1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
|
{-
Author: George Karachalias <george.karachalias@cs.kuleuven.be>
Pattern Matching Coverage Checking.
-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE LambdaCase #-}
module Check (
-- Checking and printing
checkSingle, checkMatches, checkGuardMatches,
needToRunPmCheck, isMatchContextPmChecked,
-- See Note [Type and Term Equality Propagation]
addTyCsDs, addScrutTmCs, addPatTmCs
) where
#include "HsVersions.h"
import GhcPrelude
import PmTypes
import PmOracle
import PmPpr
import BasicTypes (Origin, isGenerated)
import CoreSyn (CoreExpr, Expr(Var))
import CoreUtils (exprType)
import FastString (unpackFS)
import Unify( tcMatchTy )
import DynFlags
import HsSyn
import TcHsSyn
import Id
import ConLike
import Name
import FamInst
import TysWiredIn
import TyCon
import SrcLoc
import Util
import Outputable
import DataCon
import PatSyn
import HscTypes (CompleteMatch(..))
import BasicTypes (Boxity(..))
import Var (EvVar)
import {-# SOURCE #-} DsExpr (dsExpr, dsLExpr)
import MatchLit (dsLit, dsOverLit)
import DsMonad
import Bag
import TyCoRep
import Type
import DsUtils (isTrueLHsExpr)
import Maybes (isJust, expectJust)
import qualified GHC.LanguageExtensions as LangExt
import Data.List (find)
import Control.Monad (forM, when, forM_)
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.Maybe
import Coercion
import TcEvidence
import IOEnv
import qualified Data.Semigroup as Semi
{-
This module checks pattern matches for:
\begin{enumerate}
\item Equations that are redundant
\item Equations with inaccessible right-hand-side
\item Exhaustiveness
\end{enumerate}
The algorithm is based on the paper:
"GADTs Meet Their Match:
Pattern-matching Warnings That Account for GADTs, Guards, and Laziness"
http://people.cs.kuleuven.be/~george.karachalias/papers/p424-karachalias.pdf
%************************************************************************
%* *
Pattern Match Check Types
%* *
%************************************************************************
-}
data PmPat where
-- | For the arguments' meaning see 'HsPat.ConPatOut'.
PmCon :: { pm_con_con :: PmAltCon
, pm_con_arg_tys :: [Type]
, pm_con_tvs :: [TyVar]
, pm_con_args :: [PmPat] } -> PmPat
PmVar :: { pm_var_id :: Id } -> PmPat
PmGrd :: { pm_grd_pv :: PatVec -- ^ Always has 'patVecArity' 1.
, pm_grd_expr :: CoreExpr } -> PmPat
-- (PmGrd pat expr) matches expr against pat, binding the variables in pat
-- | A fake guard pattern (True <- _) used to represent cases we cannot handle.
PmFake :: PmPat
-- | Should not be user-facing.
instance Outputable PmPat where
ppr (PmCon alt _arg_tys _con_tvs con_args)
= cparen (notNull con_args) (hsep [ppr alt, hsep (map ppr con_args)])
ppr (PmVar vid) = ppr vid
ppr (PmGrd pv ge) = hsep (map ppr pv) <+> text "<-" <+> ppr ge
ppr PmFake = text "<PmFake>"
-- data T a where
-- MkT :: forall p q. (Eq p, Ord q) => p -> q -> T [p]
-- or MkT :: forall p q r. (Eq p, Ord q, [p] ~ r) => p -> q -> T r
-- | Pattern Vectors. The *arity* of a PatVec [p1,..,pn] is
-- the number of p1..pn that are not Guards. See 'patternArity'.
type PatVec = [PmPat]
type ValVec = [Id] -- ^ Value Vector Abstractions
-- | Each 'Delta' is proof (i.e., a model of the fact) that some values are not
-- covered by a pattern match. E.g. @f Nothing = <rhs>@ might be given an
-- uncovered set @[x :-> Just y]@ or @[x /= Nothing]@, where @x@ is the variable
-- matching against @f@'s first argument.
type Uncovered = [Delta]
-- Instead of keeping the whole sets in memory, we keep a boolean for both the
-- covered and the divergent set (we store the uncovered set though, since we
-- want to print it). For both the covered and the divergent we have:
--
-- True <=> The set is non-empty
--
-- hence:
-- C = True ==> Useful clause (no warning)
-- C = False, D = True ==> Clause with inaccessible RHS
-- C = False, D = False ==> Redundant clause
data Covered = Covered | NotCovered
deriving Show
instance Outputable Covered where
ppr = text . show
-- Like the or monoid for booleans
-- Covered = True, Uncovered = False
instance Semi.Semigroup Covered where
Covered <> _ = Covered
_ <> Covered = Covered
NotCovered <> NotCovered = NotCovered
instance Monoid Covered where
mempty = NotCovered
mappend = (Semi.<>)
data Diverged = Diverged | NotDiverged
deriving Show
instance Outputable Diverged where
ppr = text . show
instance Semi.Semigroup Diverged where
Diverged <> _ = Diverged
_ <> Diverged = Diverged
NotDiverged <> NotDiverged = NotDiverged
instance Monoid Diverged where
mempty = NotDiverged
mappend = (Semi.<>)
-- | A triple <C,U,D> of covered, uncovered, and divergent sets.
data PartialResult = PartialResult {
presultCovered :: Covered
, presultUncovered :: Uncovered
, presultDivergent :: Diverged }
emptyPartialResult :: PartialResult
emptyPartialResult = PartialResult { presultUncovered = mempty
, presultCovered = mempty
, presultDivergent = mempty }
combinePartialResults :: PartialResult -> PartialResult -> PartialResult
combinePartialResults (PartialResult cs1 vsa1 ds1) (PartialResult cs2 vsa2 ds2)
= PartialResult (cs1 Semi.<> cs2)
(vsa1 Semi.<> vsa2)
(ds1 Semi.<> ds2)
instance Outputable PartialResult where
ppr (PartialResult c vsa d)
= hang (text "PartialResult" <+> ppr c <+> ppr d) 2 (ppr_vsa vsa)
where
ppr_vsa = braces . fsep . punctuate comma . map ppr
instance Semi.Semigroup PartialResult where
(<>) = combinePartialResults
instance Monoid PartialResult where
mempty = emptyPartialResult
mappend = (Semi.<>)
-- | Pattern check result
--
-- * Redundant clauses
-- * Not-covered clauses (or their type, if no pattern is available)
-- * Clauses with inaccessible RHS
--
-- More details about the classification of clauses into useful, redundant
-- and with inaccessible right hand side can be found here:
--
-- https://gitlab.haskell.org/ghc/ghc/wikis/pattern-match-check
--
data PmResult =
PmResult {
pmresultRedundant :: [Located [LPat GhcTc]]
, pmresultUncovered :: UncoveredCandidates
, pmresultInaccessible :: [Located [LPat GhcTc]] }
instance Outputable PmResult where
ppr pmr = hang (text "PmResult") 2 $ vcat
[ text "pmresultRedundant" <+> ppr (pmresultRedundant pmr)
, text "pmresultUncovered" <+> ppr (pmresultUncovered pmr)
, text "pmresultInaccessible" <+> ppr (pmresultInaccessible pmr)
]
-- | Either a list of patterns that are not covered, or their type, in case we
-- have no patterns at hand. Not having patterns at hand can arise when
-- handling EmptyCase expressions, in two cases:
--
-- * The type of the scrutinee is a trivially inhabited type (like Int or Char)
-- * The type of the scrutinee cannot be reduced to WHNF.
--
-- In both these cases we have no inhabitation candidates for the type at hand,
-- but we don't want to issue just a wildcard as missing. Instead, we print a
-- type annotated wildcard, so that the user knows what kind of patterns is
-- expected (e.g. (_ :: Int), or (_ :: F Int), where F Int does not reduce).
data UncoveredCandidates = UncoveredPatterns [Id] [Delta]
| TypeOfUncovered Type
instance Outputable UncoveredCandidates where
ppr (UncoveredPatterns vva deltas) = text "UnPat" <+> ppr vva $$ ppr deltas
ppr (TypeOfUncovered ty) = text "UnTy" <+> ppr ty
{-
%************************************************************************
%* *
Entry points to the checker: checkSingle and checkMatches
%* *
%************************************************************************
-}
-- | Check a single pattern binding (let)
checkSingle :: DynFlags -> DsMatchContext -> Id -> Pat GhcTc -> DsM ()
checkSingle dflags ctxt@(DsMatchContext _ locn) var p = do
tracePm "checkSingle" (vcat [ppr ctxt, ppr var, ppr p])
mb_pm_res <- tryM (checkSingle' locn var p)
case mb_pm_res of
Left _ -> warnPmIters dflags ctxt
Right res -> dsPmWarn dflags ctxt res
-- | Check a single pattern binding (let)
checkSingle' :: SrcSpan -> Id -> Pat GhcTc -> DsM PmResult
checkSingle' locn var p = do
resetPmIterDs -- set the iter-no to zero
fam_insts <- dsGetFamInstEnvs
clause <- translatePat fam_insts p
missing <- getPmDelta
tracePm "checkSingle': missing" (ppr missing)
PartialResult cs us ds <- pmcheckI clause [] [var] 1 missing
dflags <- getDynFlags
us' <- getNFirstUncovered [var] (maxUncoveredPatterns dflags + 1) us
let uc = UncoveredPatterns [var] us'
return $ case (cs,ds) of
(Covered, _ ) -> PmResult [] uc [] -- useful
(NotCovered, NotDiverged) -> PmResult m uc [] -- redundant
(NotCovered, Diverged ) -> PmResult [] uc m -- inaccessible rhs
where m = [cL locn [cL locn p]]
-- | Exhaustive for guard matches, is used for guards in pattern bindings and
-- in @MultiIf@ expressions.
checkGuardMatches :: HsMatchContext Name -- Match context
-> GRHSs GhcTc (LHsExpr GhcTc) -- Guarded RHSs
-> DsM ()
checkGuardMatches hs_ctx guards@(GRHSs _ grhss _) = do
dflags <- getDynFlags
let combinedLoc = foldl1 combineSrcSpans (map getLoc grhss)
dsMatchContext = DsMatchContext hs_ctx combinedLoc
match = cL combinedLoc $
Match { m_ext = noExtField
, m_ctxt = hs_ctx
, m_pats = []
, m_grhss = guards }
checkMatches dflags dsMatchContext [] [match]
checkGuardMatches _ (XGRHSs nec) = noExtCon nec
-- | Check a matchgroup (case, functions, etc.)
checkMatches :: DynFlags -> DsMatchContext
-> [Id] -> [LMatch GhcTc (LHsExpr GhcTc)] -> DsM ()
checkMatches dflags ctxt vars matches = do
tracePm "checkMatches" (hang (vcat [ppr ctxt
, ppr vars
, text "Matches:"])
2
(vcat (map ppr matches)))
mb_pm_res <- tryM $ case matches of
-- Check EmptyCase separately
-- See Note [Checking EmptyCase Expressions] in PmOracle
[] | [var] <- vars -> checkEmptyCase' var
_normal_match -> checkMatches' vars matches
case mb_pm_res of
Left _ -> warnPmIters dflags ctxt
Right res -> dsPmWarn dflags ctxt res
-- | Check a matchgroup (case, functions, etc.). To be called on a non-empty
-- list of matches. For empty case expressions, use checkEmptyCase' instead.
checkMatches' :: [Id] -> [LMatch GhcTc (LHsExpr GhcTc)] -> DsM PmResult
checkMatches' vars matches
| null matches = panic "checkMatches': EmptyCase"
| otherwise = do
resetPmIterDs -- set the iter-no to zero
missing <- getPmDelta
tracePm "checkMatches': missing" (ppr missing)
(rs,us,ds) <- go matches [missing]
dflags <- getDynFlags
us' <- getNFirstUncovered vars (maxUncoveredPatterns dflags + 1) us
let up = UncoveredPatterns vars us'
return $ PmResult {
pmresultRedundant = map hsLMatchToLPats rs
, pmresultUncovered = up
, pmresultInaccessible = map hsLMatchToLPats ds }
where
go :: [LMatch GhcTc (LHsExpr GhcTc)] -> Uncovered
-> DsM ( [LMatch GhcTc (LHsExpr GhcTc)]
, Uncovered
, [LMatch GhcTc (LHsExpr GhcTc)])
go [] missing = return ([], missing, [])
go (m:ms) missing = do
tracePm "checkMatches': go" (ppr m)
fam_insts <- dsGetFamInstEnvs
(clause, guards) <- translateMatch fam_insts m
r@(PartialResult cs missing' ds)
<- runMany (pmcheckI clause guards vars (length missing)) missing
tracePm "checkMatches': go: res" (ppr r)
(rs, final_u, is) <- go ms missing'
return $ case (cs, ds) of
-- useful
(Covered, _ ) -> (rs, final_u, is)
-- redundant
(NotCovered, NotDiverged) -> (m:rs, final_u,is)
-- inaccessible
(NotCovered, Diverged ) -> (rs, final_u, m:is)
hsLMatchToLPats :: LMatch id body -> Located [LPat id]
hsLMatchToLPats (dL->L l (Match { m_pats = pats })) = cL l pats
hsLMatchToLPats _ = panic "checkMatches'"
-- | Check an empty case expression. Since there are no clauses to process, we
-- only compute the uncovered set. See Note [Checking EmptyCase Expressions]
-- in "PmOracle" for details.
checkEmptyCase' :: Id -> DsM PmResult
checkEmptyCase' x = do
delta <- getPmDelta
us <- inhabitants delta (idType x) >>= \case
-- Inhabitation checking failed / the type is trivially inhabited
Left ty -> pure (TypeOfUncovered ty)
-- A list of oracle states for the different satisfiable constructors is
-- available. Turn this into a value set abstraction.
Right (va, deltas) -> pure (UncoveredPatterns [va] deltas)
pure (PmResult [] us [])
getNFirstUncovered :: [Id] -> Int -> [Delta] -> DsM [Delta]
getNFirstUncovered _ 0 _ = pure []
getNFirstUncovered _ _ [] = pure []
getNFirstUncovered vars n (delta:deltas) = do
front <- provideEvidenceForEquation vars n delta
back <- getNFirstUncovered vars (n - length front) deltas
pure (front ++ back)
-- | The maximum successive number of refinements ('refineToAltCon') we allow
-- per representative. See Note [Limit the number of refinements].
mAX_REFINEMENTS :: Int
-- The current number is chosen so that PrelRules is still checked with
-- reasonable performance. If this is set to below 2, ds022 will start to fail.
-- Although that is probably due to the fact that we always increase the
-- refinement counter instead of just increasing it when the contraposition
-- is satisfiable (when the not taken case 'addRefutableAltCon' is
-- satisfiable, that is). That would be the first thing I'd try if we have
-- performance problems on one test while decreasing the threshold leads to
-- other tests being broken like ds022 above.
mAX_REFINEMENTS = 3
-- | The threshold for detecting exponential blow-up in the number of 'Delta's
-- to check introduced by guards.
tHRESHOLD_GUARD_DELTAS :: Int
tHRESHOLD_GUARD_DELTAS = 100
-- | Multiply the estimated number of 'Delta's to process by a constant
-- branching factor induced by a guard and return the new estimate if it
-- doesn't exceed a constant threshold.
-- See 6. in Note [Guards and Approximation].
tryMultiplyDeltas :: Int -> Int -> Maybe Int
tryMultiplyDeltas multiplier n_delta
-- The ^2 below is intentional: We want to give up on guards with a large
-- branching factor rather quickly, still leaving room for small informative
-- ones later on.
| n_delta*multiplier^(2::Int) < tHRESHOLD_GUARD_DELTAS
= Just (n_delta*multiplier)
| otherwise
= Nothing
{-
%************************************************************************
%* *
Transform source syntax to *our* syntax
%* *
%************************************************************************
-}
-- -----------------------------------------------------------------------
-- * Utilities
nullaryConPattern :: ConLike -> PmPat
-- Nullary data constructor and nullary type constructor
nullaryConPattern con =
PmCon { pm_con_con = (PmAltConLike con), pm_con_arg_tys = []
, pm_con_tvs = [], pm_con_args = [] }
{-# INLINE nullaryConPattern #-}
truePattern :: PmPat
truePattern = nullaryConPattern (RealDataCon trueDataCon)
{-# INLINE truePattern #-}
-- | Generate a `canFail` pattern vector of a specific type
mkCanFailPmPat :: Type -> DsM PatVec
mkCanFailPmPat ty = do
var <- mkPmVar ty
return [var, PmFake]
vanillaConPattern :: ConLike -> [Type] -> PatVec -> PmPat
-- ADT constructor pattern => no existentials, no local constraints
vanillaConPattern con arg_tys args =
PmCon { pm_con_con = PmAltConLike con, pm_con_arg_tys = arg_tys
, pm_con_tvs = [], pm_con_args = args }
{-# INLINE vanillaConPattern #-}
-- | Create an empty list pattern of a given type
nilPattern :: Type -> PmPat
nilPattern ty =
PmCon { pm_con_con = PmAltConLike (RealDataCon nilDataCon)
, pm_con_arg_tys = [ty], pm_con_tvs = [], pm_con_args = [] }
{-# INLINE nilPattern #-}
mkListPatVec :: Type -> PatVec -> PatVec -> PatVec
mkListPatVec ty xs ys = [PmCon { pm_con_con = PmAltConLike (RealDataCon consDataCon)
, pm_con_arg_tys = [ty]
, pm_con_tvs = []
, pm_con_args = xs++ys }]
{-# INLINE mkListPatVec #-}
-- | Create a literal pattern
mkPmLitPattern :: PmLit -> PatVec
mkPmLitPattern lit@(PmLit _ val)
-- We translate String literals to list literals for better overlap reasoning.
-- It's a little unfortunate we do this here rather than in
-- 'PmOracle.trySolve' and 'PmOracle.addRefutableAltCon', but it's so much
-- simpler here.
-- See Note [Representation of Strings in TmState] in PmOracle
| PmLitString s <- val
, let mk_char_lit c = mkPmLitPattern (PmLit charTy (PmLitChar c))
= foldr (\c p -> mkListPatVec charTy (mk_char_lit c) p)
[nilPattern charTy]
(unpackFS s)
| otherwise
= [PmCon { pm_con_con = PmAltLit lit
, pm_con_arg_tys = []
, pm_con_tvs = []
, pm_con_args = [] }]
{-# INLINE mkPmLitPattern #-}
-- -----------------------------------------------------------------------
-- * Transform (Pat Id) into [PmPat]
-- The arity of the [PmPat] is always 1, but it may be a combination
-- of a vanilla pattern and a guard pattern.
-- Example: view pattern (f y -> Just x)
-- becomes [PmVar z, PmGrd [PmPat (Just x), f y]]
-- where z is fresh
translatePat :: FamInstEnvs -> Pat GhcTc -> DsM PatVec
translatePat fam_insts pat = case pat of
WildPat ty -> mkPmVars [ty]
VarPat _ id -> return [PmVar (unLoc id)]
ParPat _ p -> translatePat fam_insts (unLoc p)
LazyPat _ _ -> mkPmVars [hsPatType pat] -- like a variable
-- ignore strictness annotations for now
BangPat _ p -> translatePat fam_insts (unLoc p)
-- (x@pat) ===> x (pat <- x)
AsPat _ (dL->L _ x) p -> do
pat <- translatePat fam_insts (unLoc p)
pure [PmVar x, PmGrd pat (Var x)]
SigPat _ p _ty -> translatePat fam_insts (unLoc p)
-- See Note [Translate CoPats]
CoPat _ wrapper p ty
| isIdHsWrapper wrapper -> translatePat fam_insts p
| WpCast co <- wrapper, isReflexiveCo co -> translatePat fam_insts p
| otherwise -> do
ps <- translatePat fam_insts p
(xp,xe) <- mkPmId2Forms ty
g <- mkGuard ps (mkHsWrap wrapper (unLoc xe))
pure [xp,g]
-- (n + k) ===> x (True <- x >= k) (n <- x-k)
NPlusKPat ty (dL->L _ _n) _k1 _k2 _ge _minus -> mkCanFailPmPat ty
-- (fun -> pat) ===> x (pat <- fun x)
ViewPat arg_ty lexpr lpat -> do
ps <- translatePat fam_insts (unLoc lpat)
-- See Note [Guards and Approximation]
res <- allM cantFailPattern ps
case res of
True -> do
(xp,xe) <- mkPmId2Forms arg_ty
g <- mkGuard ps (HsApp noExtField lexpr xe)
return [xp, g]
False -> mkCanFailPmPat arg_ty
-- list
ListPat (ListPatTc ty Nothing) ps -> do
pv <- translatePatVec fam_insts (map unLoc ps)
return (foldr (mkListPatVec ty) [nilPattern ty] pv)
-- overloaded list
ListPat (ListPatTc _elem_ty (Just (pat_ty, _to_list))) lpats -> do
dflags <- getDynFlags
if xopt LangExt.RebindableSyntax dflags
then mkCanFailPmPat pat_ty
else case splitListTyConApp_maybe pat_ty of
Just e_ty -> translatePat fam_insts
(ListPat (ListPatTc e_ty Nothing) lpats)
Nothing -> mkCanFailPmPat pat_ty
-- (a) In the presence of RebindableSyntax, we don't know anything about
-- `toList`, we should treat `ListPat` as any other view pattern.
--
-- (b) In the absence of RebindableSyntax,
-- - If the pat_ty is `[a]`, then we treat the overloaded list pattern
-- as ordinary list pattern. Although we can give an instance
-- `IsList [Int]` (more specific than the default `IsList [a]`), in
-- practice, we almost never do that. We assume the `_to_list` is
-- the `toList` from `instance IsList [a]`.
--
-- - Otherwise, we treat the `ListPat` as ordinary view pattern.
--
-- See #14547, especially comment#9 and comment#10.
--
-- Here we construct CanFailPmPat directly, rather can construct a view
-- pattern and do further translation as an optimization, for the reason,
-- see Note [Guards and Approximation].
ConPatOut { pat_con = (dL->L _ con)
, pat_arg_tys = arg_tys
, pat_tvs = ex_tvs
, pat_args = ps } -> do
let ty = conLikeResTy con arg_tys
groups <- allCompleteMatches ty
case groups of
[] -> mkCanFailPmPat ty
_ -> do
args <- translateConPatVec fam_insts arg_tys ex_tvs con ps
return [PmCon { pm_con_con = PmAltConLike con
, pm_con_arg_tys = arg_tys
, pm_con_tvs = ex_tvs
, pm_con_args = args }]
NPat ty (dL->L _ olit) mb_neg _ -> do
-- See Note [Literal short cut] in MatchLit.hs
-- We inline the Literal short cut for @ty@ here, because @ty@ is more
-- precise than the field of OverLitTc, which is all that dsOverLit (which
-- normally does the literal short cut) can look at. Also @ty@ matches the
-- type of the scrutinee, so info on both pattern and scrutinee (for which
-- short cutting in dsOverLit works properly) is overloaded iff either is.
dflags <- getDynFlags
core_expr <- case olit of
OverLit{ ol_val = val, ol_ext = OverLitTc rebindable _ }
| not rebindable
, Just expr <- shortCutLit dflags val ty
-> dsExpr expr
_ -> dsOverLit olit
let lit = expectJust "failed to detect OverLit" (coreExprAsPmLit core_expr)
let lit' = case mb_neg of
Just _ -> expectJust "failed to negate lit" (negatePmLit lit)
Nothing -> lit
return (mkPmLitPattern lit')
LitPat _ lit -> do
core_expr <- dsLit (convertLit lit)
let lit = expectJust "failed to detect Lit" (coreExprAsPmLit core_expr)
return (mkPmLitPattern lit)
TuplePat tys ps boxity -> do
tidy_ps <- translatePatVec fam_insts (map unLoc ps)
let tuple_con = RealDataCon (tupleDataCon boxity (length ps))
tys' = case boxity of
Boxed -> tys
-- See Note [Unboxed tuple RuntimeRep vars] in TyCon
Unboxed -> map getRuntimeRep tys ++ tys
return [vanillaConPattern tuple_con tys' (concat tidy_ps)]
SumPat ty p alt arity -> do
tidy_p <- translatePat fam_insts (unLoc p)
let sum_con = RealDataCon (sumDataCon alt arity)
-- See Note [Unboxed tuple RuntimeRep vars] in TyCon
return [vanillaConPattern sum_con (map getRuntimeRep ty ++ ty) tidy_p]
-- --------------------------------------------------------------------------
-- Not supposed to happen
ConPatIn {} -> panic "Check.translatePat: ConPatIn"
SplicePat {} -> panic "Check.translatePat: SplicePat"
XPat {} -> panic "Check.translatePat: XPat"
-- | Translate a list of patterns (Note: each pattern is translated
-- to a pattern vector but we do not concatenate the results).
translatePatVec :: FamInstEnvs -> [Pat GhcTc] -> DsM [PatVec]
translatePatVec fam_insts pats = mapM (translatePat fam_insts) pats
-- | Translate a constructor pattern
translateConPatVec :: FamInstEnvs -> [Type] -> [TyVar]
-> ConLike -> HsConPatDetails GhcTc
-> DsM PatVec
translateConPatVec fam_insts _univ_tys _ex_tvs _ (PrefixCon ps)
= concat <$> translatePatVec fam_insts (map unLoc ps)
translateConPatVec fam_insts _univ_tys _ex_tvs _ (InfixCon p1 p2)
= concat <$> translatePatVec fam_insts (map unLoc [p1,p2])
translateConPatVec fam_insts univ_tys ex_tvs c (RecCon (HsRecFields fs _))
-- Nothing matched. Make up some fresh term variables
| null fs = mkPmVars arg_tys
-- The data constructor was not defined using record syntax. For the
-- pattern to be in record syntax it should be empty (e.g. Just {}).
-- So just like the previous case.
| null orig_lbls = ASSERT(null matched_lbls) mkPmVars arg_tys
-- Some of the fields appear, in the original order (there may be holes).
-- Generate a simple constructor pattern and make up fresh variables for
-- the rest of the fields
| matched_lbls `subsetOf` orig_lbls
= ASSERT(orig_lbls `equalLength` arg_tys)
let translateOne (lbl, ty) = case lookup lbl matched_pats of
Just p -> translatePat fam_insts p
Nothing -> mkPmVars [ty]
in concatMapM translateOne (zip orig_lbls arg_tys)
-- The fields that appear are not in the correct order. Make up fresh
-- variables for all fields and add guards after matching, to force the
-- evaluation in the correct order.
| otherwise = do
arg_var_pats <- mkPmVars arg_tys
translated_pats <- forM matched_pats $ \(x,pat) -> do
pvec <- translatePat fam_insts pat
return (x, pvec)
let zipped = zip orig_lbls [ x | PmVar x <- arg_var_pats ]
guards = map (\(name,pvec) -> case lookup name zipped of
Just x -> PmGrd pvec (Var x)
Nothing -> panic "translateConPatVec: lookup")
translated_pats
return (arg_var_pats ++ guards)
where
-- The actual argument types (instantiated)
arg_tys = conLikeInstOrigArgTys c (univ_tys ++ mkTyVarTys ex_tvs)
-- Some label information
orig_lbls = map flSelector $ conLikeFieldLabels c
matched_pats = [ (getName (unLoc (hsRecFieldId x)), unLoc (hsRecFieldArg x))
| (dL->L _ x) <- fs]
matched_lbls = [ name | (name, _pat) <- matched_pats ]
subsetOf :: Eq a => [a] -> [a] -> Bool
subsetOf [] _ = True
subsetOf (_:_) [] = False
subsetOf (x:xs) (y:ys)
| x == y = subsetOf xs ys
| otherwise = subsetOf (x:xs) ys
-- Translate a single match
translateMatch :: FamInstEnvs -> LMatch GhcTc (LHsExpr GhcTc)
-> DsM (PatVec, [PatVec])
translateMatch fam_insts (dL->L _ (Match { m_pats = lpats, m_grhss = grhss }))
= do
pats' <- concat <$> translatePatVec fam_insts pats
guards' <- mapM (translateGuards fam_insts) guards
-- tracePm "translateMatch" (vcat [ppr pats, ppr pats', ppr guards, ppr guards'])
return (pats', guards')
where
extractGuards :: LGRHS GhcTc (LHsExpr GhcTc) -> [GuardStmt GhcTc]
extractGuards (dL->L _ (GRHS _ gs _)) = map unLoc gs
extractGuards _ = panic "translateMatch"
pats = map unLoc lpats
guards = map extractGuards (grhssGRHSs grhss)
translateMatch _ _ = panic "translateMatch"
-- -----------------------------------------------------------------------
-- * Transform source guards (GuardStmt Id) to PmPats (Pattern)
-- | Translate a list of guard statements to a pattern vector
translateGuards :: FamInstEnvs -> [GuardStmt GhcTc] -> DsM PatVec
translateGuards fam_insts guards =
concat <$> mapM (translateGuard fam_insts) guards
-- | Check whether a pattern can fail to match
cantFailPattern :: PmPat -> DsM Bool
cantFailPattern PmVar {} = pure True
cantFailPattern PmCon { pm_con_con = c, pm_con_arg_tys = tys, pm_con_args = ps}
= (&&) <$> singleMatchConstructor c tys <*> allM cantFailPattern ps
cantFailPattern (PmGrd pv _e) = allM cantFailPattern pv
cantFailPattern _ = pure False
-- | Translate a guard statement to Pattern
translateGuard :: FamInstEnvs -> GuardStmt GhcTc -> DsM PatVec
translateGuard fam_insts guard = case guard of
BodyStmt _ e _ _ -> translateBoolGuard e
LetStmt _ binds -> translateLet (unLoc binds)
BindStmt _ p e _ _ -> translateBind fam_insts p e
LastStmt {} -> panic "translateGuard LastStmt"
ParStmt {} -> panic "translateGuard ParStmt"
TransStmt {} -> panic "translateGuard TransStmt"
RecStmt {} -> panic "translateGuard RecStmt"
ApplicativeStmt {} -> panic "translateGuard ApplicativeLastStmt"
XStmtLR nec -> noExtCon nec
-- | Translate let-bindings
translateLet :: HsLocalBinds GhcTc -> DsM PatVec
translateLet _binds = return []
-- | Translate a pattern guard
translateBind :: FamInstEnvs -> LPat GhcTc -> LHsExpr GhcTc -> DsM PatVec
translateBind fam_insts (dL->L _ p) e = do
ps <- translatePat fam_insts p
g <- mkGuard ps (unLoc e)
return [g]
-- | Translate a boolean guard
translateBoolGuard :: LHsExpr GhcTc -> DsM PatVec
translateBoolGuard e
| isJust (isTrueLHsExpr e) = return []
-- The formal thing to do would be to generate (True <- True)
-- but it is trivial to solve so instead we give back an empty
-- PatVec for efficiency
| otherwise = (:[]) <$> mkGuard [truePattern] (unLoc e)
{- Note [Guards and Approximation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if the algorithm is really expressive, the term oracle we use is not.
Hence, several features are not translated *properly* but we approximate.
The list includes:
1. View Patterns
----------------
A view pattern @(f -> p)@ should be translated to @x (p <- f x)@. The term
oracle does not handle function applications so we know that the generated
constraints will not be handled at the end. Hence, we distinguish between two
cases:
a) Pattern @p@ cannot fail. Then this is just a binding and we do the *right
thing*.
b) Pattern @p@ can fail. This means that when checking the guard, we will
generate several cases, with no useful information. E.g.:
h (f -> [a,b]) = ...
h x ([a,b] <- f x) = ...
uncovered set = { [x |> { False ~ (f x ~ []) }]
, [x |> { False ~ (f x ~ (t1:[])) }]
, [x |> { False ~ (f x ~ (t1:t2:t3:t4)) }] }
So we have two problems:
1) Since we do not print the constraints in the general case (they may
be too many), the warning will look like this:
Pattern match(es) are non-exhaustive
In an equation for `h':
Patterns not matched:
_
_
_
Which is not short and not more useful than a single underscore.
2) The size of the uncovered set increases a lot, without gaining more
expressivity in our warnings.
Hence, in this case, we replace the guard @([a,b] <- f x)@ with a *dummy*
@PmFake@: @True <- _@. That is, we record that there is a possibility
of failure but we minimize it to a True/False. This generates a single
warning and much smaller uncovered sets.
2. Overloaded Lists
-------------------
An overloaded list @[...]@ should be translated to @x ([...] <- toList x)@. The
problem is exactly like above, as its solution. For future reference, the code
below is the *right thing to do*:
ListPat (ListPatTc elem_ty (Just (pat_ty, _to_list))) lpats
otherwise -> do
(xp, xe) <- mkPmId2Forms pat_ty
ps <- translatePatVec (map unLoc lpats)
let pats = foldr (mkListPatVec elem_ty) [nilPattern elem_ty] ps
g = mkGuard pats (HsApp (noLoc to_list) xe)
return [xp,g]
3. Overloaded Literals
----------------------
The case with literals is a bit different. a literal @l@ should be translated
to @x (True <- x == from l)@. Since we want to have better warnings for
overloaded literals as it is a very common feature, we treat them differently.
They are mainly covered in Note [Undecidable Equality for PmAltCons] in PmTypes.
4. N+K Patterns & Pattern Synonyms
----------------------------------
An n+k pattern (n+k) should be translated to @x (True <- x >= k) (n <- x-k)@.
Since the only pattern of the three that causes failure is guard @(n <- x-k)@,
and has two possible outcomes. Hence, there is no benefit in using a dummy and
we implement the proper thing. Pattern synonyms are simply not implemented yet.
Hence, to be conservative, we generate a dummy pattern, assuming that the
pattern can fail.
5. Actual Guards
----------------
During translation, boolean guards and pattern guards are translated properly.
Let bindings though are omitted by function @translateLet@. Since they are lazy
bindings, we do not actually want to generate a (strict) equality (like we do
in the pattern bind case). Hence, we safely drop them.
Additionally, top-level guard translation (performed by @translateGuards@)
replaces guards that cannot be reasoned about (like the ones we described in
1-4) with a single @PmFake@ to record the possibility of failure to match.
6. Combinatorial explosion
--------------------------
Function with many clauses and deeply nested guards like in #11195 tend to
overwhelm the checker because they lead to exponential splitting behavior.
See the comments on #11195 on refinement trees. Every guard refines the
disjunction of Deltas by another split. This no different than the ConVar case,
but in stark contrast we mostly don't get any useful information out of that
split! Hence splitting k-fold just means having k-fold more work. The problem
exacerbates for larger k, because it gets even more unlikely that we can handle
all of the arising Deltas better than just continue working on the original
Delta.
Long story short: At each point we estimate the number of Deltas we possibly
have to check in the same manner as the current Delta. If we hit a guard that
splits the current Delta k-fold, we check whether this split would get us beyond
a certain threshold ('tryMultiplyDeltas') and continue to check the other guards
with the original Delta.
Note [Limit the number of refinements]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In PrelRules, we have a huge case with relatively deep matches on pattern
synonyms. Since we allow multiple compatible solutions in the oracle
(i.e. @x ~ [I# y, 42]@), and every pattern synonym is compatible according to
'eqPmAltCon' with every other (no generativity as with DataCons), what would
usually result in a ConVar split where only one branch is satisfiable results
in a blow-up of Deltas. Here's an example:
case x of
A (A _) -> ()
B (B _) -> ()
...
By the time we hit the first clause's RHS, we have split the initial Delta twice
and handled the {x~A y, y ~ A z} case, leaving {x/~A} and {x~A y, y/~A} models
for the second clause to check.
Now consider what happens if A=Left, B=Right. We get x~B y' from the match,
which contradicts with {x~A y, y/~A}, because A and B are incompatible due to
the generative nature of DataCons. This leaves only {x/~A} for checking B's
clause, which ultimately leaves {x/~[A,B]} and {x~B y', y'/~B} uncovered.
Resulting in three models to check for the next clause. That's only linear
growth in the number of models for each clause.
Consider A and B were arbitrary pattern synonyms instead. We still get x~B y'
from the match, but this no longer refutes {x~A y, y/~A}, because we don't
assume generativity for pattern synonyms. Ergo, @eqPmAltCon A B == Nothing@
and we get to check the second clause's inner match with {x~B y', x/~A} and
{x~[A y,B y'], y/~A}, splitting both in turn. That makes 4 instead of 3 deltas.
If we keep on doing this, we see that in the nth clause we'd have O(2^n) models
to check instead of just O(n) as above!
Clearly we have to put a stop to this. So we count in the oracle the number of
times we refined x to some constructor. If the number of splits exceeds the
'mAX_REFINEMENTS', we check the next clause using the original Delta rather
than the union of Deltas arising from the ConVar split.
If for the above example we had mAX_REFINEMENTS=1, then in the second clause
we would still check the inner match with {x~B y', x/~A} and {x~[A y,B y'], y/~A}
but *discard* the two Deltas arising from splitting {x~[A y,B y'], y/~A},
checking the next clause with {x~A y, y/~A} instead of its two refinements.
In addition to {x~B y', y'~B z', x/~A} (which arose from the other split) and
{x/~[A,B]} that makes 3 models for the third equation, so linear :).
Note [Translate CoPats]
~~~~~~~~~~~~~~~~~~~~~~~
The pattern match checker did not know how to handle coerced patterns `CoPat`
efficiently, which gave rise to #11276. The original approach translated
`CoPat`s:
pat |> co ===> x (pat <- (x |> co))
Why did we do this seemingly unnecessary expansion in the first place?
The reason is that the type of @pat |> co@ (which is the type of the value
abstraction we match against) might be different than that of @pat@. Data
instances such as @Sing (a :: Bool)@ are a good example of this: If we would
just drop the coercion, we'd get a type error when matching @pat@ against its
value abstraction, with the result being that pmIsSatisfiable decides that every
possible data constructor fitting @pat@ is rejected as uninhabitated, leading to
a lot of false warnings.
But we can check whether the coercion is a hole or if it is just refl, in
which case we can drop it.
%************************************************************************
%* *
Utilities for Pattern Match Checking
%* *
%************************************************************************
-}
-- ----------------------------------------------------------------------------
-- * Basic utilities
-- | Get the type out of a PmPat. For guard patterns (ps <- e) we use the type
-- of the first (or the single -WHEREVER IT IS- valid to use?) pattern
pmPatType :: PmPat -> Type
pmPatType (PmCon { pm_con_con = con, pm_con_arg_tys = tys })
= pmAltConType con tys
pmPatType (PmVar { pm_var_id = x }) = idType x
pmPatType (PmGrd { pm_grd_pv = pv })
= ASSERT(patVecArity pv == 1) (pmPatType p)
where Just p = find ((==1) . patternArity) pv
pmPatType PmFake = pmPatType truePattern
{-
Note [Extensions to GADTs Meet Their Match]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The GADTs Meet Their Match paper presents the formalism that GHC's coverage
checker adheres to. Since the paper's publication, there have been some
additional features added to the coverage checker which are not described in
the paper. This Note serves as a reference for these new features.
* Value abstractions are severely simplified to the point where they are just
variables. The information about the shape of a variable is encoded in
the oracle state 'Delta' instead.
* Handling of uninhabited fields like `!Void`.
See Note [Strict argument type constraints] in PmOracle.
* Efficient handling of literal splitting, large enumerations and accurate
redundancy warnings for `COMPLETE` groups through the oracle.
-}
-- ----------------------------------------------------------------------------
-- * More smart constructors and fresh variable generation
-- | Create a guard pattern
mkGuard :: PatVec -> HsExpr GhcTc -> DsM PmPat
mkGuard pv e = PmGrd pv <$> dsExpr e
-- | Generate a variable pattern of a given type
mkPmVar :: Type -> DsM PmPat
mkPmVar ty = PmVar <$> mkPmId ty
-- | Generate many variable patterns, given a list of types
mkPmVars :: [Type] -> DsM PatVec
mkPmVars tys = mapM mkPmVar tys
-- | Generate a fresh term variable of a given and return it in two forms:
-- * A variable pattern
-- * A variable expression
mkPmId2Forms :: Type -> DsM (PmPat, LHsExpr GhcTc)
mkPmId2Forms ty = do
x <- mkPmId ty
return (PmVar x, noLoc (HsVar noExtField (noLoc x)))
-- | Check whether a 'PmAltCon' has the /single match/ property, i.e. whether
-- it is the only possible match in the given context. See also
-- 'allCompleteMatches' and Note [Single match constructors].
singleMatchConstructor :: PmAltCon -> [Type] -> DsM Bool
singleMatchConstructor PmAltLit{} _ = pure False
singleMatchConstructor (PmAltConLike cl) tys =
any isSingleton <$> allCompleteMatches (conLikeResTy cl tys)
{-
Note [Single match constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When translating pattern guards for consumption by the checker, we desugar
every pattern guard that might fail ('cantFailPattern') to 'PmFake'
(True <- _). Which patterns can't fail? Exactly those that only match on
'singleMatchConstructor's.
Here are a few examples:
* @f a | (a, b) <- foo a = 42@: Product constructors are generally
single match. This extends to single constructors of GADTs like 'Refl'.
* If @f | Id <- id () = 42@, where @pattern Id = ()@ and 'Id' is part of a
singleton `COMPLETE` set, then 'Id' has the single match property.
In effect, we can just enumerate 'allCompleteMatches' and check if the conlike
occurs as a singleton set.
There's the chance that 'Id' is part of multiple `COMPLETE` sets. That's
irrelevant; If the user specified a singleton set, it is single-match.
Note that this doesn't really take into account incoming type constraints;
It might be obvious from type context that a particular GADT constructor has
the single-match property. We currently don't (can't) check this in the
translation step. See #15753 for why this yields surprising results.
-}
-- | For a given type, finds all the COMPLETE sets of conlikes that inhabit it.
--
-- Note that for a data family instance, this must be the *representation* type.
-- e.g. data instance T (a,b) = T1 a b
-- leads to
-- data TPair a b = T1 a b -- The "representation" type
-- It is TPair a b, not T (a, b), that is given to allCompleteMatches
--
-- These come from two places.
-- 1. From data constructors defined with the result type constructor.
-- 2. From `COMPLETE` pragmas which have the same type as the result
-- type constructor. Note that we only use `COMPLETE` pragmas
-- *all* of whose pattern types match. See #14135
allCompleteMatches :: Type -> DsM [[ConLike]]
allCompleteMatches ty = case splitTyConApp_maybe ty of
Nothing -> pure [] -- NB: We don't know any COMPLETE set, as opposed to [[]]
Just (tc, tc_args) -> do
-- Look into the representation type of a data family instance, too.
env <- dsGetFamInstEnvs
let (tc', _tc_args', _co) = tcLookupDataFamInst env tc tc_args
let mb_rdcs = map RealDataCon <$> tyConDataCons_maybe tc'
let maybe_to_list = maybe [] (:[])
let rdcs = maybe_to_list mb_rdcs
-- NB: tc, because COMPLETE sets are associated with the parent data family
-- TyCon
pragmas <- dsGetCompleteMatches tc
let fams = mapM dsLookupConLike . completeMatchConLikes
pscs <- mapM fams pragmas
let candidates = rdcs ++ pscs
-- Check that all the pattern synonym return types in a `COMPLETE`
-- pragma subsume the type we're matching.
-- See Note [Filtering out non-matching COMPLETE sets]
pure (filter (isValidCompleteMatch ty) candidates)
where
isValidCompleteMatch :: Type -> [ConLike] -> Bool
isValidCompleteMatch ty = all p
where
p (RealDataCon _) = True
p (PatSynCon ps) = isJust (tcMatchTy (projResTy (patSynSig ps)) ty)
projResTy (_, _, _, _, _, res_ty) = res_ty
{-
Note [Filtering out non-matching COMPLETE sets]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Currently, conlikes in a COMPLETE set are simply grouped by the
type constructor heading the return type. This is nice and simple, but it does
mean that there are scenarios when a COMPLETE set might be incompatible with
the type of a scrutinee. For instance, consider (from #14135):
data Foo a = Foo1 a | Foo2 a
pattern MyFoo2 :: Int -> Foo Int
pattern MyFoo2 i = Foo2 i
{-# COMPLETE Foo1, MyFoo2 #-}
f :: Foo a -> a
f (Foo1 x) = x
`f` has an incomplete pattern-match, so when choosing which constructors to
report as unmatched in a warning, GHC must choose between the original set of
data constructors {Foo1, Foo2} and the COMPLETE set {Foo1, MyFoo2}. But observe
that GHC shouldn't even consider the COMPLETE set as a possibility: the return
type of MyFoo2, Foo Int, does not match the type of the scrutinee, Foo a, since
there's no substitution `s` such that s(Foo Int) = Foo a.
To ensure that GHC doesn't pick this COMPLETE set, it checks each pattern
synonym constructor's return type matches the type of the scrutinee, and if one
doesn't, then we remove the whole COMPLETE set from consideration.
One might wonder why GHC only checks /pattern synonym/ constructors, and not
/data/ constructors as well. The reason is because that the type of a
GADT constructor very well may not match the type of a scrutinee, and that's
OK. Consider this example (from #14059):
data SBool (z :: Bool) where
SFalse :: SBool False
STrue :: SBool True
pattern STooGoodToBeTrue :: forall (z :: Bool). ()
=> z ~ True
=> SBool z
pattern STooGoodToBeTrue = STrue
{-# COMPLETE SFalse, STooGoodToBeTrue #-}
wobble :: SBool z -> Bool
wobble STooGoodToBeTrue = True
In the incomplete pattern match for `wobble`, we /do/ want to warn that SFalse
should be matched against, even though its type, SBool False, does not match
the scrutinee type, SBool z.
SG: Another angle at this is that the implied constraints when we instantiate
universal type variables in the return type of a GADT will lead to *provided*
thetas, whereas when we instantiate the return type of a pattern synonym that
corresponds to a *required* theta. See Note [Pattern synonym result type] in
PatSyn. Note how isValidCompleteMatches will successfully filter out
pattern Just42 :: Maybe Int
pattern Just42 = Just 42
But fail to filter out the equivalent
pattern Just'42 :: (a ~ Int) => Maybe a
pattern Just'42 = Just 42
Which seems fine as far as tcMatchTy is concerned, but it raises a few eye
brows.
-}
{-
%************************************************************************
%* *
Sanity Checks
%* *
%************************************************************************
-}
-- | The arity of a pattern/pattern vector is the
-- number of top-level patterns that are not guards
type PmArity = Int
-- | Compute the arity of a pattern vector
patVecArity :: PatVec -> PmArity
patVecArity = sum . map patternArity
-- | Compute the arity of a pattern
patternArity :: PmPat -> PmArity
patternArity (PmGrd {}) = 0
patternArity PmFake = 0
patternArity _other_pat = 1
{-
%************************************************************************
%* *
Heart of the algorithm: Function pmcheck
%* *
%************************************************************************
Main functions are:
* pmcheck :: PatVec -> [PatVec] -> ValVec -> Delta -> DsM PartialResult
This function implements functions `covered`, `uncovered` and
`divergent` from the paper at once. Calls out to the auxilary function
`pmcheckGuards` for handling (possibly multiple) guarded RHSs when the whole
clause is checked. Slightly different from the paper because it does not even
produce the covered and uncovered sets. Since we only care about whether a
clause covers SOMETHING or if it may forces ANY argument, we only store a
boolean in both cases, for efficiency.
* pmcheckGuards :: [PatVec] -> ValVec -> Delta -> DsM PartialResult
Processes the guards.
-}
-- | Lift a pattern matching action from a single value vector abstration to a
-- value set abstraction, but calling it on every vector and combining the
-- results.
runMany :: (Delta -> DsM PartialResult) -> Uncovered -> DsM PartialResult
runMany _ [] = return emptyPartialResult
runMany pm (m:ms) = do
res <- pm m
combinePartialResults res <$> runMany pm ms
-- | Increase the counter for elapsed algorithm iterations, check that the
-- limit is not exceeded and call `pmcheck`
pmcheckI :: PatVec -> [PatVec] -> ValVec -> Int -> Delta -> DsM PartialResult
pmcheckI ps guards vva n delta = do
m <- incrCheckPmIterDs
tracePm "pmCheck" (ppr m <> colon
$$ hang (text "patterns:") 2 (ppr ps)
$$ hang (text "guards:") 2 (ppr guards)
$$ ppr vva
$$ ppr delta)
res <- pmcheck ps guards vva n delta
tracePm "pmCheckResult:" (ppr res)
return res
{-# INLINE pmcheckI #-}
-- | Increase the counter for elapsed algorithm iterations, check that the
-- limit is not exceeded and call `pmcheckGuards`
pmcheckGuardsI :: [PatVec] -> Int -> Delta -> DsM PartialResult
pmcheckGuardsI gvs n delta = incrCheckPmIterDs >> pmcheckGuards gvs n delta
{-# INLINE pmcheckGuardsI #-}
-- | Check the list of mutually exclusive guards
pmcheckGuards :: [PatVec] -> Int -> Delta -> DsM PartialResult
pmcheckGuards [] _ delta = return (usimple delta)
pmcheckGuards (gv:gvs) n delta = do
(PartialResult cs unc ds) <- pmcheckI gv [] [] n delta
let (n', unc')
-- See 6. in Note [Guards and Approximation]
| Just n' <- tryMultiplyDeltas (length unc) n = (n', unc)
| otherwise = (n, [delta])
(PartialResult css uncs dss) <- runMany (pmcheckGuardsI gvs n') unc'
return $ PartialResult (cs `mappend` css)
uncs
(ds `mappend` dss)
-- | Matching function: Check simultaneously a clause (takes separately the
-- patterns and the list of guards) for exhaustiveness, redundancy and
-- inaccessibility.
pmcheck
:: PatVec -- ^ Patterns of the clause
-> [PatVec] -- ^ (Possibly multiple) guards of the clause
-> ValVec -- ^ The value vector abstraction to match against
-> Int -- ^ Estimate on the number of similar 'Delta's to handle.
-- See 6. in Note [Guards and Approximation]
-> Delta -- ^ Oracle state giving meaning to the identifiers in the ValVec
-> DsM PartialResult
pmcheck [] guards [] n delta
| null guards = return $ mempty { presultCovered = Covered }
| otherwise = pmcheckGuardsI guards n delta
-- Guard
pmcheck (PmFake : ps) guards vva n delta =
-- short-circuit if the guard pattern is useless.
-- we just have two possible outcomes: fail here or match and recurse
-- none of the two contains any useful information about the failure
-- though. So just have these two cases but do not do all the boilerplate
-- TODO: I don't think this should mkCons delta, rather than just replace the
-- presultUncovered by [delta] completely. Note that the uncovered set
-- returned from the recursive call can only be a refinement of the
-- original delta.
forces . mkCons delta <$> pmcheckI ps guards vva n delta
pmcheck (p@PmGrd { pm_grd_pv = pv, pm_grd_expr = e } : ps) guards vva n delta = do
tracePm "PmGrd: pmPatType" (vcat [ppr p, ppr (pmPatType p)])
x <- mkPmId (exprType e)
delta' <- expectJust "x is fresh" <$> addVarCoreCt delta x e
pmcheckI (pv ++ ps) guards (x : vva) n delta'
-- Var: Add x :-> y to the oracle and recurse
pmcheck (PmVar x : ps) guards (y : vva) n delta = do
delta' <- expectJust "x is fresh" <$> addTmCt delta (TmVarVar x y)
pmcheckI ps guards vva n delta'
-- ConVar
pmcheck (p@PmCon{ pm_con_con = con, pm_con_args = args
, pm_con_arg_tys = arg_tys, pm_con_tvs = ex_tvs } : ps)
guards (x : vva) n delta = do
-- E.g f (K p q) = <rhs>
-- <next equation>
-- Split the value vector into two value vectors:
-- * one for <rhs>, binding x to (K p q)
-- * one for <next equation>, recording that x is /not/ (K _ _)
-- Stuff for <rhs>
pr_pos <- refineToAltCon delta x con arg_tys ex_tvs >>= \case
Nothing -> pure mempty
Just (delta', arg_vas) ->
pmcheckI (args ++ ps) guards (arg_vas ++ vva) n delta'
-- Stuff for <next equation>
-- The var is forced regardless of whether @con@ was satisfiable
let pr_pos' = forceIfCanDiverge delta x pr_pos
pr_neg <- addRefutableAltCon delta x con >>= \case
Nothing -> pure mempty
Just delta' -> pure (usimple delta')
tracePm "ConVar" (vcat [ppr p, ppr x, ppr pr_pos', ppr pr_neg])
-- Combine both into a single PartialResult
let pr = mkUnion pr_pos' pr_neg
case (presultUncovered pr_pos', presultUncovered pr_neg) of
([], _) -> pure pr
(_, []) -> pure pr
-- See Note [Limit the number of refinements]
_ | lookupNumberOfRefinements delta x < mAX_REFINEMENTS
-> pure pr
| otherwise -> pure pr{ presultUncovered = [delta] }
pmcheck [] _ (_:_) _ _ = panic "pmcheck: nil-cons"
pmcheck (_:_) _ [] _ _ = panic "pmcheck: cons-nil"
-- ----------------------------------------------------------------------------
-- * Utilities for main checking
updateUncovered :: (Uncovered -> Uncovered) -> (PartialResult -> PartialResult)
updateUncovered f p@(PartialResult { presultUncovered = old })
= p { presultUncovered = f old }
-- | Initialise with default values for covering and divergent information and
-- a singleton uncovered set.
usimple :: Delta -> PartialResult
usimple delta = mempty { presultUncovered = [delta] }
-- | Get the union of two covered, uncovered and divergent value set
-- abstractions. Since the covered and divergent sets are represented by a
-- boolean, union means computing the logical or (at least one of the two is
-- non-empty).
mkUnion :: PartialResult -> PartialResult -> PartialResult
mkUnion = mappend
-- | Add a model to the uncovered set.
mkCons :: Delta -> PartialResult -> PartialResult
mkCons model = updateUncovered (model:)
-- | Set the divergent set to not empty
forces :: PartialResult -> PartialResult
forces pres = pres { presultDivergent = Diverged }
-- | Set the divergent set to non-empty if the variable has not been forced yet
forceIfCanDiverge :: Delta -> Id -> PartialResult -> PartialResult
forceIfCanDiverge delta x
| canDiverge delta x = forces
| otherwise = id
-- ----------------------------------------------------------------------------
-- * Propagation of term constraints inwards when checking nested matches
{- Note [Type and Term Equality Propagation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When checking a match it would be great to have all type and term information
available so we can get more precise results. For this reason we have functions
`addDictsDs' and `addTmVarCsDs' in DsMonad that store in the environment type and
term constraints (respectively) as we go deeper.
The type constraints we propagate inwards are collected by `collectEvVarsPats'
in HsPat.hs. This handles bug #4139 ( see example
https://gitlab.haskell.org/ghc/ghc/snippets/672 )
where this is needed.
For term equalities we do less, we just generate equalities for HsCase. For
example we accurately give 2 redundancy warnings for the marked cases:
f :: [a] -> Bool
f x = case x of
[] -> case x of -- brings (x ~ []) in scope
[] -> True
(_:_) -> False -- can't happen
(_:_) -> case x of -- brings (x ~ (_:_)) in scope
(_:_) -> True
[] -> False -- can't happen
Functions `addScrutTmCs' and `addPatTmCs' are responsible for generating
these constraints.
-}
locallyExtendPmDelta :: (Delta -> DsM (Maybe Delta)) -> DsM a -> DsM a
locallyExtendPmDelta ext k = getPmDelta >>= ext >>= \case
-- If adding a constraint would lead to a contradiction, don't add it.
-- See @Note [Recovering from unsatisfiable pattern-matching constraints]@
-- for why this is done.
Nothing -> k
Just delta' -> updPmDelta delta' k
-- | Add in-scope type constraints
addTyCsDs :: Bag EvVar -> DsM a -> DsM a
addTyCsDs ev_vars =
locallyExtendPmDelta (\delta -> addTypeEvidence delta ev_vars)
-- | Add equalities for the scrutinee to the local 'DsM' environment when
-- checking a case expression:
-- case e of x { matches }
-- When checking matches we record that (x ~ e) where x is the initial
-- uncovered. All matches will have to satisfy this equality.
addScrutTmCs :: Maybe (LHsExpr GhcTc) -> [Id] -> DsM a -> DsM a
addScrutTmCs Nothing _ k = k
addScrutTmCs (Just scr) [x] k = do
scr_e <- dsLExpr scr
locallyExtendPmDelta (\delta -> addVarCoreCt delta x scr_e) k
addScrutTmCs _ _ _ = panic "addScrutTmCs: HsCase with more than one case binder"
-- | Add equalities to the local 'DsM' environment when checking the RHS of a
-- case expression:
-- case e of x { p1 -> e1; ... pn -> en }
-- When we go deeper to check e.g. e1 we record (x ~ p1).
addPatTmCs :: [Pat GhcTc] -- LHS (should have length 1)
-> [Id] -- MatchVars (should have length 1)
-> DsM a
-> DsM a
-- Morally, this computes an approximation of the Covered set for p1
-- (which pmcheck currently discards). TODO: Re-use pmcheck instead of calling
-- out to awkard addVarPatVecCt.
addPatTmCs ps xs k = do
fam_insts <- dsGetFamInstEnvs
pv <- concat <$> translatePatVec fam_insts ps
locallyExtendPmDelta (\delta -> addVarPatVecCt delta xs pv) k
-- | Add a constraint equating a variable to a 'PatVec'. Picks out the single
-- 'PmPat' of arity 1 and equates x to it. Returns the original Delta if that
-- fails. Otherwise it returns Nothing when the resulting Delta would be
-- unsatisfiable, or @Just delta'@ when the extended @delta'@ is still possibly
-- satisfiable.
addVarPatVecCt :: Delta -> [Id] -> PatVec -> DsM (Maybe Delta)
-- This is just a simple version of pmcheck to compute the Covered Delta
-- (which pmcheck doesn't even attempt to keep).
-- Also PmGrd, although having pattern arity 0, really stores important info.
-- For example, as-patterns desugar to a plain variable match and an associated
-- PmGrd for the RHS of the @. We don't currently look into that PmGrd and I'm
-- not willing to duplicate any more of pmcheck.
addVarPatVecCt delta (x:xs) (pat:pv)
| patternArity pat == 1 -- PmVar or PmCon
= runMaybeT $ do
delta' <- MaybeT (addVarPatCt delta x pat)
MaybeT (addVarPatVecCt delta' xs pv)
| otherwise -- PmGrd or PmFake
= addVarPatVecCt delta (x:xs) pv
addVarPatVecCt delta [] pv = ASSERT( patVecArity pv == 0 ) pure (Just delta)
addVarPatVecCt _ (_:_) [] = panic "More match vars than patterns"
-- | Convert a pattern to a 'PmTypes' (will be either 'Nothing' if the pattern is
-- a guard pattern, or 'Just' an expression in all other cases) by dropping the
-- guards
addVarPatCt :: Delta -> Id -> PmPat -> DsM (Maybe Delta)
addVarPatCt delta x (PmVar { pm_var_id = y }) = addTmCt delta (TmVarVar x y)
addVarPatCt delta x (PmCon { pm_con_con = con, pm_con_args = args }) = runMaybeT $ do
arg_ids <- traverse (lift . mkPmId . pmPatType) args
delta' <- foldlM (\delta (y, arg) -> MaybeT (addVarPatCt delta y arg)) delta (zip arg_ids args)
MaybeT (addTmCt delta' (TmVarCon x con arg_ids))
addVarPatCt delta _ _pat = ASSERT( patternArity _pat == 0 ) pure (Just delta)
{-
%************************************************************************
%* *
Pretty printing of exhaustiveness/redundancy check warnings
%* *
%************************************************************************
-}
-- | Check whether any part of pattern match checking is enabled for this
-- 'HsMatchContext' (does not matter whether it is the redundancy check or the
-- exhaustiveness check).
isMatchContextPmChecked :: DynFlags -> Origin -> HsMatchContext id -> Bool
isMatchContextPmChecked dflags origin kind
| isGenerated origin
= False
| otherwise
= wopt Opt_WarnOverlappingPatterns dflags || exhaustive dflags kind
-- | Return True when any of the pattern match warnings ('allPmCheckWarnings')
-- are enabled, in which case we need to run the pattern match checker.
needToRunPmCheck :: DynFlags -> Origin -> Bool
needToRunPmCheck dflags origin
| isGenerated origin
= False
| otherwise
= notNull (filter (`wopt` dflags) allPmCheckWarnings)
-- | Issue all the warnings (coverage, exhaustiveness, inaccessibility)
dsPmWarn :: DynFlags -> DsMatchContext -> PmResult -> DsM ()
dsPmWarn dflags ctx@(DsMatchContext kind loc) pm_result
= when (flag_i || flag_u) $ do
let exists_r = flag_i && notNull redundant
exists_i = flag_i && notNull inaccessible && not is_rec_upd
exists_u = flag_u && (case uncovered of
TypeOfUncovered _ -> True
UncoveredPatterns _ unc -> notNull unc)
when exists_r $ forM_ redundant $ \(dL->L l q) -> do
putSrcSpanDs l (warnDs (Reason Opt_WarnOverlappingPatterns)
(pprEqn q "is redundant"))
when exists_i $ forM_ inaccessible $ \(dL->L l q) -> do
putSrcSpanDs l (warnDs (Reason Opt_WarnOverlappingPatterns)
(pprEqn q "has inaccessible right hand side"))
when exists_u $ putSrcSpanDs loc $ warnDs flag_u_reason $
case uncovered of
TypeOfUncovered ty -> warnEmptyCase ty
UncoveredPatterns vars unc -> pprEqns vars unc
where
PmResult
{ pmresultRedundant = redundant
, pmresultUncovered = uncovered
, pmresultInaccessible = inaccessible } = pm_result
flag_i = wopt Opt_WarnOverlappingPatterns dflags
flag_u = exhaustive dflags kind
flag_u_reason = maybe NoReason Reason (exhaustiveWarningFlag kind)
is_rec_upd = case kind of { RecUpd -> True; _ -> False }
-- See Note [Inaccessible warnings for record updates]
maxPatterns = maxUncoveredPatterns dflags
-- Print a single clause (for redundant/with-inaccessible-rhs)
pprEqn q txt = pprContext True ctx (text txt) $ \f ->
f (pprPats kind (map unLoc q))
-- Print several clauses (for uncovered clauses)
pprEqns vars deltas = pprContext False ctx (text "are non-exhaustive") $ \_ ->
case vars of -- See #11245
[] -> text "Guards do not cover entire pattern space"
_ -> let us = map (\delta -> pprUncovered delta vars) deltas
in hang (text "Patterns not matched:") 4
(vcat (take maxPatterns us) $$ dots maxPatterns us)
-- Print a type-annotated wildcard (for non-exhaustive `EmptyCase`s for
-- which we only know the type and have no inhabitants at hand)
warnEmptyCase ty = pprContext False ctx (text "are non-exhaustive") $ \_ ->
hang (text "Patterns not matched:") 4 (underscore <+> dcolon <+> ppr ty)
{- Note [Inaccessible warnings for record updates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#12957)
data T a where
T1 :: { x :: Int } -> T Bool
T2 :: { x :: Int } -> T a
T3 :: T a
f :: T Char -> T a
f r = r { x = 3 }
The desugarer will (conservatively generate a case for T1 even though
it's impossible:
f r = case r of
T1 x -> T1 3 -- Inaccessible branch
T2 x -> T2 3
_ -> error "Missing"
We don't want to warn about the inaccessible branch because the programmer
didn't put it there! So we filter out the warning here.
-}
-- | Issue a warning when the predefined number of iterations is exceeded
-- for the pattern match checker
warnPmIters :: DynFlags -> DsMatchContext -> DsM ()
warnPmIters dflags (DsMatchContext kind loc)
= when (flag_i || flag_u) $ do
iters <- maxPmCheckIterations <$> getDynFlags
putSrcSpanDs loc (warnDs NoReason (msg iters))
where
ctxt = pprMatchContext kind
msg is = fsep [ text "Pattern match checker exceeded"
, parens (ppr is), text "iterations in", ctxt <> dot
, text "(Use -fmax-pmcheck-iterations=n"
, text "to set the maximum number of iterations to n)" ]
flag_i = wopt Opt_WarnOverlappingPatterns dflags
flag_u = exhaustive dflags kind
dots :: Int -> [a] -> SDoc
dots maxPatterns qs
| qs `lengthExceeds` maxPatterns = text "..."
| otherwise = empty
-- | All warning flags that need to run the pattern match checker.
allPmCheckWarnings :: [WarningFlag]
allPmCheckWarnings =
[ Opt_WarnIncompletePatterns
, Opt_WarnIncompleteUniPatterns
, Opt_WarnIncompletePatternsRecUpd
, Opt_WarnOverlappingPatterns
]
-- | Check whether the exhaustiveness checker should run (exhaustiveness only)
exhaustive :: DynFlags -> HsMatchContext id -> Bool
exhaustive dflags = maybe False (`wopt` dflags) . exhaustiveWarningFlag
-- | Denotes whether an exhaustiveness check is supported, and if so,
-- via which 'WarningFlag' it's controlled.
-- Returns 'Nothing' if check is not supported.
exhaustiveWarningFlag :: HsMatchContext id -> Maybe WarningFlag
exhaustiveWarningFlag (FunRhs {}) = Just Opt_WarnIncompletePatterns
exhaustiveWarningFlag CaseAlt = Just Opt_WarnIncompletePatterns
exhaustiveWarningFlag IfAlt = Just Opt_WarnIncompletePatterns
exhaustiveWarningFlag LambdaExpr = Just Opt_WarnIncompleteUniPatterns
exhaustiveWarningFlag PatBindRhs = Just Opt_WarnIncompleteUniPatterns
exhaustiveWarningFlag PatBindGuards = Just Opt_WarnIncompletePatterns
exhaustiveWarningFlag ProcExpr = Just Opt_WarnIncompleteUniPatterns
exhaustiveWarningFlag RecUpd = Just Opt_WarnIncompletePatternsRecUpd
exhaustiveWarningFlag ThPatSplice = Nothing
exhaustiveWarningFlag PatSyn = Nothing
exhaustiveWarningFlag ThPatQuote = Nothing
exhaustiveWarningFlag (StmtCtxt {}) = Nothing -- Don't warn about incomplete patterns
-- in list comprehensions, pattern guards
-- etc. They are often *supposed* to be
-- incomplete
-- True <==> singular
pprContext :: Bool -> DsMatchContext -> SDoc -> ((SDoc -> SDoc) -> SDoc) -> SDoc
pprContext singular (DsMatchContext kind _loc) msg rest_of_msg_fun
= vcat [text txt <+> msg,
sep [ text "In" <+> ppr_match <> char ':'
, nest 4 (rest_of_msg_fun pref)]]
where
txt | singular = "Pattern match"
| otherwise = "Pattern match(es)"
(ppr_match, pref)
= case kind of
FunRhs { mc_fun = (dL->L _ fun) }
-> (pprMatchContext kind, \ pp -> ppr fun <+> pp)
_ -> (pprMatchContext kind, \ pp -> pp)
pprPats :: HsMatchContext Name -> [Pat GhcTc] -> SDoc
pprPats kind pats
= sep [sep (map ppr pats), matchSeparator kind, text "..."]
|