1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
module TrieMap(
CoreMap, emptyCoreMap, extendCoreMap, lookupCoreMap, foldCoreMap,
TypeMap, emptyTypeMap, extendTypeMap, lookupTypeMap, foldTypeMap,
CoercionMap,
MaybeMap,
ListMap,
TrieMap(..), insertTM, deleteTM,
lookupTypeMapTyCon
) where
import CoreSyn
import Coercion
import Literal
import Name
import Type
import TypeRep
import TyCon(TyCon)
import Var
import UniqFM
import Unique( Unique )
import FastString(FastString)
import CoAxiom(CoAxiomRule(coaxrName))
import qualified Data.Map as Map
import qualified Data.IntMap as IntMap
import VarEnv
import NameEnv
import Outputable
import Control.Monad( (>=>) )
{-
This module implements TrieMaps, which are finite mappings
whose key is a structured value like a CoreExpr or Type.
The code is very regular and boilerplate-like, but there is
some neat handling of *binders*. In effect they are deBruijn
numbered on the fly.
The regular pattern for handling TrieMaps on data structures was first
described (to my knowledge) in Connelly and Morris's 1995 paper "A
generalization of the Trie Data Structure"; there is also an accessible
description of the idea in Okasaki's book "Purely Functional Data
Structures", Section 10.3.2
************************************************************************
* *
The TrieMap class
* *
************************************************************************
-}
type XT a = Maybe a -> Maybe a -- How to alter a non-existent elt (Nothing)
-- or an existing elt (Just)
class TrieMap m where
type Key m :: *
emptyTM :: m a
lookupTM :: forall b. Key m -> m b -> Maybe b
alterTM :: forall b. Key m -> XT b -> m b -> m b
mapTM :: (a->b) -> m a -> m b
foldTM :: (a -> b -> b) -> m a -> b -> b
-- The unusual argument order here makes
-- it easy to compose calls to foldTM;
-- see for example fdE below
insertTM :: TrieMap m => Key m -> a -> m a -> m a
insertTM k v m = alterTM k (\_ -> Just v) m
deleteTM :: TrieMap m => Key m -> m a -> m a
deleteTM k m = alterTM k (\_ -> Nothing) m
----------------------
-- Recall that
-- Control.Monad.(>=>) :: (a -> Maybe b) -> (b -> Maybe c) -> a -> Maybe c
(>.>) :: (a -> b) -> (b -> c) -> a -> c
-- Reverse function composition (do f first, then g)
infixr 1 >.>
(f >.> g) x = g (f x)
infixr 1 |>, |>>
(|>) :: a -> (a->b) -> b -- Reverse application
x |> f = f x
----------------------
(|>>) :: TrieMap m2
=> (XT (m2 a) -> m1 (m2 a) -> m1 (m2 a))
-> (m2 a -> m2 a)
-> m1 (m2 a) -> m1 (m2 a)
(|>>) f g = f (Just . g . deMaybe)
deMaybe :: TrieMap m => Maybe (m a) -> m a
deMaybe Nothing = emptyTM
deMaybe (Just m) = m
{-
************************************************************************
* *
IntMaps
* *
************************************************************************
-}
instance TrieMap IntMap.IntMap where
type Key IntMap.IntMap = Int
emptyTM = IntMap.empty
lookupTM k m = IntMap.lookup k m
alterTM = xtInt
foldTM k m z = IntMap.fold k z m
mapTM f m = IntMap.map f m
xtInt :: Int -> XT a -> IntMap.IntMap a -> IntMap.IntMap a
xtInt k f m = IntMap.alter f k m
instance Ord k => TrieMap (Map.Map k) where
type Key (Map.Map k) = k
emptyTM = Map.empty
lookupTM = Map.lookup
alterTM k f m = Map.alter f k m
foldTM k m z = Map.fold k z m
mapTM f m = Map.map f m
instance TrieMap UniqFM where
type Key UniqFM = Unique
emptyTM = emptyUFM
lookupTM k m = lookupUFM m k
alterTM k f m = alterUFM f m k
foldTM k m z = foldUFM k z m
mapTM f m = mapUFM f m
{-
************************************************************************
* *
Lists
* *
************************************************************************
If m is a map from k -> val
then (MaybeMap m) is a map from (Maybe k) -> val
-}
data MaybeMap m a = MM { mm_nothing :: Maybe a, mm_just :: m a }
instance TrieMap m => TrieMap (MaybeMap m) where
type Key (MaybeMap m) = Maybe (Key m)
emptyTM = MM { mm_nothing = Nothing, mm_just = emptyTM }
lookupTM = lkMaybe lookupTM
alterTM = xtMaybe alterTM
foldTM = fdMaybe
mapTM = mapMb
mapMb :: TrieMap m => (a->b) -> MaybeMap m a -> MaybeMap m b
mapMb f (MM { mm_nothing = mn, mm_just = mj })
= MM { mm_nothing = fmap f mn, mm_just = mapTM f mj }
lkMaybe :: (forall b. k -> m b -> Maybe b)
-> Maybe k -> MaybeMap m a -> Maybe a
lkMaybe _ Nothing = mm_nothing
lkMaybe lk (Just x) = mm_just >.> lk x
xtMaybe :: (forall b. k -> XT b -> m b -> m b)
-> Maybe k -> XT a -> MaybeMap m a -> MaybeMap m a
xtMaybe _ Nothing f m = m { mm_nothing = f (mm_nothing m) }
xtMaybe tr (Just x) f m = m { mm_just = mm_just m |> tr x f }
fdMaybe :: TrieMap m => (a -> b -> b) -> MaybeMap m a -> b -> b
fdMaybe k m = foldMaybe k (mm_nothing m)
. foldTM k (mm_just m)
--------------------
data ListMap m a
= LM { lm_nil :: Maybe a
, lm_cons :: m (ListMap m a) }
instance TrieMap m => TrieMap (ListMap m) where
type Key (ListMap m) = [Key m]
emptyTM = LM { lm_nil = Nothing, lm_cons = emptyTM }
lookupTM = lkList lookupTM
alterTM = xtList alterTM
foldTM = fdList
mapTM = mapList
mapList :: TrieMap m => (a->b) -> ListMap m a -> ListMap m b
mapList f (LM { lm_nil = mnil, lm_cons = mcons })
= LM { lm_nil = fmap f mnil, lm_cons = mapTM (mapTM f) mcons }
lkList :: TrieMap m => (forall b. k -> m b -> Maybe b)
-> [k] -> ListMap m a -> Maybe a
lkList _ [] = lm_nil
lkList lk (x:xs) = lm_cons >.> lk x >=> lkList lk xs
xtList :: TrieMap m => (forall b. k -> XT b -> m b -> m b)
-> [k] -> XT a -> ListMap m a -> ListMap m a
xtList _ [] f m = m { lm_nil = f (lm_nil m) }
xtList tr (x:xs) f m = m { lm_cons = lm_cons m |> tr x |>> xtList tr xs f }
fdList :: forall m a b. TrieMap m
=> (a -> b -> b) -> ListMap m a -> b -> b
fdList k m = foldMaybe k (lm_nil m)
. foldTM (fdList k) (lm_cons m)
foldMaybe :: (a -> b -> b) -> Maybe a -> b -> b
foldMaybe _ Nothing b = b
foldMaybe k (Just a) b = k a b
{-
************************************************************************
* *
Basic maps
* *
************************************************************************
-}
lkNamed :: NamedThing n => n -> NameEnv a -> Maybe a
lkNamed n env = lookupNameEnv env (getName n)
xtNamed :: NamedThing n => n -> XT a -> NameEnv a -> NameEnv a
xtNamed tc f m = alterNameEnv f m (getName tc)
------------------------
type LiteralMap a = Map.Map Literal a
emptyLiteralMap :: LiteralMap a
emptyLiteralMap = emptyTM
lkLit :: Literal -> LiteralMap a -> Maybe a
lkLit = lookupTM
xtLit :: Literal -> XT a -> LiteralMap a -> LiteralMap a
xtLit = alterTM
{-
************************************************************************
* *
GenMap
* *
************************************************************************
Note [Compressed TrieMap]
~~~~~~~~~~~~~~~~~~~~~~~~~
The GenMap constructor augments TrieMaps with leaf compression. This helps
solve the performance problem detailed in #9960: suppose we have a handful
H of entries in a TrieMap, each with a very large key, size K. If you fold over
such a TrieMap you'd expect time O(H). That would certainly be true of an
association list! But with TrieMap we actually have to navigate down a long
singleton structure to get to the elements, so it takes time O(K*H). This
can really hurt on many type-level computation benchmarks:
see for example T9872d.
The point of a TrieMap is that you need to navigate to the point where only one
key remains, and then things should be fast. So the point of a SingletonMap
is that, once we are down to a single (key,value) pair, we stop and
just use SingletonMap.
'EmptyMap' provides an even more basic (but essential) optimization: if there is
nothing in the map, don't bother building out the (possibly infinite) recursive
TrieMap structure!
-}
data GenMap m a
= EmptyMap
| SingletonMap (Key m) a
| MultiMap (m a)
instance (Outputable a, Outputable (m a)) => Outputable (GenMap m a) where
ppr EmptyMap = text "Empty map"
ppr (SingletonMap _ v) = text "Singleton map" <+> ppr v
ppr (MultiMap m) = ppr m
-- TODO undecidable instance
instance (Eq (Key m), TrieMap m) => TrieMap (GenMap m) where
type Key (GenMap m) = Key m
emptyTM = EmptyMap
lookupTM = lkG
alterTM = xtG
foldTM = fdG
mapTM = mapG
-- NB: Be careful about RULES and type families (#5821). So we should make sure
-- to specify @Key TypeMapX@ (and not @DeBruijn Type@, the reduced form)
{-# SPECIALIZE lkG :: Key TypeMapX -> TypeMapG a -> Maybe a #-}
{-# SPECIALIZE lkG :: Key CoercionMapX -> CoercionMapG a -> Maybe a #-}
{-# SPECIALIZE lkG :: Key CoreMapX -> CoreMapG a -> Maybe a #-}
lkG :: (Eq (Key m), TrieMap m) => Key m -> GenMap m a -> Maybe a
lkG _ EmptyMap = Nothing
lkG k (SingletonMap k' v') | k == k' = Just v'
| otherwise = Nothing
lkG k (MultiMap m) = lookupTM k m
{-# SPECIALIZE xtG :: Key TypeMapX -> XT a -> TypeMapG a -> TypeMapG a #-}
{-# SPECIALIZE xtG :: Key CoercionMapX -> XT a -> CoercionMapG a -> CoercionMapG a #-}
{-# SPECIALIZE xtG :: Key CoreMapX -> XT a -> CoreMapG a -> CoreMapG a #-}
xtG :: (Eq (Key m), TrieMap m) => Key m -> XT a -> GenMap m a -> GenMap m a
xtG k f EmptyMap
= case f Nothing of
Just v -> SingletonMap k v
Nothing -> EmptyMap
xtG k f m@(SingletonMap k' v')
| k' == k
-- The new key matches the (single) key already in the tree. Hence,
-- apply @f@ to @Just v'@ and build a singleton or empty map depending
-- on the 'Just'/'Nothing' response respectively.
= case f (Just v') of
Just v'' -> SingletonMap k' v''
Nothing -> EmptyMap
| otherwise
-- We've hit a singleton tree for a different key than the one we are
-- searching for. Hence apply @f@ to @Nothing@. If result is @Nothing@ then
-- we can just return the old map. If not, we need a map with *two*
-- entries. The easiest way to do that is to insert two items into an empty
-- map of type @m a@.
= case f Nothing of
Nothing -> m
Just v -> emptyTM |> alterTM k' (const (Just v'))
>.> alterTM k (const (Just v))
>.> MultiMap
xtG k f (MultiMap m) = MultiMap (alterTM k f m)
{-# SPECIALIZE mapG :: (a -> b) -> TypeMapG a -> TypeMapG b #-}
{-# SPECIALIZE mapG :: (a -> b) -> CoercionMapG a -> CoercionMapG b #-}
{-# SPECIALIZE mapG :: (a -> b) -> CoreMapG a -> CoreMapG b #-}
mapG :: TrieMap m => (a -> b) -> GenMap m a -> GenMap m b
mapG _ EmptyMap = EmptyMap
mapG f (SingletonMap k v) = SingletonMap k (f v)
mapG f (MultiMap m) = MultiMap (mapTM f m)
{-# SPECIALIZE fdG :: (a -> b -> b) -> TypeMapG a -> b -> b #-}
{-# SPECIALIZE fdG :: (a -> b -> b) -> CoercionMapG a -> b -> b #-}
{-# SPECIALIZE fdG :: (a -> b -> b) -> CoreMapG a -> b -> b #-}
fdG :: TrieMap m => (a -> b -> b) -> GenMap m a -> b -> b
fdG _ EmptyMap = \z -> z
fdG k (SingletonMap _ v) = \z -> k v z
fdG k (MultiMap m) = foldTM k m
{-
************************************************************************
* *
CoreMap
* *
************************************************************************
Note [Binders]
~~~~~~~~~~~~~~
* In general we check binders as late as possible because types are
less likely to differ than expression structure. That's why
cm_lam :: CoreMapG (TypeMapG a)
rather than
cm_lam :: TypeMapG (CoreMapG a)
* We don't need to look at the type of some binders, notalby
- the case binder in (Case _ b _ _)
- the binders in an alternative
because they are totally fixed by the context
Note [Empty case alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* For a key (Case e b ty (alt:alts)) we don't need to look the return type
'ty', because every alternative has that type.
* For a key (Case e b ty []) we MUST look at the return type 'ty', because
otherwise (Case (error () "urk") _ Int []) would compare equal to
(Case (error () "urk") _ Bool [])
which is utterly wrong (Trac #6097)
We could compare the return type regardless, but the wildly common case
is that it's unnecesary, so we have two fields (cm_case and cm_ecase)
for the two possibilities. Only cm_ecase looks at the type.
See also Note [Empty case alternatives] in CoreSyn.
-}
-- | @CoreMap a@ is a map from 'CoreExpr' to @a@. If you are a client, this
-- is the type you want.
newtype CoreMap a = CoreMap (CoreMapG a)
instance TrieMap CoreMap where
type Key CoreMap = CoreExpr
emptyTM = CoreMap emptyTM
lookupTM k (CoreMap m) = lookupTM (deBruijnize k) m
alterTM k f (CoreMap m) = CoreMap (alterTM (deBruijnize k) f m)
foldTM k (CoreMap m) = foldTM k m
mapTM f (CoreMap m) = CoreMap (mapTM f m)
-- | @CoreMapG a@ is a map from @DeBruijn CoreExpr@ to @a@. The extended
-- key makes it suitable for recursive traversal, since it can track binders,
-- but it is strictly internal to this module. If you are including a 'CoreMap'
-- inside another 'TrieMap', this is the type you want.
type CoreMapG = GenMap CoreMapX
-- | @CoreMapX a@ is the base map from @DeBruijn CoreExpr@ to @a@, but without
-- the 'GenMap' optimization.
data CoreMapX a
= CM { cm_var :: VarMap a
, cm_lit :: LiteralMap a
, cm_co :: CoercionMapG a
, cm_type :: TypeMapG a
, cm_cast :: CoreMapG (CoercionMapG a)
, cm_tick :: CoreMapG (TickishMap a)
, cm_app :: CoreMapG (CoreMapG a)
, cm_lam :: CoreMapG (BndrMap a) -- Note [Binders]
, cm_letn :: CoreMapG (CoreMapG (BndrMap a))
, cm_letr :: ListMap CoreMapG (CoreMapG (ListMap BndrMap a))
, cm_case :: CoreMapG (ListMap AltMap a)
, cm_ecase :: CoreMapG (TypeMapG a) -- Note [Empty case alternatives]
}
instance Eq (DeBruijn CoreExpr) where
D env1 e1 == D env2 e2 = go e1 e2 where
go (Var v1) (Var v2) = case (lookupCME env1 v1, lookupCME env2 v2) of
(Just b1, Just b2) -> b1 == b2
(Nothing, Nothing) -> v1 == v2
_ -> False
go (Lit lit1) (Lit lit2) = lit1 == lit2
go (Type t1) (Type t2) = D env1 t1 == D env2 t2
go (Coercion co1) (Coercion co2) = D env1 co1 == D env2 co2
go (Cast e1 co1) (Cast e2 co2) = D env1 co1 == D env2 co2 && go e1 e2
go (App f1 a1) (App f2 a2) = go f1 f2 && go a1 a2
-- This seems a bit dodgy, see 'eqTickish'
go (Tick n1 e1) (Tick n2 e2) = n1 == n2 && go e1 e2
go (Lam b1 e1) (Lam b2 e2)
= D env1 (varType b1) == D env2 (varType b2)
&& D (extendCME env1 b1) e1 == D (extendCME env2 b2) e2
go (Let (NonRec v1 r1) e1) (Let (NonRec v2 r2) e2)
= go r1 r2
&& D (extendCME env1 v1) e1 == D (extendCME env2 v2) e2
go (Let (Rec ps1) e1) (Let (Rec ps2) e2)
= length ps1 == length ps2
&& D env1' rs1 == D env2' rs2
&& D env1' e1 == D env2' e2
where
(bs1,rs1) = unzip ps1
(bs2,rs2) = unzip ps2
env1' = extendCMEs env1 bs1
env2' = extendCMEs env2 bs2
go (Case e1 b1 t1 a1) (Case e2 b2 t2 a2)
| null a1 -- See Note [Empty case alternatives]
= null a2 && go e1 e2 && D env1 t1 == D env2 t2
| otherwise
= go e1 e2 && D (extendCME env1 b1) a1 == D (extendCME env2 b2) a2
go _ _ = False
emptyE :: CoreMapX a
emptyE = CM { cm_var = emptyTM, cm_lit = emptyLiteralMap
, cm_co = emptyTM, cm_type = emptyTM
, cm_cast = emptyTM, cm_app = emptyTM
, cm_lam = emptyTM, cm_letn = emptyTM
, cm_letr = emptyTM, cm_case = emptyTM
, cm_ecase = emptyTM, cm_tick = emptyTM }
instance TrieMap CoreMapX where
type Key CoreMapX = DeBruijn CoreExpr
emptyTM = emptyE
lookupTM = lkE
alterTM = xtE
foldTM = fdE
mapTM = mapE
--------------------------
mapE :: (a->b) -> CoreMapX a -> CoreMapX b
mapE f (CM { cm_var = cvar, cm_lit = clit
, cm_co = cco, cm_type = ctype
, cm_cast = ccast , cm_app = capp
, cm_lam = clam, cm_letn = cletn
, cm_letr = cletr, cm_case = ccase
, cm_ecase = cecase, cm_tick = ctick })
= CM { cm_var = mapTM f cvar, cm_lit = mapTM f clit
, cm_co = mapTM f cco, cm_type = mapTM f ctype
, cm_cast = mapTM (mapTM f) ccast, cm_app = mapTM (mapTM f) capp
, cm_lam = mapTM (mapTM f) clam, cm_letn = mapTM (mapTM (mapTM f)) cletn
, cm_letr = mapTM (mapTM (mapTM f)) cletr, cm_case = mapTM (mapTM f) ccase
, cm_ecase = mapTM (mapTM f) cecase, cm_tick = mapTM (mapTM f) ctick }
--------------------------
lookupCoreMap :: CoreMap a -> CoreExpr -> Maybe a
lookupCoreMap cm e = lookupTM e cm
extendCoreMap :: CoreMap a -> CoreExpr -> a -> CoreMap a
extendCoreMap m e v = alterTM e (\_ -> Just v) m
foldCoreMap :: (a -> b -> b) -> b -> CoreMap a -> b
foldCoreMap k z m = foldTM k m z
emptyCoreMap :: CoreMap a
emptyCoreMap = emptyTM
instance Outputable a => Outputable (CoreMap a) where
ppr m = text "CoreMap elts" <+> ppr (foldTM (:) m [])
-------------------------
fdE :: (a -> b -> b) -> CoreMapX a -> b -> b
fdE k m
= foldTM k (cm_var m)
. foldTM k (cm_lit m)
. foldTM k (cm_co m)
. foldTM k (cm_type m)
. foldTM (foldTM k) (cm_cast m)
. foldTM (foldTM k) (cm_tick m)
. foldTM (foldTM k) (cm_app m)
. foldTM (foldTM k) (cm_lam m)
. foldTM (foldTM (foldTM k)) (cm_letn m)
. foldTM (foldTM (foldTM k)) (cm_letr m)
. foldTM (foldTM k) (cm_case m)
. foldTM (foldTM k) (cm_ecase m)
-- lkE: lookup in trie for expressions
lkE :: DeBruijn CoreExpr -> CoreMapX a -> Maybe a
lkE (D env expr) cm = go expr cm
where
go (Var v) = cm_var >.> lkVar env v
go (Lit l) = cm_lit >.> lkLit l
go (Type t) = cm_type >.> lkG (D env t)
go (Coercion c) = cm_co >.> lkG (D env c)
go (Cast e c) = cm_cast >.> lkG (D env e) >=> lkG (D env c)
go (Tick tickish e) = cm_tick >.> lkG (D env e) >=> lkTickish tickish
go (App e1 e2) = cm_app >.> lkG (D env e2) >=> lkG (D env e1)
go (Lam v e) = cm_lam >.> lkG (D (extendCME env v) e)
>=> lkBndr env v
go (Let (NonRec b r) e) = cm_letn >.> lkG (D env r)
>=> lkG (D (extendCME env b) e) >=> lkBndr env b
go (Let (Rec prs) e) = let (bndrs,rhss) = unzip prs
env1 = extendCMEs env bndrs
in cm_letr
>.> lkList (lkG . D env1) rhss
>=> lkG (D env1 e)
>=> lkList (lkBndr env1) bndrs
go (Case e b ty as) -- See Note [Empty case alternatives]
| null as = cm_ecase >.> lkG (D env e) >=> lkG (D env ty)
| otherwise = cm_case >.> lkG (D env e)
>=> lkList (lkA (extendCME env b)) as
xtE :: DeBruijn CoreExpr -> XT a -> CoreMapX a -> CoreMapX a
xtE (D env (Var v)) f m = m { cm_var = cm_var m
|> xtVar env v f }
xtE (D env (Type t)) f m = m { cm_type = cm_type m
|> xtG (D env t) f }
xtE (D env (Coercion c)) f m = m { cm_co = cm_co m
|> xtG (D env c) f }
xtE (D _ (Lit l)) f m = m { cm_lit = cm_lit m |> xtLit l f }
xtE (D env (Cast e c)) f m = m { cm_cast = cm_cast m |> xtG (D env e)
|>> xtG (D env c) f }
xtE (D env (Tick t e)) f m = m { cm_tick = cm_tick m |> xtG (D env e)
|>> xtTickish t f }
xtE (D env (App e1 e2)) f m = m { cm_app = cm_app m |> xtG (D env e2)
|>> xtG (D env e1) f }
xtE (D env (Lam v e)) f m = m { cm_lam = cm_lam m
|> xtG (D (extendCME env v) e)
|>> xtBndr env v f }
xtE (D env (Let (NonRec b r) e)) f m = m { cm_letn = cm_letn m
|> xtG (D (extendCME env b) e)
|>> xtG (D env r)
|>> xtBndr env b f }
xtE (D env (Let (Rec prs) e)) f m = m { cm_letr =
let (bndrs,rhss) = unzip prs
env1 = extendCMEs env bndrs
in cm_letr m
|> xtList (xtG . D env1) rhss
|>> xtG (D env1 e)
|>> xtList (xtBndr env1)
bndrs f }
xtE (D env (Case e b ty as)) f m
| null as = m { cm_ecase = cm_ecase m |> xtG (D env e)
|>> xtG (D env ty) f }
| otherwise = m { cm_case = cm_case m |> xtG (D env e)
|>> let env1 = extendCME env b
in xtList (xtA env1) as f }
-- TODO: this seems a bit dodgy, see 'eqTickish'
type TickishMap a = Map.Map (Tickish Id) a
lkTickish :: Tickish Id -> TickishMap a -> Maybe a
lkTickish = lookupTM
xtTickish :: Tickish Id -> XT a -> TickishMap a -> TickishMap a
xtTickish = alterTM
------------------------
data AltMap a -- A single alternative
= AM { am_deflt :: CoreMapG a
, am_data :: NameEnv (CoreMapG a)
, am_lit :: LiteralMap (CoreMapG a) }
instance TrieMap AltMap where
type Key AltMap = CoreAlt
emptyTM = AM { am_deflt = emptyTM
, am_data = emptyNameEnv
, am_lit = emptyLiteralMap }
lookupTM = lkA emptyCME
alterTM = xtA emptyCME
foldTM = fdA
mapTM = mapA
instance Eq (DeBruijn CoreAlt) where
D env1 a1 == D env2 a2 = go a1 a2 where
go (DEFAULT, _, rhs1) (DEFAULT, _, rhs2)
= D env1 rhs1 == D env2 rhs2
go (LitAlt lit1, _, rhs1) (LitAlt lit2, _, rhs2)
= lit1 == lit2 && D env1 rhs1 == D env2 rhs2
go (DataAlt dc1, bs1, rhs1) (DataAlt dc2, bs2, rhs2)
= dc1 == dc2 &&
D (extendCMEs env1 bs1) rhs1 == D (extendCMEs env2 bs2) rhs2
go _ _ = False
mapA :: (a->b) -> AltMap a -> AltMap b
mapA f (AM { am_deflt = adeflt, am_data = adata, am_lit = alit })
= AM { am_deflt = mapTM f adeflt
, am_data = mapNameEnv (mapTM f) adata
, am_lit = mapTM (mapTM f) alit }
lkA :: CmEnv -> CoreAlt -> AltMap a -> Maybe a
lkA env (DEFAULT, _, rhs) = am_deflt >.> lkG (D env rhs)
lkA env (LitAlt lit, _, rhs) = am_lit >.> lkLit lit >=> lkG (D env rhs)
lkA env (DataAlt dc, bs, rhs) = am_data >.> lkNamed dc
>=> lkG (D (extendCMEs env bs) rhs)
xtA :: CmEnv -> CoreAlt -> XT a -> AltMap a -> AltMap a
xtA env (DEFAULT, _, rhs) f m =
m { am_deflt = am_deflt m |> xtG (D env rhs) f }
xtA env (LitAlt l, _, rhs) f m =
m { am_lit = am_lit m |> xtLit l |>> xtG (D env rhs) f }
xtA env (DataAlt d, bs, rhs) f m =
m { am_data = am_data m |> xtNamed d
|>> xtG (D (extendCMEs env bs) rhs) f }
fdA :: (a -> b -> b) -> AltMap a -> b -> b
fdA k m = foldTM k (am_deflt m)
. foldTM (foldTM k) (am_data m)
. foldTM (foldTM k) (am_lit m)
{-
************************************************************************
* *
Coercions
* *
************************************************************************
-}
newtype CoercionMap a = CoercionMap (CoercionMapG a)
instance TrieMap CoercionMap where
type Key CoercionMap = Coercion
emptyTM = CoercionMap emptyTM
lookupTM k (CoercionMap m) = lookupTM (deBruijnize k) m
alterTM k f (CoercionMap m) = CoercionMap (alterTM (deBruijnize k) f m)
foldTM k (CoercionMap m) = foldTM k m
mapTM f (CoercionMap m) = CoercionMap (mapTM f m)
type CoercionMapG = GenMap CoercionMapX
data CoercionMapX a
= KM { km_refl :: RoleMap (TypeMapG a)
, km_tc_app :: RoleMap (NameEnv (ListMap CoercionMapG a))
, km_app :: CoercionMapG (CoercionMapG a)
, km_forall :: CoercionMapG (BndrMap a) -- See Note [Binders]
, km_var :: VarMap a
, km_axiom :: NameEnv (IntMap.IntMap (ListMap CoercionMapG a))
, km_univ :: RoleMap (TypeMapG (TypeMapG a))
, km_sym :: CoercionMapG a
, km_trans :: CoercionMapG (CoercionMapG a)
, km_nth :: IntMap.IntMap (CoercionMapG a)
, km_left :: CoercionMapG a
, km_right :: CoercionMapG a
, km_inst :: CoercionMapG (TypeMapG a)
, km_sub :: CoercionMapG a
, km_axiom_rule :: Map.Map FastString
(ListMap TypeMapG (ListMap CoercionMapG a))
}
instance Eq (DeBruijn Coercion) where
D env1 co1 == D env2 co2 = go co1 co2 where
go (Refl eq1 ty1) (Refl eq2 ty2)
= eq1 == eq2 && D env1 ty1 == D env2 ty2
go (TyConAppCo eq1 tc1 cos1) (TyConAppCo eq2 tc2 cos2)
= eq1 == eq2 && tc1 == tc2 && D env1 cos1 == D env2 cos2
go (AppCo co11 co12) (AppCo co21 co22)
= D env1 co11 == D env2 co21 &&
D env1 co12 == D env2 co22
go (ForAllCo v1 co1) (ForAllCo v2 co2)
= D env1 (tyVarKind v1) == D env2 (tyVarKind v2) &&
D (extendCME env1 v1) co1 == D (extendCME env2 v2) co2
go (CoVarCo cv1) (CoVarCo cv2)
= case (lookupCME env1 cv1, lookupCME env2 cv2) of
(Just bv1, Just bv2) -> bv1 == bv2
(Nothing, Nothing) -> cv1 == cv2
_ -> False
go (AxiomInstCo con1 ind1 cos1) (AxiomInstCo con2 ind2 cos2)
= con1 == con2 && ind1 == ind2 && D env1 cos1 == D env2 cos2
go (UnivCo _ r1 ty11 ty12) (UnivCo _ r2 ty21 ty22)
= r1 == r2 && D env1 ty11 == D env2 ty21 &&
D env1 ty12 == D env2 ty22
go (SymCo co1) (SymCo co2)
= D env1 co1 == D env2 co2
go (TransCo co11 co12) (TransCo co21 co22)
= D env1 co11 == D env2 co21 &&
D env1 co12 == D env2 co22
go (NthCo d1 co1) (NthCo d2 co2)
= d1 == d2 && D env1 co1 == D env2 co2
go (LRCo d1 co1) (LRCo d2 co2)
= d1 == d2 && D env1 co1 == D env2 co2
go (InstCo co1 ty1) (InstCo co2 ty2)
= D env1 co1 == D env2 co2 && D env1 ty1 == D env2 ty2
go (SubCo co1) (SubCo co2)
= D env1 co1 == D env2 co2
go (AxiomRuleCo a1 ts1 cs1) (AxiomRuleCo a2 ts2 cs2)
= a1 == a2 && D env1 ts1 == D env2 ts2 && D env1 cs1 == D env2 cs2
go _ _ = False
emptyC :: CoercionMapX a
emptyC = KM { km_refl = emptyTM, km_tc_app = emptyTM
, km_app = emptyTM, km_forall = emptyTM
, km_var = emptyTM, km_axiom = emptyNameEnv
, km_univ = emptyTM, km_sym = emptyTM, km_trans = emptyTM
, km_nth = emptyTM, km_left = emptyTM, km_right = emptyTM
, km_inst = emptyTM, km_sub = emptyTM
, km_axiom_rule = emptyTM }
instance TrieMap CoercionMapX where
type Key CoercionMapX = DeBruijn Coercion
emptyTM = emptyC
lookupTM = lkC
alterTM = xtC
foldTM = fdC
mapTM = mapC
mapC :: (a->b) -> CoercionMapX a -> CoercionMapX b
mapC f (KM { km_refl = krefl, km_tc_app = ktc
, km_app = kapp, km_forall = kforall
, km_var = kvar, km_axiom = kax
, km_univ = kuniv , km_sym = ksym, km_trans = ktrans
, km_nth = knth, km_left = kml, km_right = kmr
, km_inst = kinst, km_sub = ksub
, km_axiom_rule = kaxr })
= KM { km_refl = mapTM (mapTM f) krefl
, km_tc_app = mapTM (mapNameEnv (mapTM f)) ktc
, km_app = mapTM (mapTM f) kapp
, km_forall = mapTM (mapTM f) kforall
, km_var = mapTM f kvar
, km_axiom = mapNameEnv (IntMap.map (mapTM f)) kax
, km_univ = mapTM (mapTM (mapTM f)) kuniv
, km_sym = mapTM f ksym
, km_trans = mapTM (mapTM f) ktrans
, km_nth = IntMap.map (mapTM f) knth
, km_left = mapTM f kml
, km_right = mapTM f kmr
, km_inst = mapTM (mapTM f) kinst
, km_sub = mapTM f ksub
, km_axiom_rule = mapTM (mapTM (mapTM f)) kaxr
}
lkC :: DeBruijn Coercion -> CoercionMapX a -> Maybe a
lkC (D env co) m = go co m
where
go (Refl r ty) = km_refl >.> lookupTM r >=> lkG (D env ty)
go (TyConAppCo r tc cs) = km_tc_app >.> lookupTM r >=> lkNamed tc >=>
lkList (lkG . D env) cs
go (AxiomInstCo ax ind cs) = km_axiom >.> lkNamed ax >=> lookupTM ind >=>
lkList (lkG . D env) cs
go (AppCo c1 c2) = km_app >.> lkG (D env c1) >=> lkG (D env c2)
go (TransCo c1 c2) = km_trans >.> lkG (D env c1) >=> lkG (D env c2)
-- the provenance is not used in the map
go (UnivCo _ r t1 t2) = km_univ >.> lookupTM r >=> lkG (D env t1) >=>
lkG (D env t2)
go (InstCo c t) = km_inst >.> lkG (D env c) >=> lkG (D env t)
go (ForAllCo v c) = km_forall >.> lkG (D (extendCME env v) c) >=>
lkBndr env v
go (CoVarCo v) = km_var >.> lkVar env v
go (SymCo c) = km_sym >.> lkG (D env c)
go (NthCo n c) = km_nth >.> lookupTM n >=> lkG (D env c)
go (LRCo CLeft c) = km_left >.> lkG (D env c)
go (LRCo CRight c) = km_right >.> lkG (D env c)
go (SubCo c) = km_sub >.> lkG (D env c)
go (AxiomRuleCo co ts cs) = km_axiom_rule >.>
lookupTM (coaxrName co) >=>
lkList (lkG . D env) ts >=>
lkList (lkG . D env) cs
xtC :: DeBruijn Coercion -> XT a -> CoercionMapX a -> CoercionMapX a
xtC (D env c) f m = case c of
Refl r ty -> m { km_refl = km_refl m |> xtR r
|>> xtG (D env ty) f }
TyConAppCo r tc cs -> m { km_tc_app = km_tc_app m |> xtR r |>> xtNamed tc
|>> xtList (xtG . D env) cs f}
AxiomInstCo ax ind cs -> m { km_axiom = km_axiom m |> xtNamed ax |>> xtInt ind
|>> xtList (xtG . D env) cs f}
AppCo c1 c2 -> m { km_app = km_app m |> xtG (D env c1)
|>> xtG (D env c2) f }
TransCo c1 c2 -> m { km_trans = km_trans m |> xtG (D env c1)
|>> xtG (D env c2) f }
-- the provenance is not used in the map
UnivCo _ r t1 t2 -> m { km_univ = km_univ m |> xtR r
|>> xtG (D env t1)
|>> xtG (D env t2) f }
InstCo c t -> m { km_inst = km_inst m |> xtG (D env c)
|>> xtG (D env t) f}
ForAllCo v c -> m { km_forall = km_forall m
|> xtG (D (extendCME env v) c)
|>> xtBndr env v f }
CoVarCo v -> m { km_var = km_var m |> xtVar env v f }
SymCo c -> m { km_sym = km_sym m |> xtG (D env c) f }
NthCo n c -> m { km_nth = km_nth m |> xtInt n
|>> xtG (D env c) f }
LRCo CLeft c -> m { km_left = km_left m |> xtG (D env c) f }
LRCo CRight c -> m { km_right = km_right m |> xtG (D env c) f }
SubCo c -> m { km_sub = km_sub m |> xtG (D env c) f }
AxiomRuleCo co ts cs -> m { km_axiom_rule = km_axiom_rule m
|> alterTM (coaxrName co)
|>> xtList (xtG . D env) ts
|>> xtList (xtG . D env) cs f }
fdC :: (a -> b -> b) -> CoercionMapX a -> b -> b
fdC k m = foldTM (foldTM k) (km_refl m)
. foldTM (foldTM (foldTM k)) (km_tc_app m)
. foldTM (foldTM k) (km_app m)
. foldTM (foldTM k) (km_forall m)
. foldTM k (km_var m)
. foldTM (foldTM (foldTM k)) (km_axiom m)
. foldTM (foldTM (foldTM k)) (km_univ m)
. foldTM k (km_sym m)
. foldTM (foldTM k) (km_trans m)
. foldTM (foldTM k) (km_nth m)
. foldTM k (km_left m)
. foldTM k (km_right m)
. foldTM (foldTM k) (km_inst m)
. foldTM k (km_sub m)
. foldTM (foldTM (foldTM k)) (km_axiom_rule m)
newtype RoleMap a = RM { unRM :: (IntMap.IntMap a) }
instance TrieMap RoleMap where
type Key RoleMap = Role
emptyTM = RM emptyTM
lookupTM = lkR
alterTM = xtR
foldTM = fdR
mapTM = mapR
lkR :: Role -> RoleMap a -> Maybe a
lkR Nominal = lookupTM 1 . unRM
lkR Representational = lookupTM 2 . unRM
lkR Phantom = lookupTM 3 . unRM
xtR :: Role -> XT a -> RoleMap a -> RoleMap a
xtR Nominal f = RM . alterTM 1 f . unRM
xtR Representational f = RM . alterTM 2 f . unRM
xtR Phantom f = RM . alterTM 3 f . unRM
fdR :: (a -> b -> b) -> RoleMap a -> b -> b
fdR f (RM m) = foldTM f m
mapR :: (a -> b) -> RoleMap a -> RoleMap b
mapR f = RM . mapTM f . unRM
{-
************************************************************************
* *
Types
* *
************************************************************************
-}
-- | @TypeMap a@ is a map from 'Type' to @a@. If you are a client, this
-- is the type you want.
newtype TypeMap a = TypeMap (TypeMapG a)
-- Below are some client-oriented functions which operate on 'TypeMap'.
instance TrieMap TypeMap where
type Key TypeMap = Type
emptyTM = TypeMap emptyTM
lookupTM k (TypeMap m) = lookupTM (deBruijnize k) m
alterTM k f (TypeMap m) = TypeMap (alterTM (deBruijnize k) f m)
foldTM k (TypeMap m) = foldTM k m
mapTM f (TypeMap m) = TypeMap (mapTM f m)
foldTypeMap :: (a -> b -> b) -> b -> TypeMap a -> b
foldTypeMap k z m = foldTM k m z
emptyTypeMap :: TypeMap a
emptyTypeMap = emptyTM
lookupTypeMap :: TypeMap a -> Type -> Maybe a
lookupTypeMap cm t = lookupTM t cm
-- Returns the type map entries that have keys starting with the given tycon.
-- This only considers saturated applications (i.e. TyConApp ones).
lookupTypeMapTyCon :: TypeMap a -> TyCon -> [a]
lookupTypeMapTyCon (TypeMap EmptyMap) _ = []
lookupTypeMapTyCon (TypeMap (SingletonMap (D _ (TyConApp tc' _)) v)) tc
| tc' == tc = [v]
| otherwise = []
lookupTypeMapTyCon (TypeMap SingletonMap{}) _ = []
lookupTypeMapTyCon (TypeMap (MultiMap TM { tm_tc_app = cs })) tc =
case lookupUFM cs tc of
Nothing -> []
Just xs -> foldTM (:) xs []
extendTypeMap :: TypeMap a -> Type -> a -> TypeMap a
extendTypeMap m t v = alterTM t (const (Just v)) m
-- | @TypeMapG a@ is a map from @DeBruijn Type@ to @a@. The extended
-- key makes it suitable for recursive traversal, since it can track binders,
-- but it is strictly internal to this module. If you are including a 'TypeMap'
-- inside another 'TrieMap', this is the type you want.
type TypeMapG = GenMap TypeMapX
-- | @TypeMapX a@ is the base map from @DeBruijn Type@ to @a@, but without the
-- 'GenMap' optimization.
data TypeMapX a
= TM { tm_var :: VarMap a
, tm_app :: TypeMapG (TypeMapG a)
, tm_fun :: TypeMapG (TypeMapG a)
, tm_tc_app :: NameEnv (ListMap TypeMapG a)
, tm_forall :: TypeMapG (BndrMap a) -- See Note [Binders]
, tm_tylit :: TyLitMap a
}
instance TrieMap TypeMapX where
type Key TypeMapX = DeBruijn Type
emptyTM = emptyT
lookupTM = lkT
alterTM = xtT
foldTM = fdT
mapTM = mapT
instance Eq (DeBruijn Type) where
env_t@(D env t) == env_t'@(D env' t')
| Just new_t <- coreView t = D env new_t == env_t'
| Just new_t' <- coreView t' = env_t == D env' new_t'
| otherwise =
case (t, t') of
(TyVarTy v, TyVarTy v')
-> case (lookupCME env v, lookupCME env' v') of
(Just bv, Just bv') -> bv == bv'
(Nothing, Nothing) -> v == v'
_ -> False
(AppTy t1 t2, AppTy t1' t2')
-> D env t1 == D env' t1' && D env t2 == D env' t2'
(FunTy t1 t2, FunTy t1' t2')
-> D env t1 == D env' t1' && D env t2 == D env' t2'
(TyConApp tc tys, TyConApp tc' tys')
-> tc == tc' && D env tys == D env' tys'
(LitTy l, LitTy l')
-> l == l'
(ForAllTy tv ty, ForAllTy tv' ty')
-> D env (tyVarKind tv) == D env' (tyVarKind tv') &&
D (extendCME env tv) ty == D (extendCME env' tv') ty'
_ -> False
instance Outputable a => Outputable (TypeMap a) where
ppr m = text "TypeMap elts" <+> ppr (foldTM (:) m [])
emptyT :: TypeMapX a
emptyT = TM { tm_var = emptyTM
, tm_app = EmptyMap
, tm_fun = EmptyMap
, tm_tc_app = emptyNameEnv
, tm_forall = EmptyMap
, tm_tylit = emptyTyLitMap }
mapT :: (a->b) -> TypeMapX a -> TypeMapX b
mapT f (TM { tm_var = tvar, tm_app = tapp, tm_fun = tfun
, tm_tc_app = ttcapp, tm_forall = tforall, tm_tylit = tlit })
= TM { tm_var = mapTM f tvar
, tm_app = mapTM (mapTM f) tapp
, tm_fun = mapTM (mapTM f) tfun
, tm_tc_app = mapNameEnv (mapTM f) ttcapp
, tm_forall = mapTM (mapTM f) tforall
, tm_tylit = mapTM f tlit }
-----------------
lkT :: DeBruijn Type -> TypeMapX a -> Maybe a
lkT (D env ty) m = go ty m
where
go ty | Just ty' <- coreView ty = go ty'
go (TyVarTy v) = tm_var >.> lkVar env v
go (AppTy t1 t2) = tm_app >.> lkG (D env t1) >=> lkG (D env t2)
go (FunTy t1 t2) = tm_fun >.> lkG (D env t1) >=> lkG (D env t2)
go (TyConApp tc tys) = tm_tc_app >.> lkNamed tc >=> lkList (lkG . D env) tys
go (LitTy l) = tm_tylit >.> lkTyLit l
go (ForAllTy tv ty) = tm_forall >.> lkG (D (extendCME env tv) ty)
>=> lkBndr env tv
-----------------
xtT :: DeBruijn Type -> XT a -> TypeMapX a -> TypeMapX a
xtT (D env ty) f m
| Just ty' <- coreView ty = xtT (D env ty') f m
xtT (D env (TyVarTy v)) f m = m { tm_var = tm_var m |> xtVar env v f }
xtT (D env (AppTy t1 t2)) f m = m { tm_app = tm_app m |> xtG (D env t1)
|>> xtG (D env t2) f }
xtT (D env (FunTy t1 t2)) f m = m { tm_fun = tm_fun m |> xtG (D env t1)
|>> xtG (D env t2) f }
xtT (D env (ForAllTy tv ty)) f m = m { tm_forall = tm_forall m
|> xtG (D (extendCME env tv) ty)
|>> xtBndr env tv f }
xtT (D env (TyConApp tc tys)) f m = m { tm_tc_app = tm_tc_app m |> xtNamed tc
|>> xtList (xtG . D env) tys f }
xtT (D _ (LitTy l)) f m = m { tm_tylit = tm_tylit m |> xtTyLit l f }
fdT :: (a -> b -> b) -> TypeMapX a -> b -> b
fdT k m = foldTM k (tm_var m)
. foldTM (foldTM k) (tm_app m)
. foldTM (foldTM k) (tm_fun m)
. foldTM (foldTM k) (tm_tc_app m)
. foldTM (foldTM k) (tm_forall m)
. foldTyLit k (tm_tylit m)
------------------------
data TyLitMap a = TLM { tlm_number :: Map.Map Integer a
, tlm_string :: Map.Map FastString a
}
instance TrieMap TyLitMap where
type Key TyLitMap = TyLit
emptyTM = emptyTyLitMap
lookupTM = lkTyLit
alterTM = xtTyLit
foldTM = foldTyLit
mapTM = mapTyLit
emptyTyLitMap :: TyLitMap a
emptyTyLitMap = TLM { tlm_number = Map.empty, tlm_string = Map.empty }
mapTyLit :: (a->b) -> TyLitMap a -> TyLitMap b
mapTyLit f (TLM { tlm_number = tn, tlm_string = ts })
= TLM { tlm_number = Map.map f tn, tlm_string = Map.map f ts }
lkTyLit :: TyLit -> TyLitMap a -> Maybe a
lkTyLit l =
case l of
NumTyLit n -> tlm_number >.> Map.lookup n
StrTyLit n -> tlm_string >.> Map.lookup n
xtTyLit :: TyLit -> XT a -> TyLitMap a -> TyLitMap a
xtTyLit l f m =
case l of
NumTyLit n -> m { tlm_number = tlm_number m |> Map.alter f n }
StrTyLit n -> m { tlm_string = tlm_string m |> Map.alter f n }
foldTyLit :: (a -> b -> b) -> TyLitMap a -> b -> b
foldTyLit l m = flip (Map.fold l) (tlm_string m)
. flip (Map.fold l) (tlm_number m)
{-
************************************************************************
* *
Variables
* *
************************************************************************
-}
type BoundVar = Int -- Bound variables are deBruijn numbered
type BoundVarMap a = IntMap.IntMap a
data CmEnv = CME { cme_next :: BoundVar
, cme_env :: VarEnv BoundVar }
emptyCME :: CmEnv
emptyCME = CME { cme_next = 0, cme_env = emptyVarEnv }
extendCME :: CmEnv -> Var -> CmEnv
extendCME (CME { cme_next = bv, cme_env = env }) v
= CME { cme_next = bv+1, cme_env = extendVarEnv env v bv }
extendCMEs :: CmEnv -> [Var] -> CmEnv
extendCMEs env vs = foldl extendCME env vs
lookupCME :: CmEnv -> Var -> Maybe BoundVar
lookupCME (CME { cme_env = env }) v = lookupVarEnv env v
-- | @DeBruijn a@ represents @a@ modulo alpha-renaming. This is achieved
-- by equipping the value with a 'CmEnv', which tracks an on-the-fly deBruijn
-- numbering. This allows us to define an 'Eq' instance for @DeBruijn a@, even
-- if this was not (easily) possible for @a@. Note: we purposely don't
-- export the constructor. Make a helper function if you find yourself
-- needing it.
data DeBruijn a = D CmEnv a
-- | Synthesizes a @DeBruijn a@ from an @a@, by assuming that there are no
-- bound binders (an empty 'CmEnv'). This is usually what you want if there
-- isn't already a 'CmEnv' in scope.
deBruijnize :: a -> DeBruijn a
deBruijnize = D emptyCME
instance Eq (DeBruijn a) => Eq (DeBruijn [a]) where
D _ [] == D _ [] = True
D env (x:xs) == D env' (x':xs') = D env x == D env' x' &&
D env xs == D env' xs'
_ == _ = False
--------- Variable binders -------------
-- | A 'BndrMap' is a 'TypeMapG' which allows us to distinguish between
-- binding forms whose binders have different types. For example,
-- if we are doing a 'TrieMap' lookup on @\(x :: Int) -> ()@, we should
-- not pick up an entry in the 'TrieMap' for @\(x :: Bool) -> ()@:
-- we can disambiguate this by matching on the type (or kind, if this
-- a binder in a type) of the binder.
type BndrMap = TypeMapG
-- Note [Binders]
-- ~~~~~~~~~~~~~~
-- We need to use 'BndrMap' for 'Coercion', 'CoreExpr' AND 'Type', since all
-- of these data types have binding forms.
lkBndr :: CmEnv -> Var -> BndrMap a -> Maybe a
lkBndr env v m = lkG (D env (varType v)) m
xtBndr :: CmEnv -> Var -> XT a -> BndrMap a -> BndrMap a
xtBndr env v f = xtG (D env (varType v)) f
--------- Variable occurrence -------------
data VarMap a = VM { vm_bvar :: BoundVarMap a -- Bound variable
, vm_fvar :: VarEnv a } -- Free variable
instance TrieMap VarMap where
type Key VarMap = Var
emptyTM = VM { vm_bvar = IntMap.empty, vm_fvar = emptyVarEnv }
lookupTM = lkVar emptyCME
alterTM = xtVar emptyCME
foldTM = fdVar
mapTM = mapVar
mapVar :: (a->b) -> VarMap a -> VarMap b
mapVar f (VM { vm_bvar = bv, vm_fvar = fv })
= VM { vm_bvar = mapTM f bv, vm_fvar = mapVarEnv f fv }
lkVar :: CmEnv -> Var -> VarMap a -> Maybe a
lkVar env v
| Just bv <- lookupCME env v = vm_bvar >.> lookupTM bv
| otherwise = vm_fvar >.> lkFreeVar v
xtVar :: CmEnv -> Var -> XT a -> VarMap a -> VarMap a
xtVar env v f m
| Just bv <- lookupCME env v = m { vm_bvar = vm_bvar m |> xtInt bv f }
| otherwise = m { vm_fvar = vm_fvar m |> xtFreeVar v f }
fdVar :: (a -> b -> b) -> VarMap a -> b -> b
fdVar k m = foldTM k (vm_bvar m)
. foldTM k (vm_fvar m)
lkFreeVar :: Var -> VarEnv a -> Maybe a
lkFreeVar var env = lookupVarEnv env var
xtFreeVar :: Var -> XT a -> VarEnv a -> VarEnv a
xtFreeVar v f m = alterVarEnv f m v
|