_ty = idType old_id
    no_type_change = isEmptyVarEnv tvs ||
                     isEmptyVarSet (Type.tyVarsOfType old_ty)

        -- new_id has the right IdInfo
        -- The lazy-set is because we're in a loop here, with
        -- rec_subst, when dealing with a mutually-recursive group
    new_id = maybeModifyIdInfo mb_new_info id2
    mb_new_info = substIdInfo rec_subst id2 (idInfo id2)
        -- NB: unfolding info may be zapped

        -- Extend the substitution if the unique has changed
        -- See the notes with substTyVarBndr for the delVarEnv
    new_env | no_change = delVarEnv env old_id
            | otherwise = extendVarEnv env old_id (Var new_id)

    no_change = id1 == old_id
        -- See Note [Extending the Subst]
        -- it's /not/ necessary to check mb_new_info and no_type_change

{-
Now a variant that unconditionally allocates a new unique.
It also unconditionally zaps the OccInfo.
-}

-- | Very similar to 'substBndr', but it always allocates a new 'Unique' for
-- each variable in its output.  It substitutes the IdInfo though.
cloneIdBndr :: Subst -> UniqSupply -> Id -> (Subst, Id)
cloneIdBndr subst us old_id
  = clone_id subst subst (old_id, uniqFromSupply us)

-- | Applies 'cloneIdBndr' to a number of 'Id's, accumulating a final
-- substitution from left to right
cloneIdBndrs :: Subst -> UniqSupply -> [Id] -> (Subst, [Id])
cloneIdBndrs subst us ids
  = mapAccumL (clone_id subst) subst (ids `zip` uniqsFromSupply us)

cloneBndrs :: Subst -> UniqSupply -> [Var] -> (Subst, [Var])
-- Works for all kinds of variables (typically case binders)
-- not just Ids
cloneBndrs subst us vs
  = mapAccumL (\subst (v, u) -> cloneBndr subst u v) subst (vs `zip` uniqsFromSupply us)

cloneBndr :: Subst -> Unique -> Var -> (Subst, Var)
cloneBndr subst uniq v
      | isTyVar v = cloneTyVarBndr subst v uniq
      | otherwise = clone_id subst subst (v,uniq)  -- Works for coercion variables too

-- | Clone a mutually recursive group of 'Id's
cloneRecIdBndrs :: Subst -> UniqSupply -> [Id] -> (Subst, [Id])
cloneRecIdBndrs subst us ids
  = (subst', ids')
  where
    (subst', ids') = mapAccumL (clone_id subst') subst
                               (ids `zip` uniqsFromSupply us)

-- Just like substIdBndr, except that it always makes a new unique
-- It is given the unique to use
clone_id    :: Subst                    -- Substitution for the IdInfo
            -> Subst -> (Id, Unique)    -- Substitution and Id to transform
            -> (Subst, Id)              -- Transformed pair

clone_id rec_subst subst@(Subst in_scope idvs tvs cvs) (old_id, uniq)
  = (Subst (in_scope `extendInScopeSet` new_id) new_idvs tvs new_cvs, new_id)
  where
    id1     = setVarUnique old_id uniq
    id2     = substIdType subst id1
    new_id  = maybeModifyIdInfo (substIdInfo rec_subst id2 (idInfo old_id)) id2
    (new_idvs, new_cvs) | isCoVar old_id = (idvs, extendVarEnv cvs old_id (mkCoVarCo new_id))
                        | otherwise      = (extendVarEnv idvs old_id (Var new_id), cvs)

{-
************************************************************************
*                                                                      *
                Types and Coercions
*                                                                      *
************************************************************************

For types and coercions we just call the corresponding functions in
Type and Coercion, but we have to repackage the substitution, from a
Subst to a TvSubst.
-}

substTyVarBndr :: Subst -> TyVar -> (Subst, TyVar)
substTyVarBndr (Subst in_scope id_env tv_env cv_env) tv
  = case Type.substTyVarBndr (TvSubst in_scope tv_env) tv of
        (TvSubst in_scope' tv_env', tv')
           -> (Subst in_scope' id_env tv_env' cv_env, tv')

cloneTyVarBndr :: Subst -> TyVar -> Unique -> (Subst, TyVar)
cloneTyVarBndr (Subst in_scope id_env tv_env cv_env) tv uniq
  = case Type.cloneTyVarBndr (TvSubst in_scope tv_env) tv uniq of
        (TvSubst in_scope' tv_env', tv')
           -> (Subst in_scope' id_env tv_env' cv_env, tv')

substCoVarBndr :: Subst -> TyVar -> (Subst, TyVar)
substCoVarBndr (Subst in_scope id_env tv_env cv_env) cv
  = case Coercion.substCoVarBndr (CvSubst in_scope tv_env cv_env) cv of
        (CvSubst in_scope' tv_env' cv_env', cv')
           -> (Subst in_scope' id_env tv_env' cv_env', cv')

-- | See 'Type.substTy'
substTy :: Subst -> Type -> Type
substTy subst ty = Type.substTy (getTvSubst subst) ty

getTvSubst :: Subst -> TvSubst
getTvSubst (Subst in_scope _ tenv _) = TvSubst in_scope tenv

getCvSubst :: Subst -> CvSubst
getCvSubst (Subst in_scope _ tenv cenv) = CvSubst in_scope tenv cenv

-- | See 'Coercion.substCo'
substCo :: Subst -> Coercion -> Coercion
substCo subst co = Coercion.substCo (getCvSubst subst) co

{-
************************************************************************
*                                                                      *
\section{IdInfo substitution}
*                                                                      *
************************************************************************
-}

substIdType :: Subst -> Id -> Id
substIdType subst@(Subst _ _ tv_env cv_env) id
  | (isEmptyVarEnv tv_env && isEmptyVarEnv cv_env) || isEmptyVarSet (Type.tyVarsOfType old_ty) = id
  | otherwise   = setIdType id (substTy subst old_ty)
                -- The tyVarsOfType is cheaper than it looks
                -- because we cache the free tyvars of the type
                -- in a Note in the id's type itself
  where
    old_ty = idType id

------------------
-- | Substitute into some 'IdInfo' with regard to the supplied new 'Id'.
substIdInfo :: Subst -> Id -> IdInfo -> Maybe IdInfo
substIdInfo subst new_id info
  | nothing_to_do = Nothing
  | otherwise     = Just (info `setSpecInfo`      substSpec subst new_id old_rules
                               `setUnfoldingInfo` substUnfolding subst old_unf)
  where
    old_rules     = specInfo info
    old_unf       = unfoldingInfo info
    nothing_to_do = isEmptySpecInfo old_rules && isClosedUnfolding old_unf


------------------
-- | Substitutes for the 'Id's within an unfolding
substUnfolding, substUnfoldingSC :: Subst -> Unfolding -> Unfolding
        -- Seq'ing on the returned Unfolding is enough to cause
        -- all the substitutions to happen completely

substUnfoldingSC subst unf       -- Short-cut version
  | isEmptySubst subst = unf
  | otherwise          = substUnfolding subst unf

substUnfolding subst df@(DFunUnfolding { df_bndrs = bndrs, df_args = args })
  = df { df_bndrs = bndrs', df_args = args' }
  where
    (subst',bndrs') = substBndrs subst bndrs
    args'           = map (substExpr (text "subst-unf:dfun") subst') args

substUnfolding subst unf@(CoreUnfolding { uf_tmpl = tmpl, uf_src = src })
        -- Retain an InlineRule!
  | not (isStableSource src)  -- Zap an unstable unfolding, to save substitution work
  = NoUnfolding
  | otherwise                 -- But keep a stable one!
  = seqExpr new_tmpl `seq`
    unf { uf_tmpl = new_tmpl }
  where
    new_tmpl = substExpr (text "subst-unf") subst tmpl

substUnfolding _ unf = unf      -- NoUnfolding, OtherCon

------------------
substIdOcc :: Subst -> Id -> Id
-- These Ids should not be substituted to non-Ids
substIdOcc subst v = case lookupIdSubst (text "substIdOcc") subst v of
                        Var v' -> v'
                        other  -> pprPanic "substIdOcc" (vcat [ppr v <+> ppr other, ppr subst])

------------------
-- | Substitutes for the 'Id's within the 'WorkerInfo' given the new function 'Id'
substSpec :: Subst -> Id -> SpecInfo -> SpecInfo
substSpec subst new_id (SpecInfo rules rhs_fvs)
  = seqSpecInfo new_spec `seq` new_spec
  where
    subst_ru_fn = const (idName new_id)
    new_spec = SpecInfo (map (substRule subst subst_ru_fn) rules)
                        (substVarSet subst rhs_fvs)

------------------
substRulesForImportedIds :: Subst -> [CoreRule] -> [CoreRule]
substRulesForImportedIds subst rules
  = map (substRule subst not_needed) rules
  where
    not_needed name = pprPanic "substRulesForImportedIds" (ppr name)

------------------
substRule :: Subst -> (Name -> Name) -> CoreRule -> CoreRule

-- The subst_ru_fn argument is applied to substitute the ru_fn field
-- of the rule:
--    - Rules for *imported* Ids never change ru_fn
--    - Rules for *local* Ids are in the IdInfo for that Id,
--      and the ru_fn field is simply replaced by the new name
--      of the Id
substRule _ _ rule@(BuiltinRule {}) = rule
substRule subst subst_ru_fn rule@(Rule { ru_bndrs = bndrs, ru_args = args
                                       , ru_fn = fn_name, ru_rhs = rhs
                                       , ru_local = is_local })
  = rule { ru_bndrs = bndrs'
         , ru_fn    = if is_local
                        then subst_ru_fn fn_name
                        else fn_name
         , ru_args  = map (substExpr doc subst') args
         , ru_rhs   = substExpr (text "foo") subst' rhs }
           -- Do NOT optimise the RHS (previously we did simplOptExpr here)
           -- See Note [Substitute lazily]
  where
    doc = ptext (sLit "subst-rule") <+> ppr fn_name
    (subst', bndrs') = substBndrs subst bndrs

------------------
substVects :: Subst -> [CoreVect] -> [CoreVect]
substVects subst = map (substVect subst)

------------------
substVect :: Subst -> CoreVect -> CoreVect
substVect subst  (Vect v rhs)        = Vect v (simpleOptExprWith subst rhs)
substVect _subst vd@(NoVect _)       = vd
substVect _subst vd@(VectType _ _ _) = vd
substVect _subst vd@(VectClass _)    = vd
substVect _subst vd@(VectInst _)     = vd

------------------
substVarSet :: Subst -> VarSet -> VarSet
substVarSet subst fvs
  = foldVarSet (unionVarSet . subst_fv subst) emptyVarSet fvs
  where
    subst_fv subst fv
        | isId fv   = exprFreeVars (lookupIdSubst (text "substVarSet") subst fv)
        | otherwise = Type.tyVarsOfType (lookupTvSubst subst fv)

------------------
substTickish :: Subst -> Tickish Id -> Tickish Id
substTickish subst (Breakpoint n ids) = Breakpoint n (map do_one ids)
 where do_one = getIdFromTrivialExpr . lookupIdSubst (text "subst_tickish") subst
substTickish _subst other = other

{- Note [Substitute lazily]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The functions that substitute over IdInfo must be pretty lazy, becuause
they are knot-tied by substRecBndrs.

One case in point was Trac #10627 in which a rule for a function 'f'
referred to 'f' (at a differnet type) on the RHS.  But instead of just
substituting in the rhs of the rule, we were calling simpleOptExpr, which
looked at the idInfo for 'f'; result <<loop>>.

In any case we don't need to optimise the RHS of rules, or unfoldings,
because the simplifier will do that.


Note [substTickish]
~~~~~~~~~~~~~~~~~~~~~~
A Breakpoint contains a list of Ids.  What happens if we ever want to
substitute an expression for one of these Ids?

First, we ensure that we only ever substitute trivial expressions for
these Ids, by marking them as NoOccInfo in the occurrence analyser.
Then, when substituting for the Id, we unwrap any type applications
and abstractions to get back to an Id, with getIdFromTrivialExpr.

Second, we have to ensure that we never try to substitute a literal
for an Id in a breakpoint.  We ensure this by never storing an Id with
an unlifted type in a Breakpoint - see Coverage.mkTickish.
Breakpoints can't handle free variables with unlifted types anyway.
-}

{-
Note [Worker inlining]
~~~~~~~~~~~~~~~~~~~~~~
A worker can get sustituted away entirely.
        - it might be trivial
        - it might simply be very small
We do not treat an InlWrapper as an 'occurrence' in the occurrence
analyser, so it's possible that the worker is not even in scope any more.

In all all these cases we simply drop the special case, returning to
InlVanilla.  The WARN is just so I can see if it happens a lot.


************************************************************************
*                                                                      *
        The Very Simple Optimiser
*                                                                      *
************************************************************************

Note [Optimise coercion boxes aggressively]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The simple expression optimiser needs to deal with Eq# boxes as follows:
 1. If the result of optimising the RHS of a non-recursive binding is an
    Eq# box, that box is substituted rather than turned into a let, just as
    if it were trivial.
       let eqv = Eq# co in e ==> e[Eq# co/eqv]

 2. If the result of optimising a case scrutinee is a Eq# box and the case
    deconstructs it in a trivial way, we evaluate the case then and there.
      case Eq# co of Eq# cov -> e ==> e[co/cov]

We do this for two reasons:

 1. Bindings/case scrutinisation of this form is often created by the
    evidence-binding mechanism and we need them to be inlined to be able
    desugar RULE LHSes that involve equalities (see e.g. T2291)

 2. The test T4356 fails Lint because it creates a coercion between types
    of kind (* -> * -> *) and (?? -> ? -> *), which differ. If we do this
    inlining aggressively we can collapse away the intermediate coercion between
    these two types and hence pass Lint again. (This is a sort of a hack.)

In fact, our implementation uses slightly liberalised versions of the second rule
rule so that the optimisations are a bit more generally applicable. Precisely:
 2a. We reduce any situation where we can spot a case-of-known-constructor

As a result, the only time we should get residual coercion boxes in the code is
when the type checker generates something like:

  \eqv -> let eqv' = Eq# (case eqv of Eq# cov -> ... cov ...)

However, the case of lambda-bound equality evidence is fairly rare, so these two
rules should suffice for solving the rule LHS problem for now.

Annoyingly, we cannot use this modified rule 1a instead of 1:

 1a. If we come across a let-bound constructor application with trivial arguments,
     add an appropriate unfolding to the let binder.  We spot constructor applications
     by using exprIsConApp_maybe, so this would actually let rule 2a reduce more.

The reason is that we REALLY NEED coercion boxes to be substituted away. With rule 1a
we wouldn't simplify this expression at all:

  let eqv = Eq# co
  in foo eqv (bar eqv)

The rule LHS desugarer can't deal with Let at all, so we need to push that box into
the use sites.
-}

simpleOptExpr :: CoreExpr -> CoreExpr
-- Do simple optimisation on an expression
-- The optimisation is very straightforward: just
-- inline non-recursive bindings that are used only once,
-- or where the RHS is trivial
--
-- We also inline bindings that bind a Eq# box: see
-- See Note [Optimise coercion boxes aggressively].
--
-- The result is NOT guaranteed occurrence-analysed, because
-- in  (let x = y in ....) we substitute for x; so y's occ-info
-- may change radically

simpleOptExpr expr
  = -- pprTrace "simpleOptExpr" (ppr init_subst $$ ppr expr) $
    simpleOptExprWith init_subst expr
  where
    init_subst = mkEmptySubst (mkInScopeSet (exprFreeVars expr))
        -- It's potentially important to make a proper in-scope set
        -- Consider  let x = ..y.. in \y. ...x...
        -- Then we should remember to clone y before substituting
        -- for x.  It's very unlikely to occur, because we probably
        -- won't *be* substituting for x if it occurs inside a
        -- lambda.
        --
        -- It's a bit painful to call exprFreeVars, because it makes
        -- three passes instead of two (occ-anal, and go)

simplePassesOfSimplification :: Int
simplePassesOfSimplification = 3

simpleOptExprWith :: Subst -> InExpr -> OutExpr
-- Make three passes of simplification
simpleOptExprWith subst expr
  = iterate (simpleOptExprWith_ subst) expr !! simplePassesOfSimplification

simpleOptExprWith_ :: Subst -> InExpr -> OutExpr
simpleOptExprWith_ subst expr = simple_opt_expr subst (occurAnalyseExpr expr)

----------------------
simpleOptPgm :: DynFlags -> Module
             -> CoreProgram -> [CoreRule] -> [CoreVect]
             -> IO (CoreProgram, [CoreRule], [CoreVect])
simpleOptPgm dflags this_mod binds rules vects
  = do { dumpIfSet_dyn dflags Opt_D_dump_occur_anal "Occurrence analysis"
                       (pprCoreBindings occ_anald_binds $$ pprRules rules );

       ; return (reverse binds', substRulesForImportedIds subst' rules, substVects subst' vects) }
  where
    occ_anald_binds  = occurAnalysePgm this_mod (\_ -> False) {- No rules active -}
                                       rules vects emptyVarEnv binds
    (subst', binds') = foldl do_one (emptySubst, []) occ_anald_binds

    do_one (subst, binds') bind
      = case simple_opt_bind_pgm subst bind of
          (subst', Nothing)    -> (subst', binds')
          (subst', Just bind') -> (subst', bind':binds')

----------------------
type InVar   = Var
type OutVar  = Var
type InId    = Id
type OutId   = Id
type InExpr  = CoreExpr
type OutExpr = CoreExpr

-- In these functions the substitution maps InVar -> OutExpr

----------------------
simple_opt_expr :: Subst -> InExpr -> OutExpr
simple_opt_expr subst expr
  = go expr
  where
    in_scope_env = (substInScope subst, simpleUnfoldingFun)

    go (Var v)          = lookupIdSubst (text "simpleOptExpr") subst v
    go (App e1 e2)      = simple_app subst e1 [go e2]
    go (Type ty)        = Type     (substTy subst ty)
    go (Coercion co)    = Coercion (optCoercion (getCvSubst subst) co)
    go (Lit lit)        = Lit lit
    go (Tick tickish e) = mkTick (substTickish subst tickish) (go e)
    go (Cast e co)      = simple_cast subst (Cast e co)
    go (Let bind body) = case simple_opt_bind subst bind of
                           (subst', Nothing)   -> simple_opt_expr subst' body
                           (subst', Just bind) -> Let bind (simple_opt_expr subst' body)

    go lam@(Lam {})     = go_lam [] subst lam
    go (Case e b ty as)
       -- See Note [Optimise coercion boxes aggressively]
      | isDeadBinder b
      , Just (con, _tys, es) <- exprIsConApp_maybe in_scope_env e'
      , Just (altcon, bs, rhs) <- findAlt (DataAlt con) as
      = case altcon of
          DEFAULT -> go rhs
          _       -> mkLets (catMaybes mb_binds) $ simple_opt_expr subst' rhs
            where (subst', mb_binds) = mapAccumL simple_opt_out_bind subst
                                                 (zipEqual "simpleOptExpr" bs es)

      | otherwise
      = Case e' b' (substTy subst ty)
                   (map (go_alt subst') as)
        where
          e' = go e
          (subst', b') = subst_opt_bndr subst b

    ----------------------
    go_alt subst (con, bndrs, rhs)
      = (con, bndrs', simple_opt_expr subst' rhs)
      where
        (subst', bndrs') = subst_opt_bndrs subst bndrs

    ----------------------
    -- go_lam tries eta reduction
    go_lam bs' subst (Lam b e)
       = go_lam (b':bs') subst' e
       where
         (subst', b') = subst_opt_bndr subst b
    go_lam bs' subst e
       | Just etad_e <- tryEtaReduce bs e' = etad_e
       | otherwise                         = mkLams bs e'
       where
         bs = reverse bs'
         e' = simple_opt_expr subst e

----------------------
-- simple_app collects arguments for beta reduction
simple_app :: Subst -> InExpr -> [OutExpr] -> CoreExpr
simple_app subst (App e1 e2) as
  = simple_app subst e1 (simple_opt_expr subst e2 : as)
simple_app subst (Lam b e) (a:as)
  = case maybe_substitute subst b a of
      Just ext_subst -> simple_app ext_subst e as
      Nothing        -> Let (NonRec b2 a) (simple_app subst' e as)
  where
    (subst', b') = subst_opt_bndr subst b
    b2 = add_info subst' b b'
simple_app subst (Var v) as
  | isCompulsoryUnfolding (idUnfolding v)
  , isAlwaysActive (idInlineActivation v)
  -- See Note [Unfold compulsory unfoldings in LHSs]
  =  simple_app subst (unfoldingTemplate (idUnfolding v)) as
simple_app subst (Tick t e) as
  -- Okay to do "(Tick t e) x ==> Tick t (e x)"?
  | t `tickishScopesLike` SoftScope
  = mkTick t $ simple_app subst e as
simple_app subst (Cast e co) as
  = case simple_cast subst (Cast e co) of
      -- Could not optimize further
      e'@(Cast _ _) -> foldl App e' as
      e'            -> simple_app subst e' as
simple_app subst e as
  = foldl App (simple_opt_expr subst e) as

----------------------
simple_opt_bind,simple_opt_bind',simple_opt_bind_pgm
  :: Subst -> CoreBind -> (Subst, Maybe CoreBind)
simple_opt_bind s b               -- Can add trace stuff here
  = simple_opt_bind' s b

simple_opt_bind'    = simple_opt_bind'' 1
simple_opt_bind_pgm = simple_opt_bind'' simplePassesOfSimplification

simple_opt_bind'' :: Int -> Subst -> CoreBind -> (Subst, Maybe CoreBind)
simple_opt_bind'' simpl_passes subst (Rec prs)
  = (subst'', res_bind)
  where
    res_bind            = Just (Rec (reverse rev_prs'))
    (subst', bndrs')    = subst_opt_bndrs subst (map fst prs)
    (subst'', rev_prs') = foldl do_pr (subst', []) (prs `zip` bndrs')
    do_pr (subst, prs) ((b,r), b')
       = case maybe_substitute subst b r2 of
           Just subst' -> (subst', prs)
           Nothing     -> (subst,  (b2,r2):prs)
       where
         b2 = add_info subst b b'
         r2 = iterate (simple_opt_expr subst) r !! simpl_passes

simple_opt_bind'' simpl_passes subst (NonRec b r)
  = simple_opt_out_bind subst (b, iterate (simple_opt_expr subst) r !! simpl_passes)

----------------------
simple_opt_out_bind :: Subst -> (InVar, OutExpr) -> (Subst, Maybe CoreBind)
simple_opt_out_bind subst (b, r')
  | Just ext_subst <- maybe_substitute subst b r'
  = (ext_subst, Nothing)
  | otherwise
  = (subst', Just (NonRec b2 r'))
  where
    (subst', b') = subst_opt_bndr subst b
    b2 = add_info subst' b b'

----------------------
simple_cast :: Subst -> InExpr -> CoreExpr
simple_cast subst (Cast e e_co)
  = go e e_co
  where
    go (Cast e e_co) co = go e (mkTransCo e_co co)
    go e co | isReflCo co' = simple_opt_expr subst e
            | otherwise    = Cast (simple_opt_expr subst e) co'
            where co' = optCoercion (getCvSubst subst) co

simple_cast subst e
  = simple_opt_expr subst e

----------------------
maybe_substitute :: Subst -> InVar -> OutExpr -> Maybe Subst
    -- (maybe_substitute subst in_var out_rhs)
    --   either extends subst with (in_var -> out_rhs)
    --   or     returns Nothing
maybe_substitute subst b r
  | Type ty <- r        -- let a::* = TYPE ty in <body>
  = ASSERT( isTyVar b )
    Just (extendTvSubst subst b ty)

  | Coercion co <- r
  = ASSERT( isCoVar b )
    Just (extendCvSubst subst b co)

  | isId b              -- let x = e in <body>
  , not (isCoVar b)     -- See Note [Do not inline CoVars unconditionally]
                        -- in SimplUtils
  , safe_to_inline (idOccInfo b)
  , isAlwaysActive (idInlineActivation b)       -- Note [Inline prag in simplOpt]
  , not (isStableUnfolding (idUnfolding b))
  , not (isExportedId b)
  , not (isUnLiftedType (idType b)) || exprOkForSpeculation r
  = Just (extendIdSubst subst b r)

  | isId b
  , Just (tc, _) <- splitTyConApp_maybe (idType b)
  , tc `hasKey` instanceOfTyConKey
  = Just (extendIdSubst subst b r)  -- Aggresively inline (<=) coercions

  | otherwise
  = Nothing
  where
        -- Unconditionally safe to inline
    safe_to_inline :: OccInfo -> Bool
    safe_to_inline (IAmALoopBreaker {})     = False
    safe_to_inline IAmDead                  = True
    safe_to_inline (OneOcc in_lam one_br _) = (not in_lam && one_br) || trivial
    safe_to_inline NoOccInfo                = trivial

    trivial | exprIsTrivial r = True
            | (Var fun, args) <- collectArgs r
            , Just dc <- isDataConWorkId_maybe fun
            , dc `hasKey` eqBoxDataConKey || dc `hasKey` coercibleDataConKey
            , all exprIsTrivial args = True -- See Note [Optimise coercion boxes aggressively]
            | otherwise = False

----------------------
subst_opt_bndr :: Subst -> InVar -> (Subst, OutVar)
subst_opt_bndr subst bndr
  | isTyVar bndr  = substTyVarBndr subst bndr
  | isCoVar bndr  = substCoVarBndr subst bndr
  | otherwise     = subst_opt_id_bndr subst bndr

subst_opt_id_bndr :: Subst -> InId -> (Subst, OutId)
-- Nuke all fragile IdInfo, unfolding, and RULES;
--    it gets added back later by add_info
-- Rather like SimplEnv.substIdBndr
--
-- It's important to zap fragile OccInfo (which CoreSubst.substIdBndr
-- carefully does not do) because simplOptExpr invalidates it

subst_opt_id_bndr subst@(Subst in_scope id_subst tv_subst cv_subst) old_id
  = (Subst new_in_scope new_id_subst tv_subst cv_subst, new_id)
  where
    id1    = uniqAway in_scope old_id
    id2    = setIdType id1 (substTy subst (idType old_id))
    new_id = zapFragileIdInfo id2       -- Zaps rules, worker-info, unfolding
                                        -- and fragile OccInfo
    new_in_scope = in_scope `extendInScopeSet` new_id

        -- Extend the substitution if the unique has changed,
        -- or there's some useful occurrence information
        -- See the notes with substTyVarBndr for the delSubstEnv
    new_id_subst | new_id /= old_id
                 = extendVarEnv id_subst old_id (Var new_id)
                 | otherwise
                 = delVarEnv id_subst old_id

----------------------
subst_opt_bndrs :: Subst -> [InVar] -> (Subst, [OutVar])
subst_opt_bndrs subst bndrs
  = mapAccumL subst_opt_bndr subst bndrs

----------------------
add_info :: Subst -> InVar -> OutVar -> OutVar
add_info subst old_bndr new_bndr
 | isTyVar old_bndr = new_bndr
 | otherwise        = maybeModifyIdInfo mb_new_info new_bndr
 where mb_new_info = substIdInfo subst new_bndr (idInfo old_bndr)

simpleUnfoldingFun :: IdUnfoldingFun
simpleUnfoldingFun id
  | isAlwaysActive (idInlineActivation id) = idUnfolding id
  | otherwise                              = noUnfolding

{-
Note [Inline prag in simplOpt]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If there's an INLINE/NOINLINE pragma that restricts the phase in
which the binder can be inlined, we don't inline here; after all,
we don't know what phase we're in.  Here's an example

  foo :: Int -> Int -> Int
  {-# INLINE foo #-}
  foo m n = inner m
     where
       {-# INLINE [1] inner #-}
       inner m = m+n

  bar :: Int -> Int
  bar n = foo n 1

When inlining 'foo' in 'bar' we want the let-binding for 'inner'
to remain visible until Phase 1

Note [Unfold compulsory unfoldings in LHSs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When the user writes `RULES map coerce = coerce` as a rule, the rule
will only ever match if simpleOptExpr replaces coerce by its unfolding
on the LHS, because that is the core that the rule matching engine
will find. So do that for everything that has a compulsory
unfolding. Also see Note [Desugaring coerce as cast] in Desugar.

However, we don't want to inline 'seq', which happens to also have a
compulsory unfolding, so we only do this unfolding only for things
that are always-active.  See Note [User-defined RULES for seq] in MkId.


************************************************************************
*                                                                      *
         exprIsConApp_maybe
*                                                                      *
************************************************************************

Note [exprIsConApp_maybe]
~~~~~~~~~~~~~~~~~~~~~~~~~
exprIsConApp_maybe is a very important function.  There are two principal
uses:
  * case e of { .... }
  * cls_op e, where cls_op is a class operation

In both cases you want to know if e is of form (C e1..en) where C is
a data constructor.

However e might not *look* as if


Note [exprIsConApp_maybe on literal strings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See #9400.

Conceptually, a string literal "abc" is just ('a':'b':'c':[]), but in Core
they are represented as unpackCString# "abc"# by MkCore.mkStringExprFS, or
unpackCStringUtf8# when the literal contains multi-byte UTF8 characters.

For optimizations we want to be able to treat it as a list, so they can be
decomposed when used in a case-statement. exprIsConApp_maybe detects those
calls to unpackCString# and returns:

Just (':', [Char], ['a', unpackCString# "bc"]).

We need to be careful about UTF8 strings here. ""# contains a ByteString, so
we must parse it back into a FastString to split off the first character.
That way we can treat unpackCString# and unpackCStringUtf8# in the same way.
-}

data ConCont = CC [CoreExpr] Coercion
                  -- Substitution already applied

-- | Returns @Just (dc, [t1..tk], [x1..xn])@ if the argument expression is
-- a *saturated* constructor application of the form @dc t1..tk x1 .. xn@,
-- where t1..tk are the *universally-qantified* type args of 'dc'
exprIsConApp_maybe :: InScopeEnv -> CoreExpr -> Maybe (DataCon, [Type], [CoreExpr])
exprIsConApp_maybe (in_scope, id_unf) expr
  = go (Left in_scope) expr (CC [] (mkReflCo Representational (exprType expr)))
  where
    go :: Either InScopeSet Subst
       -> CoreExpr -> ConCont
       -> Maybe (DataCon, [Type], [CoreExpr])
    go subst (Tick t expr) cont
       | not (tickishIsCode t) = go subst expr cont
    go subst (Cast expr co1) (CC [] co2)
       = go subst expr (CC [] (subst_co subst co1 `mkTransCo` co2))
    go subst (App fun arg) (CC args co)
       = go subst fun (CC (subst_arg subst arg : args) co)
    go subst (Lam var body) (CC (arg:args) co)
       | exprIsTrivial arg          -- Don't duplicate stuff!
       = go (extend subst var arg) body (CC args co)
    go (Right sub) (Var v) cont
       = go (Left (substInScope sub))
            (lookupIdSubst (text "exprIsConApp" <+> ppr expr) sub v)
            cont

    go (Left in_scope) (Var fun) cont@(CC args co)

        | Just con <- isDataConWorkId_maybe fun
        , count isValArg args == idArity fun
        = dealWithCoercion co con args

        -- Look through dictionary functions; see Note [Unfolding DFuns]
        | DFunUnfolding { df_bndrs = bndrs, df_con = con, df_args = dfun_args } <- unfolding
        , bndrs `equalLength` args    -- See Note [DFun arity check]
        , let subst = mkOpenSubst in_scope (bndrs `zip` args)
        = dealWithCoercion co con (map (substExpr (text "exprIsConApp1") subst) dfun_args)

        -- Look through unfoldings, but only arity-zero one;
        -- if arity > 0 we are effectively inlining a function call,
        -- and that is the business of callSiteInline.
        -- In practice, without this test, most of the "hits" were
        -- CPR'd workers getting inlined back into their wrappers,
        | idArity fun == 0
        , Just rhs <- expandUnfolding_maybe unfolding
        , let in_scope' = extendInScopeSetSet in_scope (exprFreeVars rhs)
        = go (Left in_scope') rhs cont

        | (fun `hasKey` unpackCStringIdKey)
         || (fun `hasKey` unpackCStringUtf8IdKey)
        , [Lit (MachStr str)] <- args
        = dealWithStringLiteral fun str co
        where
          unfolding = id_unf fun

    go _ _ _ = Nothing

    ----------------------------
    -- Operations on the (Either InScopeSet CoreSubst)
    -- The Left case is wildly dominant
    subst_co (Left {}) co = co
    subst_co (Right s) co = CoreSubst.substCo s co

    subst_arg (Left {}) e = e
    subst_arg (Right s) e = substExpr (text "exprIsConApp2") s e

    extend (Left in_scope) v e = Right (extendSubst (mkEmptySubst in_scope) v e)
    extend (Right s)       v e = Right (extendSubst s v e)

-- See Note [exprIsConApp_maybe on literal strings]
dealWithStringLiteral :: Var -> BS.ByteString -> Coercion
                      -> Maybe (DataCon, [Type], [CoreExpr])

-- This is not possible with user-supplied empty literals, MkCore.mkStringExprFS
-- turns those into [] automatically, but just in case something else in GHC
-- generates a string literal directly.
dealWithStringLiteral _   str co
  | BS.null str
  = dealWithCoercion co nilDataCon [Type charTy]

dealWithStringLiteral fun str co
  = let strFS = mkFastStringByteString str

        char = mkConApp charDataCon [mkCharLit (headFS strFS)]
        charTail = fastStringToByteString (tailFS strFS)

        -- In singleton strings, just add [] instead of unpackCstring# ""#.
        rest = if BS.null charTail
                 then mkConApp nilDataCon [Type charTy]
                 else App (Var fun)
                          (Lit (MachStr charTail))

    in dealWithCoercion co consDataCon [Type charTy, char, rest]

dealWithCoercion :: Coercion -> DataCon -> [CoreExpr]
                 -> Maybe (DataCon, [Type], [CoreExpr])
dealWithCoercion co dc dc_args
  | isReflCo co
  , let (univ_ty_args, rest_args) = splitAtList (dataConUnivTyVars dc) dc_args
  = Just (dc, stripTypeArgs univ_ty_args, rest_args)

  | Pair _from_ty to_ty <- coercionKind co
  , Just (to_tc, to_tc_arg_tys) <- splitTyConApp_maybe to_ty
  , to_tc == dataConTyCon dc
        -- These two tests can fail; we might see
        --      (C x y) `cast` (g :: T a ~ S [a]),
        -- where S is a type function.  In fact, exprIsConApp
        -- will probably not be called in such circumstances,
        -- but there't nothing wrong with it

  =     -- Here we do the KPush reduction rule as described in the FC paper
        -- The transformation applies iff we have
        --      (C e1 ... en) `cast` co
        -- where co :: (T t1 .. tn) ~ to_ty
        -- The left-hand one must be a T, because exprIsConApp returned True
        -- but the right-hand one might not be.  (Though it usually will.)
    let
        tc_arity       = tyConArity to_tc
        dc_univ_tyvars = dataConUnivTyVars dc
        dc_ex_tyvars   = dataConExTyVars dc
        arg_tys        = dataConRepArgTys dc

        non_univ_args  = dropList dc_univ_tyvars dc_args
        (ex_args, val_args) = splitAtList dc_ex_tyvars non_univ_args

        -- Make the "theta" from Fig 3 of the paper
        gammas = decomposeCo tc_arity co
        theta_subst = liftCoSubstWith Representational
                         (dc_univ_tyvars ++ dc_ex_tyvars)
                                                -- existentials are at role N
                         (gammas         ++ map (mkReflCo Nominal)
                                                (stripTypeArgs ex_args))

          -- Cast the value arguments (which include dictionaries)
        new_val_args = zipWith cast_arg arg_tys val_args
        cast_arg arg_ty arg = mkCast arg (theta_subst arg_ty)

        dump_doc = vcat [ppr dc,      ppr dc_univ_tyvars, ppr dc_ex_tyvars,
                         ppr arg_tys, ppr dc_args,
                         ppr ex_args, ppr val_args, ppr co, ppr _from_ty, ppr to_ty, ppr to_tc ]
    in
    ASSERT2( eqType _from_ty (mkTyConApp to_tc (stripTypeArgs $ takeList dc_univ_tyvars dc_args))
           , dump_doc )
    ASSERT2( all isTypeArg ex_args, dump_doc )
    ASSERT2( equalLength val_args arg_tys, dump_doc )
    Just (dc, to_tc_arg_tys, ex_args ++ new_val_args)

  | otherwise
  = Nothing

stripTypeArgs :: [CoreExpr] -> [Type]
stripTypeArgs args = ASSERT2( all isTypeArg args, ppr args )
                     [ty | Type ty <- args]
  -- We really do want isTypeArg here, not isTyCoArg!

{-
Note [Unfolding DFuns]
~~~~~~~~~~~~~~~~~~~~~~
DFuns look like

  df :: forall a b. (Eq a, Eq b) -> Eq (a,b)
  df a b d_a d_b = MkEqD (a,b) ($c1 a b d_a d_b)
                               ($c2 a b d_a d_b)

So to split it up we just need to apply the ops $c1, $c2 etc
to the very same args as the dfun.  It takes a little more work
to compute the type arguments to the dictionary constructor.

Note [DFun arity check]
~~~~~~~~~~~~~~~~~~~~~~~
Here we check that the total number of supplied arguments (inclding
type args) matches what the dfun is expecting.  This may be *less*
than the ordinary arity of the dfun: see Note [DFun unfoldings] in CoreSyn
-}

exprIsLiteral_maybe :: InScopeEnv -> CoreExpr -> Maybe Literal
-- Same deal as exprIsConApp_maybe, but much simpler
-- Nevertheless we do need to look through unfoldings for
-- Integer literals, which are vigorously hoisted to top level
-- and not subsequently inlined
exprIsLiteral_maybe env@(_, id_unf) e
  = case e of
      Lit l     -> Just l
      Tick _ e' -> exprIsLiteral_maybe env e' -- dubious?
      Var v     | Just rhs <- expandUnfolding_maybe (id_unf v)
                -> exprIsLiteral_maybe env rhs
      _         -> Nothing

{-
Note [exprIsLambda_maybe]
~~~~~~~~~~~~~~~~~~~~~~~~~~
exprIsLambda_maybe will, given an expression `e`, try to turn it into the form
`Lam v e'` (returned as `Just (v,e')`). Besides using lambdas, it looks through
casts (using the Push rule), and it unfolds function calls if the unfolding
has a greater arity than arguments are present.

Currently, it is used in Rules.match, and is required to make
"map coerce = coerce" match.
-}

exprIsLambda_maybe :: InScopeEnv -> CoreExpr
                      -> Maybe (Var, CoreExpr,[Tickish Id])
    -- See Note [exprIsLambda_maybe]

-- The simple case: It is a lambda already
exprIsLambda_maybe _ (Lam x e)
    = Just (x, e, [])

-- Still straightforward: Ticks that we can float out of the way
exprIsLambda_maybe (in_scope_set, id_unf) (Tick t e)
    | tickishFloatable t
    , Just (x, e, ts) <- exprIsLambda_maybe (in_scope_set, id_unf) e
    = Just (x, e, t:ts)

-- Also possible: A casted lambda. Push the coercion inside
exprIsLambda_maybe (in_scope_set, id_unf) (Cast casted_e co)
    | Just (x, e,ts) <- exprIsLambda_maybe (in_scope_set, id_unf) casted_e
    -- Only do value lambdas.
    -- this implies that x is not in scope in gamma (makes this code simpler)
    , not (isTyVar x) && not (isCoVar x)
    , ASSERT( not $ x `elemVarSet` tyCoVarsOfCo co) True
    , Just (x',e') <- pushCoercionIntoLambda in_scope_set x e co
    , let res = Just (x',e',ts)
    = --pprTrace "exprIsLambda_maybe:Cast" (vcat [ppr casted_e,ppr co,ppr res)])
      res

-- Another attempt: See if we find a partial unfolding
exprIsLambda_maybe (in_scope_set, id_unf) e
    | (Var f, as, ts) <- collectArgsTicks tickishFloatable e
    , idArity f > length (filter isValArg as)
    -- Make sure there is hope to get a lambda
    , Just rhs <- expandUnfolding_maybe (id_unf f)
    -- Optimize, for beta-reduction
    , let e' =  simpleOptExprWith (mkEmptySubst in_scope_set) (rhs `mkApps` as)
    -- Recurse, because of possible casts
    , Just (x', e'', ts') <- exprIsLambda_maybe (in_scope_set, id_unf) e'
    , let res = Just (x', e'', ts++ts')
    = -- pprTrace "exprIsLambda_maybe:Unfold" (vcat [ppr e, ppr (x',e'')])
      res

exprIsLambda_maybe _ _e
    = -- pprTrace "exprIsLambda_maybe:Fail" (vcat [ppr _e])
      Nothing


pushCoercionIntoLambda
    :: InScopeSet -> Var -> CoreExpr -> Coercion -> Maybe (Var, CoreExpr)
pushCoercionIntoLambda in_scope x e co
    -- This implements the Push rule from the paper on coercions
    -- Compare with simplCast in Simplify
    | ASSERT(not (isTyVar x) && not (isCoVar x)) True
    , Pair s1s2 t1t2 <- coercionKind co
    , Just (_s1,_s2) <- splitFunTy_maybe s1s2
    , Just (t1,_t2) <- splitFunTy_maybe t1t2
    = let [co1, co2] = decomposeCo 2 co
          -- Should we optimize the coercions here?
          -- Otherwise they might not match too well
          x' = x `setIdType` t1
          in_scope' = in_scope `extendInScopeSet` x'
          subst = extendIdSubst (mkEmptySubst in_scope')
                                x
                                (mkCast (Var x') co1)
      in Just (x', subst_expr subst e `mkCast` co2)
    | otherwise
    = pprTrace "exprIsLambda_maybe: Unexpected lambda in case" (ppr (Lam x e))
      Nothing