1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
|
{-
Author: George Karachalias <george.karachalias@cs.kuleuven.be>
Pattern Matching Coverage Checking.
-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE MultiWayIf #-}
module Check (
-- Checking and printing
checkSingle, checkMatches, checkGuardMatches, isAnyPmCheckEnabled,
-- See Note [Type and Term Equality Propagation]
genCaseTmCs1, genCaseTmCs2
) where
#include "HsVersions.h"
import GhcPrelude
import TmOracle
import PmPpr
import Unify( tcMatchTy )
import DynFlags
import HsSyn
import TcHsSyn
import Id
import ConLike
import Name
import FamInstEnv
import TysPrim (tYPETyCon)
import TysWiredIn
import TyCon
import SrcLoc
import Util
import Outputable
import FastString
import DataCon
import PatSyn
import HscTypes (CompleteMatch(..))
import BasicTypes (Boxity(..))
import DsMonad
import TcSimplify (tcCheckSatisfiability)
import TcType (isStringTy)
import Bag
import ErrUtils
import Var (EvVar)
import TyCoRep
import Type
import UniqSupply
import DsUtils (isTrueLHsExpr)
import Maybes (expectJust)
import qualified GHC.LanguageExtensions as LangExt
import Data.List (find)
import Data.Maybe (catMaybes, isJust, fromMaybe)
import Control.Monad (forM, when, forM_, zipWithM, filterM)
import Coercion
import TcEvidence
import TcSimplify (tcNormalise)
import IOEnv
import qualified Data.Semigroup as Semi
import ListT (ListT(..), fold, select)
{-
This module checks pattern matches for:
\begin{enumerate}
\item Equations that are redundant
\item Equations with inaccessible right-hand-side
\item Exhaustiveness
\end{enumerate}
The algorithm is based on the paper:
"GADTs Meet Their Match:
Pattern-matching Warnings That Account for GADTs, Guards, and Laziness"
http://people.cs.kuleuven.be/~george.karachalias/papers/p424-karachalias.pdf
%************************************************************************
%* *
Pattern Match Check Types
%* *
%************************************************************************
-}
-- We use the non-determinism monad to apply the algorithm to several
-- possible sets of constructors. Users can specify complete sets of
-- constructors by using COMPLETE pragmas.
-- The algorithm only picks out constructor
-- sets deep in the bowels which makes a simpler `mapM` more difficult to
-- implement. The non-determinism is only used in one place, see the ConVar
-- case in `pmCheckHd`.
type PmM a = ListT DsM a
liftD :: DsM a -> PmM a
liftD m = ListT $ \sk fk -> m >>= \a -> sk a fk
-- Pick the first match complete covered match or otherwise the "best" match.
-- The best match is the one with the least uncovered clauses, ties broken
-- by the number of inaccessible clauses followed by number of redundant
-- clauses.
--
-- This is specified in the
-- "Disambiguating between multiple ``COMPLETE`` pragmas" section of the
-- users' guide. If you update the implementation of this function, make sure
-- to update that section of the users' guide as well.
getResult :: PmM PmResult -> DsM PmResult
getResult ls
= do { res <- fold ls goM (pure Nothing)
; case res of
Nothing -> panic "getResult is empty"
Just a -> return a }
where
goM :: PmResult -> DsM (Maybe PmResult) -> DsM (Maybe PmResult)
goM mpm dpm = do { pmr <- dpm
; return $ Just $ go pmr mpm }
-- Careful not to force unecessary results
go :: Maybe PmResult -> PmResult -> PmResult
go Nothing rs = rs
go (Just old@(PmResult prov rs (UncoveredPatterns us) is)) new
| null us && null rs && null is = old
| otherwise =
let PmResult prov' rs' (UncoveredPatterns us') is' = new
in case compareLength us us'
`mappend` (compareLength is is')
`mappend` (compareLength rs rs')
`mappend` (compare prov prov') of
GT -> new
EQ -> new
LT -> old
go (Just (PmResult _ _ (TypeOfUncovered _) _)) _new
= panic "getResult: No inhabitation candidates"
data PatTy = PAT | VA -- Used only as a kind, to index PmPat
-- The *arity* of a PatVec [p1,..,pn] is
-- the number of p1..pn that are not Guards
data PmPat :: PatTy -> * where
PmCon :: { pm_con_con :: ConLike
, pm_con_arg_tys :: [Type]
, pm_con_tvs :: [TyVar]
, pm_con_dicts :: [EvVar]
, pm_con_args :: [PmPat t] } -> PmPat t
-- For PmCon arguments' meaning see @ConPatOut@ in hsSyn/HsPat.hs
PmVar :: { pm_var_id :: Id } -> PmPat t
PmLit :: { pm_lit_lit :: PmLit } -> PmPat t -- See Note [Literals in PmPat]
PmNLit :: { pm_lit_id :: Id
, pm_lit_not :: [PmLit] } -> PmPat 'VA
PmGrd :: { pm_grd_pv :: PatVec
, pm_grd_expr :: PmExpr } -> PmPat 'PAT
-- | A fake guard pattern (True <- _) used to represent cases we cannot handle.
PmFake :: PmPat 'PAT
instance Outputable (PmPat a) where
ppr = pprPmPatDebug
-- data T a where
-- MkT :: forall p q. (Eq p, Ord q) => p -> q -> T [p]
-- or MkT :: forall p q r. (Eq p, Ord q, [p] ~ r) => p -> q -> T r
type Pattern = PmPat 'PAT -- ^ Patterns
type ValAbs = PmPat 'VA -- ^ Value Abstractions
type PatVec = [Pattern] -- ^ Pattern Vectors
data ValVec = ValVec [ValAbs] Delta -- ^ Value Vector Abstractions
-- | Term and type constraints to accompany each value vector abstraction.
-- For efficiency, we store the term oracle state instead of the term
-- constraints. TODO: Do the same for the type constraints?
data Delta = MkDelta { delta_ty_cs :: Bag EvVar
, delta_tm_cs :: TmState }
type ValSetAbs = [ValVec] -- ^ Value Set Abstractions
type Uncovered = ValSetAbs
-- Instead of keeping the whole sets in memory, we keep a boolean for both the
-- covered and the divergent set (we store the uncovered set though, since we
-- want to print it). For both the covered and the divergent we have:
--
-- True <=> The set is non-empty
--
-- hence:
-- C = True ==> Useful clause (no warning)
-- C = False, D = True ==> Clause with inaccessible RHS
-- C = False, D = False ==> Redundant clause
data Covered = Covered | NotCovered
deriving Show
instance Outputable Covered where
ppr (Covered) = text "Covered"
ppr (NotCovered) = text "NotCovered"
-- Like the or monoid for booleans
-- Covered = True, Uncovered = False
instance Semi.Semigroup Covered where
Covered <> _ = Covered
_ <> Covered = Covered
NotCovered <> NotCovered = NotCovered
instance Monoid Covered where
mempty = NotCovered
mappend = (Semi.<>)
data Diverged = Diverged | NotDiverged
deriving Show
instance Outputable Diverged where
ppr Diverged = text "Diverged"
ppr NotDiverged = text "NotDiverged"
instance Semi.Semigroup Diverged where
Diverged <> _ = Diverged
_ <> Diverged = Diverged
NotDiverged <> NotDiverged = NotDiverged
instance Monoid Diverged where
mempty = NotDiverged
mappend = (Semi.<>)
-- | When we learned that a given match group is complete
data Provenance =
FromBuiltin -- ^ From the original definition of the type
-- constructor.
| FromComplete -- ^ From a user-provided @COMPLETE@ pragma
deriving (Show, Eq, Ord)
instance Outputable Provenance where
ppr = text . show
instance Semi.Semigroup Provenance where
FromComplete <> _ = FromComplete
_ <> FromComplete = FromComplete
_ <> _ = FromBuiltin
instance Monoid Provenance where
mempty = FromBuiltin
mappend = (Semi.<>)
data PartialResult = PartialResult {
presultProvenance :: Provenance
-- keep track of provenance because we don't want
-- to warn about redundant matches if the result
-- is contaminated with a COMPLETE pragma
, presultCovered :: Covered
, presultUncovered :: Uncovered
, presultDivergent :: Diverged }
instance Outputable PartialResult where
ppr (PartialResult prov c vsa d)
= text "PartialResult" <+> ppr prov <+> ppr c
<+> ppr d <+> ppr vsa
instance Semi.Semigroup PartialResult where
(PartialResult prov1 cs1 vsa1 ds1)
<> (PartialResult prov2 cs2 vsa2 ds2)
= PartialResult (prov1 Semi.<> prov2)
(cs1 Semi.<> cs2)
(vsa1 Semi.<> vsa2)
(ds1 Semi.<> ds2)
instance Monoid PartialResult where
mempty = PartialResult mempty mempty [] mempty
mappend = (Semi.<>)
-- newtype ChoiceOf a = ChoiceOf [a]
-- | Pattern check result
--
-- * Redundant clauses
-- * Not-covered clauses (or their type, if no pattern is available)
-- * Clauses with inaccessible RHS
--
-- More details about the classification of clauses into useful, redundant
-- and with inaccessible right hand side can be found here:
--
-- https://gitlab.haskell.org/ghc/ghc/wikis/pattern-match-check
--
data PmResult =
PmResult {
pmresultProvenance :: Provenance
, pmresultRedundant :: [Located [LPat GhcTc]]
, pmresultUncovered :: UncoveredCandidates
, pmresultInaccessible :: [Located [LPat GhcTc]] }
instance Outputable PmResult where
ppr pmr = hang (text "PmResult") 2 $ vcat
[ text "pmresultProvenance" <+> ppr (pmresultProvenance pmr)
, text "pmresultRedundant" <+> ppr (pmresultRedundant pmr)
, text "pmresultUncovered" <+> ppr (pmresultUncovered pmr)
, text "pmresultInaccessible" <+> ppr (pmresultInaccessible pmr)
]
-- | Either a list of patterns that are not covered, or their type, in case we
-- have no patterns at hand. Not having patterns at hand can arise when
-- handling EmptyCase expressions, in two cases:
--
-- * The type of the scrutinee is a trivially inhabited type (like Int or Char)
-- * The type of the scrutinee cannot be reduced to WHNF.
--
-- In both these cases we have no inhabitation candidates for the type at hand,
-- but we don't want to issue just a wildcard as missing. Instead, we print a
-- type annotated wildcard, so that the user knows what kind of patterns is
-- expected (e.g. (_ :: Int), or (_ :: F Int), where F Int does not reduce).
data UncoveredCandidates = UncoveredPatterns Uncovered
| TypeOfUncovered Type
instance Outputable UncoveredCandidates where
ppr (UncoveredPatterns uc) = text "UnPat" <+> ppr uc
ppr (TypeOfUncovered ty) = text "UnTy" <+> ppr ty
-- | The empty pattern check result
emptyPmResult :: PmResult
emptyPmResult = PmResult FromBuiltin [] (UncoveredPatterns []) []
-- | Non-exhaustive empty case with unknown/trivial inhabitants
uncoveredWithTy :: Type -> PmResult
uncoveredWithTy ty = PmResult FromBuiltin [] (TypeOfUncovered ty) []
{-
%************************************************************************
%* *
Entry points to the checker: checkSingle and checkMatches
%* *
%************************************************************************
-}
-- | Check a single pattern binding (let)
checkSingle :: DynFlags -> DsMatchContext -> Id -> Pat GhcTc -> DsM ()
checkSingle dflags ctxt@(DsMatchContext _ locn) var p = do
tracePmD "checkSingle" (vcat [ppr ctxt, ppr var, ppr p])
mb_pm_res <- tryM (getResult (checkSingle' locn var p))
case mb_pm_res of
Left _ -> warnPmIters dflags ctxt
Right res -> dsPmWarn dflags ctxt res
-- | Check a single pattern binding (let)
checkSingle' :: SrcSpan -> Id -> Pat GhcTc -> PmM PmResult
checkSingle' locn var p = do
liftD resetPmIterDs -- set the iter-no to zero
fam_insts <- liftD dsGetFamInstEnvs
clause <- liftD $ translatePat fam_insts p
missing <- mkInitialUncovered [var]
tracePm "checkSingle': missing" (vcat (map pprValVecDebug missing))
-- no guards
PartialResult prov cs us ds <- runMany (pmcheckI clause []) missing
let us' = UncoveredPatterns us
return $ case (cs,ds) of
(Covered, _ ) -> PmResult prov [] us' [] -- useful
(NotCovered, NotDiverged) -> PmResult prov m us' [] -- redundant
(NotCovered, Diverged ) -> PmResult prov [] us' m -- inaccessible rhs
where m = [cL locn [cL locn p]]
-- | Exhaustive for guard matches, is used for guards in pattern bindings and
-- in @MultiIf@ expressions.
checkGuardMatches :: HsMatchContext Name -- Match context
-> GRHSs GhcTc (LHsExpr GhcTc) -- Guarded RHSs
-> DsM ()
checkGuardMatches hs_ctx guards@(GRHSs _ grhss _) = do
dflags <- getDynFlags
let combinedLoc = foldl1 combineSrcSpans (map getLoc grhss)
dsMatchContext = DsMatchContext hs_ctx combinedLoc
match = cL combinedLoc $
Match { m_ext = noExt
, m_ctxt = hs_ctx
, m_pats = []
, m_grhss = guards }
checkMatches dflags dsMatchContext [] [match]
checkGuardMatches _ (XGRHSs _) = panic "checkGuardMatches"
-- | Check a matchgroup (case, functions, etc.)
checkMatches :: DynFlags -> DsMatchContext
-> [Id] -> [LMatch GhcTc (LHsExpr GhcTc)] -> DsM ()
checkMatches dflags ctxt vars matches = do
tracePmD "checkMatches" (hang (vcat [ppr ctxt
, ppr vars
, text "Matches:"])
2
(vcat (map ppr matches)))
mb_pm_res <- tryM $ getResult $ case matches of
-- Check EmptyCase separately
-- See Note [Checking EmptyCase Expressions]
[] | [var] <- vars -> checkEmptyCase' var
_normal_match -> checkMatches' vars matches
case mb_pm_res of
Left _ -> warnPmIters dflags ctxt
Right res -> dsPmWarn dflags ctxt res
-- | Check a matchgroup (case, functions, etc.). To be called on a non-empty
-- list of matches. For empty case expressions, use checkEmptyCase' instead.
checkMatches' :: [Id] -> [LMatch GhcTc (LHsExpr GhcTc)] -> PmM PmResult
checkMatches' vars matches
| null matches = panic "checkMatches': EmptyCase"
| otherwise = do
liftD resetPmIterDs -- set the iter-no to zero
missing <- mkInitialUncovered vars
tracePm "checkMatches': missing" (vcat (map pprValVecDebug missing))
(prov, rs,us,ds) <- go matches missing
return $ PmResult {
pmresultProvenance = prov
, pmresultRedundant = map hsLMatchToLPats rs
, pmresultUncovered = UncoveredPatterns us
, pmresultInaccessible = map hsLMatchToLPats ds }
where
go :: [LMatch GhcTc (LHsExpr GhcTc)] -> Uncovered
-> PmM (Provenance
, [LMatch GhcTc (LHsExpr GhcTc)]
, Uncovered
, [LMatch GhcTc (LHsExpr GhcTc)])
go [] missing = return (mempty, [], missing, [])
go (m:ms) missing = do
tracePm "checkMatches': go" (ppr m $$ ppr missing)
fam_insts <- liftD dsGetFamInstEnvs
(clause, guards) <- liftD $ translateMatch fam_insts m
r@(PartialResult prov cs missing' ds)
<- runMany (pmcheckI clause guards) missing
tracePm "checkMatches': go: res" (ppr r)
(ms_prov, rs, final_u, is) <- go ms missing'
let final_prov = prov `mappend` ms_prov
return $ case (cs, ds) of
-- useful
(Covered, _ ) -> (final_prov, rs, final_u, is)
-- redundant
(NotCovered, NotDiverged) -> (final_prov, m:rs, final_u,is)
-- inaccessible
(NotCovered, Diverged ) -> (final_prov, rs, final_u, m:is)
hsLMatchToLPats :: LMatch id body -> Located [LPat id]
hsLMatchToLPats (dL->L l (Match { m_pats = pats })) = cL l pats
hsLMatchToLPats _ = panic "checkMatches'"
-- | Check an empty case expression. Since there are no clauses to process, we
-- only compute the uncovered set. See Note [Checking EmptyCase Expressions]
-- for details.
checkEmptyCase' :: Id -> PmM PmResult
checkEmptyCase' var = do
tm_ty_css <- pmInitialTmTyCs
mb_candidates <- inhabitationCandidates (delta_ty_cs tm_ty_css) (idType var)
case mb_candidates of
-- Inhabitation checking failed / the type is trivially inhabited
Left ty -> return (uncoveredWithTy ty)
-- A list of inhabitant candidates is available: Check for each
-- one for the satisfiability of the constraints it gives rise to.
Right (_, candidates) -> do
missing_m <- flip mapMaybeM candidates $
\InhabitationCandidate{ ic_val_abs = va, ic_tm_ct = tm_ct
, ic_ty_cs = ty_cs
, ic_strict_arg_tys = strict_arg_tys } -> do
mb_sat <- pmIsSatisfiable tm_ty_css tm_ct ty_cs strict_arg_tys
pure $ fmap (ValVec [va]) mb_sat
return $ if null missing_m
then emptyPmResult
else PmResult FromBuiltin [] (UncoveredPatterns missing_m) []
-- | Returns 'True' if the argument 'Type' is a fully saturated application of
-- a closed type constructor.
--
-- Closed type constructors are those with a fixed right hand side, as
-- opposed to e.g. associated types. These are of particular interest for
-- pattern-match coverage checking, because GHC can exhaustively consider all
-- possible forms that values of a closed type can take on.
--
-- Note that this function is intended to be used to check types of value-level
-- patterns, so as a consequence, the 'Type' supplied as an argument to this
-- function should be of kind @Type@.
pmIsClosedType :: Type -> Bool
pmIsClosedType ty
= case splitTyConApp_maybe ty of
Just (tc, ty_args)
| is_algebraic_like tc && not (isFamilyTyCon tc)
-> ASSERT2( ty_args `lengthIs` tyConArity tc, ppr ty ) True
_other -> False
where
-- This returns True for TyCons which /act like/ algebraic types.
-- (See "Type#type_classification" for what an algebraic type is.)
--
-- This is qualified with \"like\" because of a particular special
-- case: TYPE (the underlyind kind behind Type, among others). TYPE
-- is conceptually a datatype (and thus algebraic), but in practice it is
-- a primitive builtin type, so we must check for it specially.
--
-- NB: it makes sense to think of TYPE as a closed type in a value-level,
-- pattern-matching context. However, at the kind level, TYPE is certainly
-- not closed! Since this function is specifically tailored towards pattern
-- matching, however, it's OK to label TYPE as closed.
is_algebraic_like :: TyCon -> Bool
is_algebraic_like tc = isAlgTyCon tc || tc == tYPETyCon
pmTopNormaliseType_maybe :: FamInstEnvs -> Bag EvVar -> Type
-> PmM (Maybe (Type, [DataCon], Type))
-- ^ Get rid of *outermost* (or toplevel)
-- * type function redex
-- * data family redex
-- * newtypes
--
-- Behaves exactly like `topNormaliseType_maybe`, but instead of returning a
-- coercion, it returns useful information for issuing pattern matching
-- warnings. See Note [Type normalisation for EmptyCase] for details.
--
-- NB: Normalisation can potentially change kinds, if the head of the type
-- is a type family with a variable result kind. I (Richard E) can't think
-- of a way to cause trouble here, though.
pmTopNormaliseType_maybe env ty_cs typ
= do (_, mb_typ') <- liftD $ initTcDsForSolver $ tcNormalise ty_cs typ
-- Before proceeding, we chuck typ into the constraint solver, in case
-- solving for given equalities may reduce typ some. See
-- "Wrinkle: local equalities" in
-- Note [Type normalisation for EmptyCase].
pure $ do typ' <- mb_typ'
((ty_f,tm_f), ty) <- topNormaliseTypeX stepper comb typ'
-- We need to do topNormaliseTypeX in addition to tcNormalise,
-- since topNormaliseX looks through newtypes, which
-- tcNormalise does not do.
Just (eq_src_ty ty (typ' : ty_f [ty]), tm_f [], ty)
where
-- Find the first type in the sequence of rewrites that is a data type,
-- newtype, or a data family application (not the representation tycon!).
-- This is the one that is equal (in source Haskell) to the initial type.
-- If none is found in the list, then all of them are type family
-- applications, so we simply return the last one, which is the *simplest*.
eq_src_ty :: Type -> [Type] -> Type
eq_src_ty ty tys = maybe ty id (find is_closed_or_data_family tys)
is_closed_or_data_family :: Type -> Bool
is_closed_or_data_family ty = pmIsClosedType ty || isDataFamilyAppType ty
-- For efficiency, represent both lists as difference lists.
-- comb performs the concatenation, for both lists.
comb (tyf1, tmf1) (tyf2, tmf2) = (tyf1 . tyf2, tmf1 . tmf2)
stepper = newTypeStepper `composeSteppers` tyFamStepper
-- A 'NormaliseStepper' that unwraps newtypes, careful not to fall into
-- a loop. If it would fall into a loop, it produces 'NS_Abort'.
newTypeStepper :: NormaliseStepper ([Type] -> [Type],[DataCon] -> [DataCon])
newTypeStepper rec_nts tc tys
| Just (ty', _co) <- instNewTyCon_maybe tc tys
= case checkRecTc rec_nts tc of
Just rec_nts' -> let tyf = ((TyConApp tc tys):)
tmf = ((tyConSingleDataCon tc):)
in NS_Step rec_nts' ty' (tyf, tmf)
Nothing -> NS_Abort
| otherwise
= NS_Done
tyFamStepper :: NormaliseStepper ([Type] -> [Type], [DataCon] -> [DataCon])
tyFamStepper rec_nts tc tys -- Try to step a type/data family
= let (_args_co, ntys, _res_co) = normaliseTcArgs env Representational tc tys in
-- NB: It's OK to use normaliseTcArgs here instead of
-- normalise_tc_args (which takes the LiftingContext described
-- in Note [Normalising types]) because the reduceTyFamApp below
-- works only at top level. We'll never recur in this function
-- after reducing the kind of a bound tyvar.
case reduceTyFamApp_maybe env Representational tc ntys of
Just (_co, rhs) -> NS_Step rec_nts rhs ((rhs:), id)
_ -> NS_Done
-- | Determine suitable constraints to use at the beginning of pattern-match
-- coverage checking by consulting the sets of term and type constraints
-- currently in scope. If one of these sets of constraints is unsatisfiable,
-- use an empty set in its place. (See
-- @Note [Recovering from unsatisfiable pattern-matching constraints]@
-- for why this is done.)
pmInitialTmTyCs :: PmM Delta
pmInitialTmTyCs = do
ty_cs <- liftD getDictsDs
tm_cs <- bagToList <$> liftD getTmCsDs
sat_ty <- tyOracle ty_cs
let initTyCs = if sat_ty then ty_cs else emptyBag
initTmState = fromMaybe initialTmState (tmOracle initialTmState tm_cs)
pure $ MkDelta{ delta_tm_cs = initTmState, delta_ty_cs = initTyCs }
{-
Note [Recovering from unsatisfiable pattern-matching constraints]
~~~~~~~~~~~~~~~~
Consider the following code (see #12957 and #15450):
f :: Int ~ Bool => ()
f = case True of { False -> () }
We want to warn that the pattern-matching in `f` is non-exhaustive. But GHC
used not to do this; in fact, it would warn that the match was /redundant/!
This is because the constraint (Int ~ Bool) in `f` is unsatisfiable, and the
coverage checker deems any matches with unsatifiable constraint sets to be
unreachable.
We decide to better than this. When beginning coverage checking, we first
check if the constraints in scope are unsatisfiable, and if so, we start
afresh with an empty set of constraints. This way, we'll get the warnings
that we expect.
-}
-- | Given a conlike's term constraints, type constraints, and strict argument
-- types, check if they are satisfiable.
-- (In other words, this is the ⊢_Sat oracle judgment from the GADTs Meet
-- Their Match paper.)
--
-- For the purposes of efficiency, this takes as separate arguments the
-- ambient term and type constraints (which are known beforehand to be
-- satisfiable), as well as the new term and type constraints (which may not
-- be satisfiable). This lets us implement two mini-optimizations:
--
-- * If there are no new type constraints, then don't bother initializing
-- the type oracle, since it's redundant to do so.
-- * Since the new term constraint is a separate argument, we only need to
-- execute one iteration of the term oracle (instead of traversing the
-- entire set of term constraints).
--
-- Taking strict argument types into account is something which was not
-- discussed in GADTs Meet Their Match. For an explanation of what role they
-- serve, see @Note [Extensions to GADTs Meet Their Match]@.
pmIsSatisfiable
:: Delta -- ^ The ambient term and type constraints
-- (known to be satisfiable).
-> TmVarCt -- ^ The new term constraint.
-> Bag EvVar -- ^ The new type constraints.
-> [Type] -- ^ The strict argument types.
-> PmM (Maybe Delta)
-- ^ @'Just' delta@ if the constraints (@delta@) are
-- satisfiable, and each strict argument type is inhabitable.
-- 'Nothing' otherwise.
pmIsSatisfiable amb_cs new_tm_c new_ty_cs strict_arg_tys = do
mb_sat <- tmTyCsAreSatisfiable amb_cs new_tm_c new_ty_cs
case mb_sat of
Nothing -> pure Nothing
Just delta -> do
-- We know that the term and type constraints are inhabitable, so now
-- check if each strict argument type is inhabitable.
all_non_void <- checkAllNonVoid initRecTc delta strict_arg_tys
pure $ if all_non_void -- Check if each strict argument type
-- is inhabitable
then Just delta
else Nothing
-- | Like 'pmIsSatisfiable', but only checks if term and type constraints are
-- satisfiable, and doesn't bother checking anything related to strict argument
-- types.
tmTyCsAreSatisfiable
:: Delta -- ^ The ambient term and type constraints
-- (known to be satisfiable).
-> TmVarCt -- ^ The new term constraint.
-> Bag EvVar -- ^ The new type constraints.
-> PmM (Maybe Delta)
-- ^ @'Just' delta@ if the constraints (@delta@) are
-- satisfiable. 'Nothing' otherwise.
tmTyCsAreSatisfiable
(MkDelta{ delta_tm_cs = amb_tm_cs, delta_ty_cs = amb_ty_cs })
new_tm_c new_ty_cs = do
let ty_cs = new_ty_cs `unionBags` amb_ty_cs
sat_ty <- if isEmptyBag new_ty_cs
then pure True
else tyOracle ty_cs
pure $ case (sat_ty, solveOneEq amb_tm_cs new_tm_c) of
(True, Just term_cs) -> Just $ MkDelta{ delta_ty_cs = ty_cs
, delta_tm_cs = term_cs }
_unsat -> Nothing
-- | Implements two performance optimizations, as described in the
-- \"Strict argument type constraints\" section of
-- @Note [Extensions to GADTs Meet Their Match]@.
checkAllNonVoid :: RecTcChecker -> Delta -> [Type] -> PmM Bool
checkAllNonVoid rec_ts amb_cs strict_arg_tys = do
fam_insts <- liftD dsGetFamInstEnvs
let definitely_inhabited =
definitelyInhabitedType fam_insts (delta_ty_cs amb_cs)
tys_to_check <- filterOutM definitely_inhabited strict_arg_tys
let rec_max_bound | tys_to_check `lengthExceeds` 1
= 1
| otherwise
= defaultRecTcMaxBound
rec_ts' = setRecTcMaxBound rec_max_bound rec_ts
allM (nonVoid rec_ts' amb_cs) tys_to_check
-- | Checks if a strict argument type of a conlike is inhabitable by a
-- terminating value (i.e, an 'InhabitationCandidate').
-- See @Note [Extensions to GADTs Meet Their Match]@.
nonVoid
:: RecTcChecker -- ^ The per-'TyCon' recursion depth limit.
-> Delta -- ^ The ambient term/type constraints (known to be
-- satisfiable).
-> Type -- ^ The strict argument type.
-> PmM Bool -- ^ 'True' if the strict argument type might be inhabited by
-- a terminating value (i.e., an 'InhabitationCandidate').
-- 'False' if it is definitely uninhabitable by anything
-- (except bottom).
nonVoid rec_ts amb_cs strict_arg_ty = do
mb_cands <- inhabitationCandidates (delta_ty_cs amb_cs) strict_arg_ty
case mb_cands of
Right (tc, cands)
| Just rec_ts' <- checkRecTc rec_ts tc
-> anyM (cand_is_inhabitable rec_ts' amb_cs) cands
-- A strict argument type is inhabitable by a terminating value if
-- at least one InhabitationCandidate is inhabitable.
_ -> pure True
-- Either the type is trivially inhabited or we have exceeded the
-- recursion depth for some TyCon (so bail out and conservatively
-- claim the type is inhabited).
where
-- Checks if an InhabitationCandidate for a strict argument type:
--
-- (1) Has satisfiable term and type constraints.
-- (2) Has 'nonVoid' strict argument types (we bail out of this
-- check if recursion is detected).
--
-- See Note [Extensions to GADTs Meet Their Match]
cand_is_inhabitable :: RecTcChecker -> Delta
-> InhabitationCandidate -> PmM Bool
cand_is_inhabitable rec_ts amb_cs
(InhabitationCandidate{ ic_tm_ct = new_term_c
, ic_ty_cs = new_ty_cs
, ic_strict_arg_tys = new_strict_arg_tys }) = do
mb_sat <- tmTyCsAreSatisfiable amb_cs new_term_c new_ty_cs
case mb_sat of
Nothing -> pure False
Just new_delta -> do
checkAllNonVoid rec_ts new_delta new_strict_arg_tys
-- | @'definitelyInhabitedType' ty@ returns 'True' if @ty@ has at least one
-- constructor @C@ such that:
--
-- 1. @C@ has no equality constraints.
-- 2. @C@ has no strict argument types.
--
-- See the \"Strict argument type constraints\" section of
-- @Note [Extensions to GADTs Meet Their Match]@.
definitelyInhabitedType :: FamInstEnvs -> Bag EvVar -> Type -> PmM Bool
definitelyInhabitedType env ty_cs ty = do
mb_res <- pmTopNormaliseType_maybe env ty_cs ty
pure $ case mb_res of
Just (_, cons, _) -> any meets_criteria cons
Nothing -> False
where
meets_criteria :: DataCon -> Bool
meets_criteria con =
null (dataConEqSpec con) && -- (1)
null (dataConImplBangs con) -- (2)
{- Note [Type normalisation for EmptyCase]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EmptyCase is an exception for pattern matching, since it is strict. This means
that it boils down to checking whether the type of the scrutinee is inhabited.
Function pmTopNormaliseType_maybe gets rid of the outermost type function/data
family redex and newtypes, in search of an algebraic type constructor, which is
easier to check for inhabitation.
It returns 3 results instead of one, because there are 2 subtle points:
1. Newtypes are isomorphic to the underlying type in core but not in the source
language,
2. The representational data family tycon is used internally but should not be
shown to the user
Hence, if pmTopNormaliseType_maybe env ty_cs ty = Just (src_ty, dcs, core_ty),
then
(a) src_ty is the rewritten type which we can show to the user. That is, the
type we get if we rewrite type families but not data families or
newtypes.
(b) dcs is the list of data constructors "skipped", every time we normalise a
newtype to its core representation, we keep track of the source data
constructor.
(c) core_ty is the rewritten type. That is,
pmTopNormaliseType_maybe env ty_cs ty = Just (src_ty, dcs, core_ty)
implies
topNormaliseType_maybe env ty = Just (co, core_ty)
for some coercion co.
To see how all cases come into play, consider the following example:
data family T a :: *
data instance T Int = T1 | T2 Bool
-- Which gives rise to FC:
-- data T a
-- data R:TInt = T1 | T2 Bool
-- axiom ax_ti : T Int ~R R:TInt
newtype G1 = MkG1 (T Int)
newtype G2 = MkG2 G1
type instance F Int = F Char
type instance F Char = G2
In this case pmTopNormaliseType_maybe env ty_cs (F Int) results in
Just (G2, [MkG2,MkG1], R:TInt)
Which means that in source Haskell:
- G2 is equivalent to F Int (in contrast, G1 isn't).
- if (x : R:TInt) then (MkG2 (MkG1 x) : F Int).
-----
-- Wrinkle: Local equalities
-----
Given the following type family:
type family F a
type instance F Int = Void
Should the following program (from #14813) be considered exhaustive?
f :: (i ~ Int) => F i -> a
f x = case x of {}
You might think "of course, since `x` is obviously of type Void". But the
idType of `x` is technically F i, not Void, so if we pass F i to
inhabitationCandidates, we'll mistakenly conclude that `f` is non-exhaustive.
In order to avoid this pitfall, we need to normalise the type passed to
pmTopNormaliseType_maybe, using the constraint solver to solve for any local
equalities (such as i ~ Int) that may be in scope.
-}
-- | Generate all 'InhabitationCandidate's for a given type. The result is
-- either @'Left' ty@, if the type cannot be reduced to a closed algebraic type
-- (or if it's one trivially inhabited, like 'Int'), or @'Right' candidates@,
-- if it can. In this case, the candidates are the signature of the tycon, each
-- one accompanied by the term- and type- constraints it gives rise to.
-- See also Note [Checking EmptyCase Expressions]
inhabitationCandidates :: Bag EvVar -> Type
-> PmM (Either Type (TyCon, [InhabitationCandidate]))
inhabitationCandidates ty_cs ty = do
fam_insts <- liftD dsGetFamInstEnvs
mb_norm_res <- pmTopNormaliseType_maybe fam_insts ty_cs ty
case mb_norm_res of
Just (src_ty, dcs, core_ty) -> alts_to_check src_ty core_ty dcs
Nothing -> alts_to_check ty ty []
where
-- All these types are trivially inhabited
trivially_inhabited = [ charTyCon, doubleTyCon, floatTyCon
, intTyCon, wordTyCon, word8TyCon ]
-- Note: At the moment we leave all the typing and constraint fields of
-- PmCon empty, since we know that they are not gonna be used. Is the
-- right-thing-to-do to actually create them, even if they are never used?
build_tm :: ValAbs -> [DataCon] -> ValAbs
build_tm = foldr (\dc e -> PmCon (RealDataCon dc) [] [] [] [e])
-- Inhabitation candidates, using the result of pmTopNormaliseType_maybe
alts_to_check :: Type -> Type -> [DataCon]
-> PmM (Either Type (TyCon, [InhabitationCandidate]))
alts_to_check src_ty core_ty dcs = case splitTyConApp_maybe core_ty of
Just (tc, _)
| tc `elem` trivially_inhabited
-> case dcs of
[] -> return (Left src_ty)
(_:_) -> do var <- liftD $ mkPmId core_ty
let va = build_tm (PmVar var) dcs
return $ Right (tc, [InhabitationCandidate
{ ic_val_abs = va, ic_tm_ct = mkIdEq var
, ic_ty_cs = emptyBag, ic_strict_arg_tys = [] }])
| pmIsClosedType core_ty && not (isAbstractTyCon tc)
-- Don't consider abstract tycons since we don't know what their
-- constructors are, which makes the results of coverage checking
-- them extremely misleading.
-> liftD $ do
var <- mkPmId core_ty -- it would be wrong to unify x
alts <- mapM (mkOneConFull var . RealDataCon) (tyConDataCons tc)
return $ Right
(tc, [ alt{ic_val_abs = build_tm (ic_val_abs alt) dcs}
| alt <- alts ])
-- For other types conservatively assume that they are inhabited.
_other -> return (Left src_ty)
{- Note [Checking EmptyCase Expressions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Empty case expressions are strict on the scrutinee. That is, `case x of {}`
will force argument `x`. Hence, `checkMatches` is not sufficient for checking
empty cases, because it assumes that the match is not strict (which is true
for all other cases, apart from EmptyCase). This gave rise to #10746. Instead,
we do the following:
1. We normalise the outermost type family redex, data family redex or newtype,
using pmTopNormaliseType_maybe (in types/FamInstEnv.hs). This computes 3
things:
(a) A normalised type src_ty, which is equal to the type of the scrutinee in
source Haskell (does not normalise newtypes or data families)
(b) The actual normalised type core_ty, which coincides with the result
topNormaliseType_maybe. This type is not necessarily equal to the input
type in source Haskell. And this is precicely the reason we compute (a)
and (c): the reasoning happens with the underlying types, but both the
patterns and types we print should respect newtypes and also show the
family type constructors and not the representation constructors.
(c) A list of all newtype data constructors dcs, each one corresponding to a
newtype rewrite performed in (b).
For an example see also Note [Type normalisation for EmptyCase]
in types/FamInstEnv.hs.
2. Function checkEmptyCase' performs the check:
- If core_ty is not an algebraic type, then we cannot check for
inhabitation, so we emit (_ :: src_ty) as missing, conservatively assuming
that the type is inhabited.
- If core_ty is an algebraic type, then we unfold the scrutinee to all
possible constructor patterns, using inhabitationCandidates, and then
check each one for constraint satisfiability, same as we for normal
pattern match checking.
%************************************************************************
%* *
Transform source syntax to *our* syntax
%* *
%************************************************************************
-}
-- -----------------------------------------------------------------------
-- * Utilities
nullaryConPattern :: ConLike -> Pattern
-- Nullary data constructor and nullary type constructor
nullaryConPattern con =
PmCon { pm_con_con = con, pm_con_arg_tys = []
, pm_con_tvs = [], pm_con_dicts = [], pm_con_args = [] }
{-# INLINE nullaryConPattern #-}
truePattern :: Pattern
truePattern = nullaryConPattern (RealDataCon trueDataCon)
{-# INLINE truePattern #-}
-- | Generate a `canFail` pattern vector of a specific type
mkCanFailPmPat :: Type -> DsM PatVec
mkCanFailPmPat ty = do
var <- mkPmVar ty
return [var, PmFake]
vanillaConPattern :: ConLike -> [Type] -> PatVec -> Pattern
-- ADT constructor pattern => no existentials, no local constraints
vanillaConPattern con arg_tys args =
PmCon { pm_con_con = con, pm_con_arg_tys = arg_tys
, pm_con_tvs = [], pm_con_dicts = [], pm_con_args = args }
{-# INLINE vanillaConPattern #-}
-- | Create an empty list pattern of a given type
nilPattern :: Type -> Pattern
nilPattern ty =
PmCon { pm_con_con = RealDataCon nilDataCon, pm_con_arg_tys = [ty]
, pm_con_tvs = [], pm_con_dicts = []
, pm_con_args = [] }
{-# INLINE nilPattern #-}
mkListPatVec :: Type -> PatVec -> PatVec -> PatVec
mkListPatVec ty xs ys = [PmCon { pm_con_con = RealDataCon consDataCon
, pm_con_arg_tys = [ty]
, pm_con_tvs = [], pm_con_dicts = []
, pm_con_args = xs++ys }]
{-# INLINE mkListPatVec #-}
-- | Create a (non-overloaded) literal pattern
mkLitPattern :: HsLit GhcTc -> Pattern
mkLitPattern lit = PmLit { pm_lit_lit = PmSLit lit }
{-# INLINE mkLitPattern #-}
-- -----------------------------------------------------------------------
-- * Transform (Pat Id) into of (PmPat Id)
translatePat :: FamInstEnvs -> Pat GhcTc -> DsM PatVec
translatePat fam_insts pat = case pat of
WildPat ty -> mkPmVars [ty]
VarPat _ id -> return [PmVar (unLoc id)]
ParPat _ p -> translatePat fam_insts (unLoc p)
LazyPat _ _ -> mkPmVars [hsPatType pat] -- like a variable
-- ignore strictness annotations for now
BangPat _ p -> translatePat fam_insts (unLoc p)
AsPat _ lid p -> do
-- Note [Translating As Patterns]
ps <- translatePat fam_insts (unLoc p)
let [e] = map vaToPmExpr (coercePatVec ps)
g = PmGrd [PmVar (unLoc lid)] e
return (ps ++ [g])
SigPat _ p _ty -> translatePat fam_insts (unLoc p)
-- See Note [Translate CoPats]
CoPat _ wrapper p ty
| isIdHsWrapper wrapper -> translatePat fam_insts p
| WpCast co <- wrapper, isReflexiveCo co -> translatePat fam_insts p
| otherwise -> do
ps <- translatePat fam_insts p
(xp,xe) <- mkPmId2Forms ty
g <- mkGuard ps (mkHsWrap wrapper (unLoc xe))
return [xp,g]
-- (n + k) ===> x (True <- x >= k) (n <- x-k)
NPlusKPat ty (dL->L _ _n) _k1 _k2 _ge _minus -> mkCanFailPmPat ty
-- (fun -> pat) ===> x (pat <- fun x)
ViewPat arg_ty lexpr lpat -> do
ps <- translatePat fam_insts (unLoc lpat)
-- See Note [Guards and Approximation]
res <- allM cantFailPattern ps
case res of
True -> do
(xp,xe) <- mkPmId2Forms arg_ty
g <- mkGuard ps (HsApp noExt lexpr xe)
return [xp,g]
False -> mkCanFailPmPat arg_ty
-- list
ListPat (ListPatTc ty Nothing) ps -> do
foldr (mkListPatVec ty) [nilPattern ty]
<$> translatePatVec fam_insts (map unLoc ps)
-- overloaded list
ListPat (ListPatTc _elem_ty (Just (pat_ty, _to_list))) lpats -> do
dflags <- getDynFlags
if xopt LangExt.RebindableSyntax dflags
then mkCanFailPmPat pat_ty
else case splitListTyConApp_maybe pat_ty of
Just e_ty -> translatePat fam_insts
(ListPat (ListPatTc e_ty Nothing) lpats)
Nothing -> mkCanFailPmPat pat_ty
-- (a) In the presence of RebindableSyntax, we don't know anything about
-- `toList`, we should treat `ListPat` as any other view pattern.
--
-- (b) In the absence of RebindableSyntax,
-- - If the pat_ty is `[a]`, then we treat the overloaded list pattern
-- as ordinary list pattern. Although we can give an instance
-- `IsList [Int]` (more specific than the default `IsList [a]`), in
-- practice, we almost never do that. We assume the `_to_list` is
-- the `toList` from `instance IsList [a]`.
--
-- - Otherwise, we treat the `ListPat` as ordinary view pattern.
--
-- See #14547, especially comment#9 and comment#10.
--
-- Here we construct CanFailPmPat directly, rather can construct a view
-- pattern and do further translation as an optimization, for the reason,
-- see Note [Guards and Approximation].
ConPatOut { pat_con = (dL->L _ con)
, pat_arg_tys = arg_tys
, pat_tvs = ex_tvs
, pat_dicts = dicts
, pat_args = ps } -> do
groups <- allCompleteMatches con arg_tys
case groups of
[] -> mkCanFailPmPat (conLikeResTy con arg_tys)
_ -> do
args <- translateConPatVec fam_insts arg_tys ex_tvs con ps
return [PmCon { pm_con_con = con
, pm_con_arg_tys = arg_tys
, pm_con_tvs = ex_tvs
, pm_con_dicts = dicts
, pm_con_args = args }]
-- See Note [Translate Overloaded Literal for Exhaustiveness Checking]
NPat _ (dL->L _ olit) mb_neg _
| OverLit (OverLitTc False ty) (HsIsString src s) _ <- olit
, isStringTy ty ->
foldr (mkListPatVec charTy) [nilPattern charTy] <$>
translatePatVec fam_insts
(map (LitPat noExt . HsChar src) (unpackFS s))
| otherwise -> return [PmLit { pm_lit_lit = PmOLit (isJust mb_neg) olit }]
-- See Note [Translate Overloaded Literal for Exhaustiveness Checking]
LitPat _ lit
| HsString src s <- lit ->
foldr (mkListPatVec charTy) [nilPattern charTy] <$>
translatePatVec fam_insts
(map (LitPat noExt . HsChar src) (unpackFS s))
| otherwise -> return [mkLitPattern lit]
TuplePat tys ps boxity -> do
tidy_ps <- translatePatVec fam_insts (map unLoc ps)
let tuple_con = RealDataCon (tupleDataCon boxity (length ps))
tys' = case boxity of
Boxed -> tys
-- See Note [Unboxed tuple RuntimeRep vars] in TyCon
Unboxed -> map getRuntimeRep tys ++ tys
return [vanillaConPattern tuple_con tys' (concat tidy_ps)]
SumPat ty p alt arity -> do
tidy_p <- translatePat fam_insts (unLoc p)
let sum_con = RealDataCon (sumDataCon alt arity)
-- See Note [Unboxed tuple RuntimeRep vars] in TyCon
return [vanillaConPattern sum_con (map getRuntimeRep ty ++ ty) tidy_p]
-- --------------------------------------------------------------------------
-- Not supposed to happen
ConPatIn {} -> panic "Check.translatePat: ConPatIn"
SplicePat {} -> panic "Check.translatePat: SplicePat"
XPat {} -> panic "Check.translatePat: XPat"
{- Note [Translate Overloaded Literal for Exhaustiveness Checking]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The translation of @NPat@ in exhaustiveness checker is a bit different
from translation in pattern matcher.
* In pattern matcher (see `tidyNPat' in deSugar/MatchLit.hs), we
translate integral literals to HsIntPrim or HsWordPrim and translate
overloaded strings to HsString.
* In exhaustiveness checker, in `genCaseTmCs1/genCaseTmCs2`, we use
`lhsExprToPmExpr` to generate uncovered set. In `hsExprToPmExpr`,
however we generate `PmOLit` for HsOverLit, rather than refine
`HsOverLit` inside `NPat` to HsIntPrim/HsWordPrim. If we do
the same thing in `translatePat` as in `tidyNPat`, the exhaustiveness
checker will fail to match the literals patterns correctly. See
#14546.
In Note [Undecidable Equality for Overloaded Literals], we say: "treat
overloaded literals that look different as different", but previously we
didn't do such things.
Now, we translate the literal value to match and the literal patterns
consistently:
* For integral literals, we parse both the integral literal value and
the patterns as OverLit HsIntegral. For example:
case 0::Int of
0 -> putStrLn "A"
1 -> putStrLn "B"
_ -> putStrLn "C"
When checking the exhaustiveness of pattern matching, we translate the 0
in value position as PmOLit, but translate the 0 and 1 in pattern position
as PmSLit. The inconsistency leads to the failure of eqPmLit to detect the
equality and report warning of "Pattern match is redundant" on pattern 0,
as reported in #14546. In this patch we remove the specialization of
OverLit patterns, and keep the overloaded number literal in pattern as it
is to maintain the consistency. We know nothing about the `fromInteger`
method (see Note [Undecidable Equality for Overloaded Literals]). Now we
can capture the exhaustiveness of pattern 0 and the redundancy of pattern
1 and _.
* For string literals, we parse the string literals as HsString. When
OverloadedStrings is enabled, it further be turned as HsOverLit HsIsString.
For example:
case "foo" of
"foo" -> putStrLn "A"
"bar" -> putStrLn "B"
"baz" -> putStrLn "C"
Previously, the overloaded string values are translated to PmOLit and the
non-overloaded string values are translated to PmSLit. However the string
patterns, both overloaded and non-overloaded, are translated to list of
characters. The inconsistency leads to wrong warnings about redundant and
non-exhaustive pattern matching warnings, as reported in #14546.
In order to catch the redundant pattern in following case:
case "foo" of
('f':_) -> putStrLn "A"
"bar" -> putStrLn "B"
in this patch, we translate non-overloaded string literals, both in value
position and pattern position, as list of characters. For overloaded string
literals, we only translate it to list of characters only when it's type
is stringTy, since we know nothing about the toString methods. But we know
that if two overloaded strings are syntax equal, then they are equal. Then
if it's type is not stringTy, we just translate it to PmOLit. We can still
capture the exhaustiveness of pattern "foo" and the redundancy of pattern
"bar" and "baz" in the following code:
{-# LANGUAGE OverloadedStrings #-}
main = do
case "foo" of
"foo" -> putStrLn "A"
"bar" -> putStrLn "B"
"baz" -> putStrLn "C"
We must ensure that doing the same translation to literal values and patterns
in `translatePat` and `hsExprToPmExpr`. The previous inconsistent work led to
#14546.
-}
-- | Translate a list of patterns (Note: each pattern is translated
-- to a pattern vector but we do not concatenate the results).
translatePatVec :: FamInstEnvs -> [Pat GhcTc] -> DsM [PatVec]
translatePatVec fam_insts pats = mapM (translatePat fam_insts) pats
-- | Translate a constructor pattern
translateConPatVec :: FamInstEnvs -> [Type] -> [TyVar]
-> ConLike -> HsConPatDetails GhcTc -> DsM PatVec
translateConPatVec fam_insts _univ_tys _ex_tvs _ (PrefixCon ps)
= concat <$> translatePatVec fam_insts (map unLoc ps)
translateConPatVec fam_insts _univ_tys _ex_tvs _ (InfixCon p1 p2)
= concat <$> translatePatVec fam_insts (map unLoc [p1,p2])
translateConPatVec fam_insts univ_tys ex_tvs c (RecCon (HsRecFields fs _))
-- Nothing matched. Make up some fresh term variables
| null fs = mkPmVars arg_tys
-- The data constructor was not defined using record syntax. For the
-- pattern to be in record syntax it should be empty (e.g. Just {}).
-- So just like the previous case.
| null orig_lbls = ASSERT(null matched_lbls) mkPmVars arg_tys
-- Some of the fields appear, in the original order (there may be holes).
-- Generate a simple constructor pattern and make up fresh variables for
-- the rest of the fields
| matched_lbls `subsetOf` orig_lbls
= ASSERT(orig_lbls `equalLength` arg_tys)
let translateOne (lbl, ty) = case lookup lbl matched_pats of
Just p -> translatePat fam_insts p
Nothing -> mkPmVars [ty]
in concatMapM translateOne (zip orig_lbls arg_tys)
-- The fields that appear are not in the correct order. Make up fresh
-- variables for all fields and add guards after matching, to force the
-- evaluation in the correct order.
| otherwise = do
arg_var_pats <- mkPmVars arg_tys
translated_pats <- forM matched_pats $ \(x,pat) -> do
pvec <- translatePat fam_insts pat
return (x, pvec)
let zipped = zip orig_lbls [ x | PmVar x <- arg_var_pats ]
guards = map (\(name,pvec) -> case lookup name zipped of
Just x -> PmGrd pvec (PmExprVar (idName x))
Nothing -> panic "translateConPatVec: lookup")
translated_pats
return (arg_var_pats ++ guards)
where
-- The actual argument types (instantiated)
arg_tys = conLikeInstOrigArgTys c (univ_tys ++ mkTyVarTys ex_tvs)
-- Some label information
orig_lbls = map flSelector $ conLikeFieldLabels c
matched_pats = [ (getName (unLoc (hsRecFieldId x)), unLoc (hsRecFieldArg x))
| (dL->L _ x) <- fs]
matched_lbls = [ name | (name, _pat) <- matched_pats ]
subsetOf :: Eq a => [a] -> [a] -> Bool
subsetOf [] _ = True
subsetOf (_:_) [] = False
subsetOf (x:xs) (y:ys)
| x == y = subsetOf xs ys
| otherwise = subsetOf (x:xs) ys
-- Translate a single match
translateMatch :: FamInstEnvs -> LMatch GhcTc (LHsExpr GhcTc)
-> DsM (PatVec,[PatVec])
translateMatch fam_insts (dL->L _ (Match { m_pats = lpats, m_grhss = grhss })) =
do
pats' <- concat <$> translatePatVec fam_insts pats
guards' <- mapM (translateGuards fam_insts) guards
return (pats', guards')
where
extractGuards :: LGRHS GhcTc (LHsExpr GhcTc) -> [GuardStmt GhcTc]
extractGuards (dL->L _ (GRHS _ gs _)) = map unLoc gs
extractGuards _ = panic "translateMatch"
pats = map unLoc lpats
guards = map extractGuards (grhssGRHSs grhss)
translateMatch _ _ = panic "translateMatch"
-- -----------------------------------------------------------------------
-- * Transform source guards (GuardStmt Id) to PmPats (Pattern)
-- | Translate a list of guard statements to a pattern vector
translateGuards :: FamInstEnvs -> [GuardStmt GhcTc] -> DsM PatVec
translateGuards fam_insts guards = do
all_guards <- concat <$> mapM (translateGuard fam_insts) guards
let
shouldKeep :: Pattern -> DsM Bool
shouldKeep p
| PmVar {} <- p = pure True
| PmCon {} <- p = (&&)
<$> singleMatchConstructor (pm_con_con p) (pm_con_arg_tys p)
<*> allM shouldKeep (pm_con_args p)
shouldKeep (PmGrd pv e)
| isNotPmExprOther e = pure True -- expensive but we want it
| otherwise = allM shouldKeep pv
shouldKeep _other_pat = pure False -- let the rest..
all_handled <- allM shouldKeep all_guards
-- It should have been @pure all_guards@ but it is too expressive.
-- Since the term oracle does not handle all constraints we generate,
-- we (hackily) replace all constraints the oracle cannot handle with a
-- single one (we need to know if there is a possibility of failure).
-- See Note [Guards and Approximation] for all guard-related approximations
-- we implement.
if all_handled
then pure all_guards
else do
kept <- filterM shouldKeep all_guards
pure (PmFake : kept)
-- | Check whether a pattern can fail to match
cantFailPattern :: Pattern -> DsM Bool
cantFailPattern PmVar {} = pure True
cantFailPattern PmCon { pm_con_con = c, pm_con_arg_tys = tys, pm_con_args = ps}
= (&&) <$> singleMatchConstructor c tys <*> allM cantFailPattern ps
cantFailPattern (PmGrd pv _e) = allM cantFailPattern pv
cantFailPattern _ = pure False
-- | Translate a guard statement to Pattern
translateGuard :: FamInstEnvs -> GuardStmt GhcTc -> DsM PatVec
translateGuard fam_insts guard = case guard of
BodyStmt _ e _ _ -> translateBoolGuard e
LetStmt _ binds -> translateLet (unLoc binds)
BindStmt _ p e _ _ -> translateBind fam_insts p e
LastStmt {} -> panic "translateGuard LastStmt"
ParStmt {} -> panic "translateGuard ParStmt"
TransStmt {} -> panic "translateGuard TransStmt"
RecStmt {} -> panic "translateGuard RecStmt"
ApplicativeStmt {} -> panic "translateGuard ApplicativeLastStmt"
XStmtLR {} -> panic "translateGuard RecStmt"
-- | Translate let-bindings
translateLet :: HsLocalBinds GhcTc -> DsM PatVec
translateLet _binds = return []
-- | Translate a pattern guard
translateBind :: FamInstEnvs -> LPat GhcTc -> LHsExpr GhcTc -> DsM PatVec
translateBind fam_insts (dL->L _ p) e = do
ps <- translatePat fam_insts p
g <- mkGuard ps (unLoc e)
return [g]
-- | Translate a boolean guard
translateBoolGuard :: LHsExpr GhcTc -> DsM PatVec
translateBoolGuard e
| isJust (isTrueLHsExpr e) = return []
-- The formal thing to do would be to generate (True <- True)
-- but it is trivial to solve so instead we give back an empty
-- PatVec for efficiency
| otherwise = (:[]) <$> mkGuard [truePattern] (unLoc e)
{- Note [Guards and Approximation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if the algorithm is really expressive, the term oracle we use is not.
Hence, several features are not translated *properly* but we approximate.
The list includes:
1. View Patterns
----------------
A view pattern @(f -> p)@ should be translated to @x (p <- f x)@. The term
oracle does not handle function applications so we know that the generated
constraints will not be handled at the end. Hence, we distinguish between two
cases:
a) Pattern @p@ cannot fail. Then this is just a binding and we do the *right
thing*.
b) Pattern @p@ can fail. This means that when checking the guard, we will
generate several cases, with no useful information. E.g.:
h (f -> [a,b]) = ...
h x ([a,b] <- f x) = ...
uncovered set = { [x |> { False ~ (f x ~ []) }]
, [x |> { False ~ (f x ~ (t1:[])) }]
, [x |> { False ~ (f x ~ (t1:t2:t3:t4)) }] }
So we have two problems:
1) Since we do not print the constraints in the general case (they may
be too many), the warning will look like this:
Pattern match(es) are non-exhaustive
In an equation for `h':
Patterns not matched:
_
_
_
Which is not short and not more useful than a single underscore.
2) The size of the uncovered set increases a lot, without gaining more
expressivity in our warnings.
Hence, in this case, we replace the guard @([a,b] <- f x)@ with a *dummy*
@PmFake@: @True <- _@. That is, we record that there is a possibility
of failure but we minimize it to a True/False. This generates a single
warning and much smaller uncovered sets.
2. Overloaded Lists
-------------------
An overloaded list @[...]@ should be translated to @x ([...] <- toList x)@. The
problem is exactly like above, as its solution. For future reference, the code
below is the *right thing to do*:
ListPat (ListPatTc elem_ty (Just (pat_ty, _to_list))) lpats
otherwise -> do
(xp, xe) <- mkPmId2Forms pat_ty
ps <- translatePatVec (map unLoc lpats)
let pats = foldr (mkListPatVec elem_ty) [nilPattern elem_ty] ps
g = mkGuard pats (HsApp (noLoc to_list) xe)
return [xp,g]
3. Overloaded Literals
----------------------
The case with literals is a bit different. a literal @l@ should be translated
to @x (True <- x == from l)@. Since we want to have better warnings for
overloaded literals as it is a very common feature, we treat them differently.
They are mainly covered in Note [Undecidable Equality for Overloaded Literals]
in PmExpr.
4. N+K Patterns & Pattern Synonyms
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An n+k pattern (n+k) should be translated to @x (True <- x >= k) (n <- x-k)@.
Since the only pattern of the three that causes failure is guard @(n <- x-k)@,
and has two possible outcomes. Hence, there is no benefit in using a dummy and
we implement the proper thing. Pattern synonyms are simply not implemented yet.
Hence, to be conservative, we generate a dummy pattern, assuming that the
pattern can fail.
5. Actual Guards
----------------
During translation, boolean guards and pattern guards are translated properly.
Let bindings though are omitted by function @translateLet@. Since they are lazy
bindings, we do not actually want to generate a (strict) equality (like we do
in the pattern bind case). Hence, we safely drop them.
Additionally, top-level guard translation (performed by @translateGuards@)
replaces guards that cannot be reasoned about (like the ones we described in
1-4) with a single @PmFake@ to record the possibility of failure to match.
Note [Translate CoPats]
~~~~~~~~~~~~~~~~~~~~~~~
The pattern match checker did not know how to handle coerced patterns `CoPat`
efficiently, which gave rise to #11276. The original approach translated
`CoPat`s:
pat |> co ===> x (pat <- (e |> co))
Instead, we now check whether the coercion is a hole or if it is just refl, in
which case we can drop it. Unfortunately, data families generate useful
coercions so guards are still generated in these cases and checking data
families is not really efficient.
%************************************************************************
%* *
Utilities for Pattern Match Checking
%* *
%************************************************************************
-}
-- ----------------------------------------------------------------------------
-- * Basic utilities
-- | Get the type out of a PmPat. For guard patterns (ps <- e) we use the type
-- of the first (or the single -WHEREVER IT IS- valid to use?) pattern
pmPatType :: PmPat p -> Type
pmPatType (PmCon { pm_con_con = con, pm_con_arg_tys = tys })
= conLikeResTy con tys
pmPatType (PmVar { pm_var_id = x }) = idType x
pmPatType (PmLit { pm_lit_lit = l }) = pmLitType l
pmPatType (PmNLit { pm_lit_id = x }) = idType x
pmPatType (PmGrd { pm_grd_pv = pv })
= ASSERT(patVecArity pv == 1) (pmPatType p)
where Just p = find ((==1) . patternArity) pv
pmPatType PmFake = pmPatType truePattern
-- | Information about a conlike that is relevant to coverage checking.
-- It is called an \"inhabitation candidate\" since it is a value which may
-- possibly inhabit some type, but only if its term constraint ('ic_tm_ct')
-- and type constraints ('ic_ty_cs') are permitting, and if all of its strict
-- argument types ('ic_strict_arg_tys') are inhabitable.
-- See @Note [Extensions to GADTs Meet Their Match]@.
data InhabitationCandidate =
InhabitationCandidate
{ ic_val_abs :: ValAbs
, ic_tm_ct :: TmVarCt
, ic_ty_cs :: Bag EvVar
, ic_strict_arg_tys :: [Type]
}
{-
Note [Extensions to GADTs Meet Their Match]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The GADTs Meet Their Match paper presents the formalism that GHC's coverage
checker adheres to. Since the paper's publication, there have been some
additional features added to the coverage checker which are not described in
the paper. This Note serves as a reference for these new features.
-----
-- Strict argument type constraints
-----
In the ConVar case of clause processing, each conlike K traditionally
generates two different forms of constraints:
* A term constraint (e.g., x ~ K y1 ... yn)
* Type constraints from the conlike's context (e.g., if K has type
forall bs. Q => s1 .. sn -> T tys, then Q would be its type constraints)
As it turns out, these alone are not enough to detect a certain class of
unreachable code. Consider the following example (adapted from #15305):
data K = K1 | K2 !Void
f :: K -> ()
f K1 = ()
Even though `f` doesn't match on `K2`, `f` is exhaustive in its patterns. Why?
Because it's impossible to construct a terminating value of type `K` using the
`K2` constructor, and thus it's impossible for `f` to ever successfully match
on `K2`.
The reason is because `K2`'s field of type `Void` is //strict//. Because there
are no terminating values of type `Void`, any attempt to construct something
using `K2` will immediately loop infinitely or throw an exception due to the
strictness annotation. (If the field were not strict, then `f` could match on,
say, `K2 undefined` or `K2 (let x = x in x)`.)
Since neither the term nor type constraints mentioned above take strict
argument types into account, we make use of the `nonVoid` function to
determine whether a strict type is inhabitable by a terminating value or not.
`nonVoid ty` returns True when either:
1. `ty` has at least one InhabitationCandidate for which both its term and type
constraints are satifiable, and `nonVoid` returns `True` for all of the
strict argument types in that InhabitationCandidate.
2. We're unsure if it's inhabited by a terminating value.
`nonVoid ty` returns False when `ty` is definitely uninhabited by anything
(except bottom). Some examples:
* `nonVoid Void` returns False, since Void has no InhabitationCandidates.
(This is what lets us discard the `K2` constructor in the earlier example.)
* `nonVoid (Int :~: Int)` returns True, since it has an InhabitationCandidate
(through the Refl constructor), and its term constraint (x ~ Refl) and
type constraint (Int ~ Int) are satisfiable.
* `nonVoid (Int :~: Bool)` returns False. Although it has an
InhabitationCandidate (by way of Refl), its type constraint (Int ~ Bool) is
not satisfiable.
* Given the following definition of `MyVoid`:
data MyVoid = MkMyVoid !Void
`nonVoid MyVoid` returns False. The InhabitationCandidate for the MkMyVoid
constructor contains Void as a strict argument type, and since `nonVoid Void`
returns False, that InhabitationCandidate is discarded, leaving no others.
* Performance considerations
We must be careful when recursively calling `nonVoid` on the strict argument
types of an InhabitationCandidate, because doing so naïvely can cause GHC to
fall into an infinite loop. Consider the following example:
data Abyss = MkAbyss !Abyss
stareIntoTheAbyss :: Abyss -> a
stareIntoTheAbyss x = case x of {}
In principle, stareIntoTheAbyss is exhaustive, since there is no way to
construct a terminating value using MkAbyss. However, both the term and type
constraints for MkAbyss are satisfiable, so the only way one could determine
that MkAbyss is unreachable is to check if `nonVoid Abyss` returns False.
There is only one InhabitationCandidate for Abyss—MkAbyss—and both its term
and type constraints are satisfiable, so we'd need to check if `nonVoid Abyss`
returns False... and now we've entered an infinite loop!
To avoid this sort of conundrum, `nonVoid` uses a simple test to detect the
presence of recursive types (through `checkRecTc`), and if recursion is
detected, we bail out and conservatively assume that the type is inhabited by
some terminating value. This avoids infinite loops at the expense of making
the coverage checker incomplete with respect to functions like
stareIntoTheAbyss above. Then again, the same problem occurs with recursive
newtypes, like in the following code:
newtype Chasm = MkChasm Chasm
gazeIntoTheChasm :: Chasm -> a
gazeIntoTheChasm x = case x of {} -- Erroneously warned as non-exhaustive
So this limitation is somewhat understandable.
Note that even with this recursion detection, there is still a possibility that
`nonVoid` can run in exponential time. Consider the following data type:
data T = MkT !T !T !T
If we call `nonVoid` on each of its fields, that will require us to once again
check if `MkT` is inhabitable in each of those three fields, which in turn will
require us to check if `MkT` is inhabitable again... As you can see, the
branching factor adds up quickly, and if the recursion depth limit is, say,
100, then `nonVoid T` will effectively take forever.
To mitigate this, we check the branching factor every time we are about to call
`nonVoid` on a list of strict argument types. If the branching factor exceeds 1
(i.e., if there is potential for exponential runtime), then we limit the
maximum recursion depth to 1 to mitigate the problem. If the branching factor
is exactly 1 (i.e., we have a linear chain instead of a tree), then it's okay
to stick with a larger maximum recursion depth.
Another microoptimization applies to data types like this one:
data S a = ![a] !T
Even though there is a strict field of type [a], it's quite silly to call
nonVoid on it, since it's "obvious" that it is inhabitable. To make this
intuition formal, we say that a type is definitely inhabitable (DI) if:
* It has at least one constructor C such that:
1. C has no equality constraints (since they might be unsatisfiable)
2. C has no strict argument types (since they might be uninhabitable)
It's relatively cheap to cheap if a type is DI, so before we call `nonVoid`
on a list of strict argument types, we filter out all of the DI ones.
-}
instance Outputable InhabitationCandidate where
ppr (InhabitationCandidate { ic_val_abs = va, ic_tm_ct = tm_ct
, ic_ty_cs = ty_cs
, ic_strict_arg_tys = strict_arg_tys }) =
text "InhabitationCandidate" <+>
vcat [ text "ic_val_abs =" <+> ppr va
, text "ic_tm_ct =" <+> ppr tm_ct
, text "ic_ty_cs =" <+> ppr ty_cs
, text "ic_strict_arg_tys =" <+> ppr strict_arg_tys ]
-- | Generate an 'InhabitationCandidate' for a given conlike (generate
-- fresh variables of the appropriate type for arguments)
mkOneConFull :: Id -> ConLike -> DsM InhabitationCandidate
-- * x :: T tys, where T is an algebraic data type
-- NB: in the case of a data family, T is the *representation* TyCon
-- e.g. data instance T (a,b) = T1 a b
-- leads to
-- data TPair a b = T1 a b -- The "representation" type
-- It is TPair, not T, that is given to mkOneConFull
--
-- * 'con' K is a conlike of data type T
--
-- After instantiating the universal tyvars of K we get
-- K tys :: forall bs. Q => s1 .. sn -> T tys
--
-- Suppose y1 is a strict field. Then we get
-- Results: ic_val_abs: K (y1::s1) .. (yn::sn)
-- ic_tm_ct: x ~ K y1..yn
-- ic_ty_cs: Q
-- ic_strict_arg_tys: [s1]
mkOneConFull x con = do
let res_ty = idType x
(univ_tvs, ex_tvs, eq_spec, thetas, _req_theta , arg_tys, con_res_ty)
= conLikeFullSig con
arg_is_banged = map isBanged $ conLikeImplBangs con
tc_args = tyConAppArgs res_ty
subst1 = case con of
RealDataCon {} -> zipTvSubst univ_tvs tc_args
PatSynCon {} -> expectJust "mkOneConFull" (tcMatchTy con_res_ty res_ty)
-- See Note [Pattern synonym result type] in PatSyn
(subst, ex_tvs') <- cloneTyVarBndrs subst1 ex_tvs <$> getUniqueSupplyM
let arg_tys' = substTys subst arg_tys
-- Fresh term variables (VAs) as arguments to the constructor
arguments <- mapM mkPmVar arg_tys'
-- All constraints bound by the constructor (alpha-renamed)
let theta_cs = substTheta subst (eqSpecPreds eq_spec ++ thetas)
evvars <- mapM (nameType "pm") theta_cs
let con_abs = PmCon { pm_con_con = con
, pm_con_arg_tys = tc_args
, pm_con_tvs = ex_tvs'
, pm_con_dicts = evvars
, pm_con_args = arguments }
strict_arg_tys = filterByList arg_is_banged arg_tys'
return $ InhabitationCandidate
{ ic_val_abs = con_abs
, ic_tm_ct = TVC x (vaToPmExpr con_abs)
, ic_ty_cs = listToBag evvars
, ic_strict_arg_tys = strict_arg_tys
}
-- ----------------------------------------------------------------------------
-- * More smart constructors and fresh variable generation
-- | Create a guard pattern
mkGuard :: PatVec -> HsExpr GhcTc -> DsM Pattern
mkGuard pv e = do
res <- allM cantFailPattern pv
let expr = hsExprToPmExpr e
tracePmD "mkGuard" (vcat [ppr pv, ppr e, ppr res, ppr expr])
if | res -> pure (PmGrd pv expr)
| PmExprOther {} <- expr -> pure PmFake
| otherwise -> pure (PmGrd pv expr)
-- | Create a term equality of the form: `(x ~ lit)`
mkPosEq :: Id -> PmLit -> TmVarCt
mkPosEq x l = TVC x (PmExprLit l)
{-# INLINE mkPosEq #-}
-- | Create a term equality of the form: `(x ~ x)`
-- (always discharged by the term oracle)
mkIdEq :: Id -> TmVarCt
mkIdEq x = TVC x (PmExprVar (idName x))
{-# INLINE mkIdEq #-}
-- | Generate a variable pattern of a given type
mkPmVar :: Type -> DsM (PmPat p)
mkPmVar ty = PmVar <$> mkPmId ty
{-# INLINE mkPmVar #-}
-- | Generate many variable patterns, given a list of types
mkPmVars :: [Type] -> DsM PatVec
mkPmVars tys = mapM mkPmVar tys
{-# INLINE mkPmVars #-}
-- | Generate a fresh `Id` of a given type
mkPmId :: Type -> DsM Id
mkPmId ty = getUniqueM >>= \unique ->
let occname = mkVarOccFS $ fsLit "$pm"
name = mkInternalName unique occname noSrcSpan
in return (mkLocalId name ty)
-- | Generate a fresh term variable of a given and return it in two forms:
-- * A variable pattern
-- * A variable expression
mkPmId2Forms :: Type -> DsM (Pattern, LHsExpr GhcTc)
mkPmId2Forms ty = do
x <- mkPmId ty
return (PmVar x, noLoc (HsVar noExt (noLoc x)))
-- ----------------------------------------------------------------------------
-- * Converting between Value Abstractions, Patterns and PmExpr
-- | Convert a value abstraction an expression
vaToPmExpr :: ValAbs -> PmExpr
vaToPmExpr (PmCon { pm_con_con = c, pm_con_args = ps })
= PmExprCon c (map vaToPmExpr ps)
vaToPmExpr (PmVar { pm_var_id = x }) = PmExprVar (idName x)
vaToPmExpr (PmLit { pm_lit_lit = l }) = PmExprLit l
vaToPmExpr (PmNLit { pm_lit_id = x }) = PmExprVar (idName x)
-- | Convert a pattern vector to a list of value abstractions by dropping the
-- guards (See Note [Translating As Patterns])
coercePatVec :: PatVec -> [ValAbs]
coercePatVec pv = concatMap coercePmPat pv
-- | Convert a pattern to a list of value abstractions (will be either an empty
-- list if the pattern is a guard pattern, or a singleton list in all other
-- cases) by dropping the guards (See Note [Translating As Patterns])
coercePmPat :: Pattern -> [ValAbs]
coercePmPat (PmVar { pm_var_id = x }) = [PmVar { pm_var_id = x }]
coercePmPat (PmLit { pm_lit_lit = l }) = [PmLit { pm_lit_lit = l }]
coercePmPat (PmCon { pm_con_con = con, pm_con_arg_tys = arg_tys
, pm_con_tvs = tvs, pm_con_dicts = dicts
, pm_con_args = args })
= [PmCon { pm_con_con = con, pm_con_arg_tys = arg_tys
, pm_con_tvs = tvs, pm_con_dicts = dicts
, pm_con_args = coercePatVec args }]
coercePmPat (PmGrd {}) = [] -- drop the guards
coercePmPat PmFake = [] -- drop the guards
-- | Check whether a 'ConLike' has the /single match/ property, i.e. whether
-- it is the only possible match in the given context. See also
-- 'allCompleteMatches' and Note [Single match constructors].
singleMatchConstructor :: ConLike -> [Type] -> DsM Bool
singleMatchConstructor cl tys =
any (isSingleton . snd) <$> allCompleteMatches cl tys
{-
Note [Single match constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When translating pattern guards for consumption by the checker, we desugar
every pattern guard that might fail ('cantFailPattern') to 'PmFake'
(True <- _). Which patterns can't fail? Exactly those that only match on
'singleMatchConstructor's.
Here are a few examples:
* @f a | (a, b) <- foo a = 42@: Product constructors are generally
single match. This extends to single constructors of GADTs like 'Refl'.
* If @f | Id <- id () = 42@, where @pattern Id = ()@ and 'Id' is part of a
singleton `COMPLETE` set, then 'Id' has the single match property.
In effect, we can just enumerate 'allCompleteMatches' and check if the conlike
occurs as a singleton set.
There's the chance that 'Id' is part of multiple `COMPLETE` sets. That's
irrelevant; If the user specified a singleton set, it is single-match.
Note that this doesn't really take into account incoming type constraints;
It might be obvious from type context that a particular GADT constructor has
the single-match property. We currently don't (can't) check this in the
translation step. See #15753 for why this yields surprising results.
-}
-- | For a given conlike, finds all the sets of patterns which could
-- be relevant to that conlike by consulting the result type.
--
-- These come from two places.
-- 1. From data constructors defined with the result type constructor.
-- 2. From `COMPLETE` pragmas which have the same type as the result
-- type constructor. Note that we only use `COMPLETE` pragmas
-- *all* of whose pattern types match. See #14135
allCompleteMatches :: ConLike -> [Type] -> DsM [(Provenance, [ConLike])]
allCompleteMatches cl tys = do
let fam = case cl of
RealDataCon dc ->
[(FromBuiltin, map RealDataCon (tyConDataCons (dataConTyCon dc)))]
PatSynCon _ -> []
ty = conLikeResTy cl tys
pragmas <- case splitTyConApp_maybe ty of
Just (tc, _) -> dsGetCompleteMatches tc
Nothing -> return []
let fams cm = (FromComplete,) <$>
mapM dsLookupConLike (completeMatchConLikes cm)
from_pragma <- filter (\(_,m) -> isValidCompleteMatch ty m) <$>
mapM fams pragmas
let final_groups = fam ++ from_pragma
return final_groups
where
-- Check that all the pattern synonym return types in a `COMPLETE`
-- pragma subsume the type we're matching.
-- See Note [Filtering out non-matching COMPLETE sets]
isValidCompleteMatch :: Type -> [ConLike] -> Bool
isValidCompleteMatch ty = all go
where
go (RealDataCon {}) = True
go (PatSynCon psc) = isJust $ flip tcMatchTy ty $ patSynResTy
$ patSynSig psc
patSynResTy (_, _, _, _, _, res_ty) = res_ty
{-
Note [Filtering out non-matching COMPLETE sets]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Currently, conlikes in a COMPLETE set are simply grouped by the
type constructor heading the return type. This is nice and simple, but it does
mean that there are scenarios when a COMPLETE set might be incompatible with
the type of a scrutinee. For instance, consider (from #14135):
data Foo a = Foo1 a | Foo2 a
pattern MyFoo2 :: Int -> Foo Int
pattern MyFoo2 i = Foo2 i
{-# COMPLETE Foo1, MyFoo2 #-}
f :: Foo a -> a
f (Foo1 x) = x
`f` has an incomplete pattern-match, so when choosing which constructors to
report as unmatched in a warning, GHC must choose between the original set of
data constructors {Foo1, Foo2} and the COMPLETE set {Foo1, MyFoo2}. But observe
that GHC shouldn't even consider the COMPLETE set as a possibility: the return
type of MyFoo2, Foo Int, does not match the type of the scrutinee, Foo a, since
there's no substitution `s` such that s(Foo Int) = Foo a.
To ensure that GHC doesn't pick this COMPLETE set, it checks each pattern
synonym constructor's return type matches the type of the scrutinee, and if one
doesn't, then we remove the whole COMPLETE set from consideration.
One might wonder why GHC only checks /pattern synonym/ constructors, and not
/data/ constructors as well. The reason is because that the type of a
GADT constructor very well may not match the type of a scrutinee, and that's
OK. Consider this example (from #14059):
data SBool (z :: Bool) where
SFalse :: SBool False
STrue :: SBool True
pattern STooGoodToBeTrue :: forall (z :: Bool). ()
=> z ~ True
=> SBool z
pattern STooGoodToBeTrue = STrue
{-# COMPLETE SFalse, STooGoodToBeTrue #-}
wobble :: SBool z -> Bool
wobble STooGoodToBeTrue = True
In the incomplete pattern match for `wobble`, we /do/ want to warn that SFalse
should be matched against, even though its type, SBool False, does not match
the scrutinee type, SBool z.
-}
-- -----------------------------------------------------------------------
-- * Types and constraints
newEvVar :: Name -> Type -> EvVar
newEvVar name ty = mkLocalId name ty
nameType :: String -> Type -> DsM EvVar
nameType name ty = do
unique <- getUniqueM
let occname = mkVarOccFS (fsLit (name++"_"++show unique))
idname = mkInternalName unique occname noSrcSpan
return (newEvVar idname ty)
{-
%************************************************************************
%* *
The type oracle
%* *
%************************************************************************
-}
-- | Check whether a set of type constraints is satisfiable.
tyOracle :: Bag EvVar -> PmM Bool
tyOracle evs
= liftD $
do { ((_warns, errs), res) <- initTcDsForSolver $ tcCheckSatisfiability evs
; case res of
Just sat -> return sat
Nothing -> pprPanic "tyOracle" (vcat $ pprErrMsgBagWithLoc errs) }
{-
%************************************************************************
%* *
Sanity Checks
%* *
%************************************************************************
-}
-- | The arity of a pattern/pattern vector is the
-- number of top-level patterns that are not guards
type PmArity = Int
-- | Compute the arity of a pattern vector
patVecArity :: PatVec -> PmArity
patVecArity = sum . map patternArity
-- | Compute the arity of a pattern
patternArity :: Pattern -> PmArity
patternArity (PmGrd {}) = 0
patternArity _other_pat = 1
{-
%************************************************************************
%* *
Heart of the algorithm: Function pmcheck
%* *
%************************************************************************
Main functions are:
* mkInitialUncovered :: [Id] -> PmM Uncovered
Generates the initial uncovered set. Term and type constraints in scope
are checked, if they are inconsistent, the set is empty, otherwise, the
set contains only a vector of variables with the constraints in scope.
* pmcheck :: PatVec -> [PatVec] -> ValVec -> PmM PartialResult
Checks redundancy, coverage and inaccessibility, using auxilary functions
`pmcheckGuards` and `pmcheckHd`. Mainly handles the guard case which is
common in all three checks (see paper) and calls `pmcheckGuards` when the
whole clause is checked, or `pmcheckHd` when the pattern vector does not
start with a guard.
* pmcheckGuards :: [PatVec] -> ValVec -> PmM PartialResult
Processes the guards.
* pmcheckHd :: Pattern -> PatVec -> [PatVec]
-> ValAbs -> ValVec -> PmM PartialResult
Worker: This function implements functions `covered`, `uncovered` and
`divergent` from the paper at once. Slightly different from the paper because
it does not even produce the covered and uncovered sets. Since we only care
about whether a clause covers SOMETHING or if it may forces ANY argument, we
only store a boolean in both cases, for efficiency.
-}
-- | Lift a pattern matching action from a single value vector abstration to a
-- value set abstraction, but calling it on every vector and the combining the
-- results.
runMany :: (ValVec -> PmM PartialResult) -> (Uncovered -> PmM PartialResult)
runMany _ [] = return mempty
runMany pm (m:ms) = mappend <$> pm m <*> runMany pm ms
-- | Generate the initial uncovered set. It initializes the
-- delta with all term and type constraints in scope.
mkInitialUncovered :: [Id] -> PmM Uncovered
mkInitialUncovered vars = do
delta <- pmInitialTmTyCs
let patterns = map PmVar vars
return [ValVec patterns delta]
-- | Increase the counter for elapsed algorithm iterations, check that the
-- limit is not exceeded and call `pmcheck`
pmcheckI :: PatVec -> [PatVec] -> ValVec -> PmM PartialResult
pmcheckI ps guards vva = do
n <- liftD incrCheckPmIterDs
tracePm "pmCheck" (ppr n <> colon <+> pprPatVec ps
$$ hang (text "guards:") 2 (vcat (map pprPatVec guards))
$$ pprValVecDebug vva)
res <- pmcheck ps guards vva
tracePm "pmCheckResult:" (ppr res)
return res
{-# INLINE pmcheckI #-}
-- | Increase the counter for elapsed algorithm iterations, check that the
-- limit is not exceeded and call `pmcheckGuards`
pmcheckGuardsI :: [PatVec] -> ValVec -> PmM PartialResult
pmcheckGuardsI gvs vva = liftD incrCheckPmIterDs >> pmcheckGuards gvs vva
{-# INLINE pmcheckGuardsI #-}
-- | Increase the counter for elapsed algorithm iterations, check that the
-- limit is not exceeded and call `pmcheckHd`
pmcheckHdI :: Pattern -> PatVec -> [PatVec] -> ValAbs -> ValVec
-> PmM PartialResult
pmcheckHdI p ps guards va vva = do
n <- liftD incrCheckPmIterDs
tracePm "pmCheckHdI" (ppr n <> colon <+> pprPmPatDebug p
$$ pprPatVec ps
$$ hang (text "guards:") 2 (vcat (map pprPatVec guards))
$$ pprPmPatDebug va
$$ pprValVecDebug vva)
res <- pmcheckHd p ps guards va vva
tracePm "pmCheckHdI: res" (ppr res)
return res
{-# INLINE pmcheckHdI #-}
-- | Matching function: Check simultaneously a clause (takes separately the
-- patterns and the list of guards) for exhaustiveness, redundancy and
-- inaccessibility.
pmcheck :: PatVec -> [PatVec] -> ValVec -> PmM PartialResult
pmcheck [] guards vva@(ValVec [] _)
| null guards = return $ mempty { presultCovered = Covered }
| otherwise = pmcheckGuardsI guards vva
-- Guard
pmcheck (PmFake : ps) guards vva =
-- short-circuit if the guard pattern is useless.
-- we just have two possible outcomes: fail here or match and recurse
-- none of the two contains any useful information about the failure
-- though. So just have these two cases but do not do all the boilerplate
forces . mkCons vva <$> pmcheckI ps guards vva
pmcheck (p : ps) guards (ValVec vas delta)
| PmGrd { pm_grd_pv = pv, pm_grd_expr = e } <- p
= do
y <- liftD $ mkPmId (pmPatType p)
let tm_state = extendSubst y e (delta_tm_cs delta)
delta' = delta { delta_tm_cs = tm_state }
utail <$> pmcheckI (pv ++ ps) guards (ValVec (PmVar y : vas) delta')
pmcheck [] _ (ValVec (_:_) _) = panic "pmcheck: nil-cons"
pmcheck (_:_) _ (ValVec [] _) = panic "pmcheck: cons-nil"
pmcheck (p:ps) guards (ValVec (va:vva) delta)
= pmcheckHdI p ps guards va (ValVec vva delta)
-- | Check the list of guards
pmcheckGuards :: [PatVec] -> ValVec -> PmM PartialResult
pmcheckGuards [] vva = return (usimple [vva])
pmcheckGuards (gv:gvs) vva = do
(PartialResult prov1 cs vsa ds) <- pmcheckI gv [] vva
(PartialResult prov2 css vsas dss) <- runMany (pmcheckGuardsI gvs) vsa
return $ PartialResult (prov1 `mappend` prov2)
(cs `mappend` css)
vsas
(ds `mappend` dss)
-- | Worker function: Implements all cases described in the paper for all three
-- functions (`covered`, `uncovered` and `divergent`) apart from the `Guard`
-- cases which are handled by `pmcheck`
pmcheckHd :: Pattern -> PatVec -> [PatVec] -> ValAbs -> ValVec
-> PmM PartialResult
-- Var
pmcheckHd (PmVar x) ps guards va (ValVec vva delta)
| Just tm_state <- solveOneEq (delta_tm_cs delta) (TVC x (vaToPmExpr va))
= ucon va <$> pmcheckI ps guards (ValVec vva (delta {delta_tm_cs = tm_state}))
| otherwise = return mempty
-- ConCon
pmcheckHd ( p@(PmCon { pm_con_con = c1, pm_con_tvs = ex_tvs1
, pm_con_args = args1})) ps guards
(va@(PmCon { pm_con_con = c2, pm_con_tvs = ex_tvs2
, pm_con_args = args2})) (ValVec vva delta)
| c1 /= c2 =
return (usimple [ValVec (va:vva) delta])
| otherwise = do
let to_evvar tv1 tv2 = nameType "pmConCon" $
mkPrimEqPred (mkTyVarTy tv1) (mkTyVarTy tv2)
mb_to_evvar tv1 tv2
-- If we have identical constructors but different existential
-- tyvars, then generate extra equality constraints to ensure the
-- existential tyvars.
-- See Note [Coverage checking and existential tyvars].
| tv1 == tv2 = pure Nothing
| otherwise = Just <$> to_evvar tv1 tv2
evvars <- (listToBag . catMaybes) <$>
ASSERT(ex_tvs1 `equalLength` ex_tvs2)
liftD (zipWithM mb_to_evvar ex_tvs1 ex_tvs2)
let delta' = delta { delta_ty_cs = evvars `unionBags` delta_ty_cs delta }
kcon c1 (pm_con_arg_tys p) (pm_con_tvs p) (pm_con_dicts p)
<$> pmcheckI (args1 ++ ps) guards (ValVec (args2 ++ vva) delta')
-- LitLit
pmcheckHd (PmLit l1) ps guards (va@(PmLit l2)) vva =
case eqPmLit l1 l2 of
True -> ucon va <$> pmcheckI ps guards vva
False -> return $ ucon va (usimple [vva])
-- ConVar
pmcheckHd (p@(PmCon { pm_con_con = con, pm_con_arg_tys = tys }))
ps guards
(PmVar x) (ValVec vva delta) = do
(prov, complete_match) <- select =<< liftD (allCompleteMatches con tys)
cons_cs <- mapM (liftD . mkOneConFull x) complete_match
inst_vsa <- flip mapMaybeM cons_cs $
\InhabitationCandidate{ ic_val_abs = va, ic_tm_ct = tm_ct
, ic_ty_cs = ty_cs
, ic_strict_arg_tys = strict_arg_tys } -> do
mb_sat <- pmIsSatisfiable delta tm_ct ty_cs strict_arg_tys
pure $ fmap (ValVec (va:vva)) mb_sat
set_provenance prov .
force_if (canDiverge (idName x) (delta_tm_cs delta)) <$>
runMany (pmcheckI (p:ps) guards) inst_vsa
-- LitVar
pmcheckHd (p@(PmLit l)) ps guards (PmVar x) (ValVec vva delta)
= force_if (canDiverge (idName x) (delta_tm_cs delta)) <$>
mkUnion non_matched <$>
case solveOneEq (delta_tm_cs delta) (mkPosEq x l) of
Just tm_state -> pmcheckHdI p ps guards (PmLit l) $
ValVec vva (delta {delta_tm_cs = tm_state})
Nothing -> return mempty
where
-- See Note [Refutable shapes] in TmOracle
us | Just tm_state <- addSolveRefutableAltCon (delta_tm_cs delta) x (PmAltLit l)
= [ValVec (PmNLit x [l] : vva) (delta { delta_tm_cs = tm_state })]
| otherwise = []
non_matched = usimple us
-- LitNLit
pmcheckHd (p@(PmLit l)) ps guards
(PmNLit { pm_lit_id = x, pm_lit_not = lits }) (ValVec vva delta)
| all (not . eqPmLit l) lits
, Just tm_state <- solveOneEq (delta_tm_cs delta) (mkPosEq x l)
-- Both guards check the same so it would be sufficient to have only
-- the second one. Nevertheless, it is much cheaper to check whether
-- the literal is in the list so we check it first, to avoid calling
-- the term oracle (`solveOneEq`) if possible
= mkUnion non_matched <$>
pmcheckHdI p ps guards (PmLit l)
(ValVec vva (delta { delta_tm_cs = tm_state }))
| otherwise = return non_matched
where
-- See Note [Refutable shapes] in TmOracle
us | Just tm_state <- addSolveRefutableAltCon (delta_tm_cs delta) x (PmAltLit l)
= [ValVec (PmNLit x (l:lits) : vva) (delta { delta_tm_cs = tm_state })]
| otherwise = []
non_matched = usimple us
-- ----------------------------------------------------------------------------
-- The following three can happen only in cases like #322 where constructors
-- and overloaded literals appear in the same match. The general strategy is
-- to replace the literal (positive/negative) by a variable and recurse. The
-- fact that the variable is equal to the literal is recorded in `delta` so
-- no information is lost
-- LitCon
pmcheckHd p@PmLit{} ps guards va@PmCon{} (ValVec vva delta)
= do y <- liftD $ mkPmId (pmPatType va)
-- Analogous to the ConVar case, we have to case split the value
-- abstraction on possible literals. We do so by introducing a fresh
-- variable that is equated to the constructor. LitVar will then take
-- care of the case split by resorting to NLit.
let tm_state = extendSubst y (vaToPmExpr va) (delta_tm_cs delta)
delta' = delta { delta_tm_cs = tm_state }
pmcheckHdI p ps guards (PmVar y) (ValVec vva delta')
-- ConLit
pmcheckHd p@PmCon{} ps guards (PmLit l) (ValVec vva delta)
= do y <- liftD $ mkPmId (pmPatType p)
-- This desugars to the ConVar case by introducing a fresh variable that
-- is equated to the literal via a constraint. ConVar will then properly
-- case split on all possible constructors.
let tm_state = extendSubst y (PmExprLit l) (delta_tm_cs delta)
delta' = delta { delta_tm_cs = tm_state }
pmcheckHdI p ps guards (PmVar y) (ValVec vva delta')
-- ConNLit
pmcheckHd (p@(PmCon {})) ps guards (PmNLit { pm_lit_id = x }) vva
= pmcheckHdI p ps guards (PmVar x) vva
-- Impossible: handled by pmcheck
pmcheckHd PmFake _ _ _ _ = panic "pmcheckHd: Fake"
pmcheckHd (PmGrd {}) _ _ _ _ = panic "pmcheckHd: Guard"
{-
Note [Coverage checking and existential tyvars]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GHC's implementation of the pattern-match coverage algorithm (as described in
the GADTs Meet Their Match paper) must take some care to emit enough type
constraints when handling data constructors with exisentially quantified type
variables. To better explain what the challenge is, consider a constructor K
of the form:
K @e_1 ... @e_m ev_1 ... ev_v ty_1 ... ty_n :: T u_1 ... u_p
Where:
* e_1, ..., e_m are the existentially bound type variables.
* ev_1, ..., ev_v are evidence variables, which may inhabit a dictionary type
(e.g., Eq) or an equality constraint (e.g., e_1 ~ Int).
* ty_1, ..., ty_n are the types of K's fields.
* T u_1 ... u_p is the return type, where T is the data type constructor, and
u_1, ..., u_p are the universally quantified type variables.
In the ConVar case, the coverage algorithm will have in hand the constructor
K as well as a pattern variable (pv :: T PV_1 ... PV_p), where PV_1, ..., PV_p
are some types that instantiate u_1, ... u_p. The idea is that we should
substitute PV_1 for u_1, ..., and PV_p for u_p when forming a PmCon (the
mkOneConFull function accomplishes this) and then hand this PmCon off to the
ConCon case.
The presence of existentially quantified type variables adds a significant
wrinkle. We always grab e_1, ..., e_m from the definition of K to begin with,
but we don't want them to appear in the final PmCon, because then
calling (mkOneConFull K) for other pattern variables might reuse the same
existential tyvars, which is certainly wrong.
Previously, GHC's solution to this wrinkle was to always create fresh names
for the existential tyvars and put them into the PmCon. This works well for
many cases, but it can break down if you nest GADT pattern matches in just
the right way. For instance, consider the following program:
data App f a where
App :: f a -> App f (Maybe a)
data Ty a where
TBool :: Ty Bool
TInt :: Ty Int
data T f a where
C :: T Ty (Maybe Bool)
foo :: T f a -> App f a -> ()
foo C (App TBool) = ()
foo is a total program, but with the previous approach to handling existential
tyvars, GHC would mark foo's patterns as non-exhaustive.
When foo is desugared to Core, it looks roughly like so:
foo @f @a (C co1 _co2) (App @a1 _co3 (TBool |> co1)) = ()
(Where `a1` is an existential tyvar.)
That, in turn, is processed by the coverage checker to become:
foo @f @a (C co1 _co2) (App @a1 _co3 (pmvar123 :: f a1))
| TBool <- pmvar123 |> co1
= ()
Note that the type of pmvar123 is `f a1`—this will be important later.
Now, we proceed with coverage-checking as usual. When we come to the
ConVar case for App, we create a fresh variable `a2` to represent its
existential tyvar. At this point, we have the equality constraints
`(a ~ Maybe a2, a ~ Maybe Bool, f ~ Ty)` in scope.
However, when we check the guard, it will use the type of pmvar123, which is
`f a1`. Thus, when considering if pmvar123 can match the constructor TInt,
it will generate the constraint `a1 ~ Int`. This means our final set of
equality constraints would be:
f ~ Ty
a ~ Maybe Bool
a ~ Maybe a2
a1 ~ Int
Which is satisfiable! Freshening the existential tyvar `a` to `a2` doomed us,
because GHC is unable to relate `a2` to `a1`, which really should be the same
tyvar.
Luckily, we can avoid this pitfall. Recall that the ConVar case was where we
generated a PmCon with too-fresh existentials. But after ConVar, we have the
ConCon case, which considers whether each constructor of a particular data type
can be matched on in a particular spot.
In the case of App, when we get to the ConCon case, we will compare our
original App PmCon (from the source program) to the App PmCon created from the
ConVar case. In the former PmCon, we have `a1` in hand, which is exactly the
existential tyvar we want! Thus, we can force `a1` to be the same as `a2` here
by emitting an additional `a1 ~ a2` constraint. Now our final set of equality
constraints will be:
f ~ Ty
a ~ Maybe Bool
a ~ Maybe a2
a1 ~ Int
a1 ~ a2
Which is unsatisfiable, as we desired, since we now have that
Int ~ a1 ~ a2 ~ Bool.
In general, App might have more than one constructor, in which case we
couldn't reuse the existential tyvar for App for a different constructor. This
means that we can only use this trick in ConCon when the constructors are the
same. But this is fine, since this is the only scenario where this situation
arises in the first place!
-}
-- ----------------------------------------------------------------------------
-- * Utilities for main checking
updateVsa :: (ValSetAbs -> ValSetAbs) -> (PartialResult -> PartialResult)
updateVsa f p@(PartialResult { presultUncovered = old })
= p { presultUncovered = f old }
-- | Initialise with default values for covering and divergent information.
usimple :: ValSetAbs -> PartialResult
usimple vsa = mempty { presultUncovered = vsa }
-- | Take the tail of all value vector abstractions in the uncovered set
utail :: PartialResult -> PartialResult
utail = updateVsa upd
where upd vsa = [ ValVec vva delta | ValVec (_:vva) delta <- vsa ]
-- | Prepend a value abstraction to all value vector abstractions in the
-- uncovered set
ucon :: ValAbs -> PartialResult -> PartialResult
ucon va = updateVsa upd
where
upd vsa = [ ValVec (va:vva) delta | ValVec vva delta <- vsa ]
-- | Given a data constructor of arity `a` and an uncovered set containing
-- value vector abstractions of length `(a+n)`, pass the first `n` value
-- abstractions to the constructor (Hence, the resulting value vector
-- abstractions will have length `n+1`)
kcon :: ConLike -> [Type] -> [TyVar] -> [EvVar]
-> PartialResult -> PartialResult
kcon con arg_tys ex_tvs dicts
= let n = conLikeArity con
upd vsa =
[ ValVec (va:vva) delta
| ValVec vva' delta <- vsa
, let (args, vva) = splitAt n vva'
, let va = PmCon { pm_con_con = con
, pm_con_arg_tys = arg_tys
, pm_con_tvs = ex_tvs
, pm_con_dicts = dicts
, pm_con_args = args } ]
in updateVsa upd
-- | Get the union of two covered, uncovered and divergent value set
-- abstractions. Since the covered and divergent sets are represented by a
-- boolean, union means computing the logical or (at least one of the two is
-- non-empty).
mkUnion :: PartialResult -> PartialResult -> PartialResult
mkUnion = mappend
-- | Add a value vector abstraction to a value set abstraction (uncovered).
mkCons :: ValVec -> PartialResult -> PartialResult
mkCons vva = updateVsa (vva:)
-- | Set the divergent set to not empty
forces :: PartialResult -> PartialResult
forces pres = pres { presultDivergent = Diverged }
-- | Set the divergent set to non-empty if the flag is `True`
force_if :: Bool -> PartialResult -> PartialResult
force_if True pres = forces pres
force_if False pres = pres
set_provenance :: Provenance -> PartialResult -> PartialResult
set_provenance prov pr = pr { presultProvenance = prov }
-- ----------------------------------------------------------------------------
-- * Propagation of term constraints inwards when checking nested matches
{- Note [Type and Term Equality Propagation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When checking a match it would be great to have all type and term information
available so we can get more precise results. For this reason we have functions
`addDictsDs' and `addTmCsDs' in PmMonad that store in the environment type and
term constraints (respectively) as we go deeper.
The type constraints we propagate inwards are collected by `collectEvVarsPats'
in HsPat.hs. This handles bug #4139 ( see example
https://gitlab.haskell.org/ghc/ghc/snippets/672 )
where this is needed.
For term equalities we do less, we just generate equalities for HsCase. For
example we accurately give 2 redundancy warnings for the marked cases:
f :: [a] -> Bool
f x = case x of
[] -> case x of -- brings (x ~ []) in scope
[] -> True
(_:_) -> False -- can't happen
(_:_) -> case x of -- brings (x ~ (_:_)) in scope
(_:_) -> True
[] -> False -- can't happen
Functions `genCaseTmCs1' and `genCaseTmCs2' are responsible for generating
these constraints.
-}
-- | Generate equalities when checking a case expression:
-- case x of { p1 -> e1; ... pn -> en }
-- When we go deeper to check e.g. e1 we record two equalities:
-- (x ~ y), where y is the initial uncovered when checking (p1; .. ; pn)
-- and (x ~ p1).
genCaseTmCs2 :: Maybe (LHsExpr GhcTc) -- Scrutinee
-> [Pat GhcTc] -- LHS (should have length 1)
-> [Id] -- MatchVars (should have length 1)
-> DsM (Bag TmVarCt)
genCaseTmCs2 Nothing _ _ = return emptyBag
genCaseTmCs2 (Just scr) [p] [var] = do
fam_insts <- dsGetFamInstEnvs
[e] <- map vaToPmExpr . coercePatVec <$> translatePat fam_insts p
let scr_e = lhsExprToPmExpr scr
return $ listToBag [(TVC var e), (TVC var scr_e)]
genCaseTmCs2 _ _ _ = panic "genCaseTmCs2: HsCase"
-- | Generate a simple equality when checking a case expression:
-- case x of { matches }
-- When checking matches we record that (x ~ y) where y is the initial
-- uncovered. All matches will have to satisfy this equality.
genCaseTmCs1 :: Maybe (LHsExpr GhcTc) -> [Id] -> Bag TmVarCt
genCaseTmCs1 Nothing _ = emptyBag
genCaseTmCs1 (Just scr) [var] = unitBag (TVC var (lhsExprToPmExpr scr))
genCaseTmCs1 _ _ = panic "genCaseTmCs1: HsCase"
{- Note [Literals in PmPat]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Instead of translating a literal to a variable accompanied with a guard, we
treat them like constructor patterns. The following example from
"./libraries/base/GHC/IO/Encoding.hs" shows why:
mkTextEncoding' :: CodingFailureMode -> String -> IO TextEncoding
mkTextEncoding' cfm enc = case [toUpper c | c <- enc, c /= '-'] of
"UTF8" -> return $ UTF8.mkUTF8 cfm
"UTF16" -> return $ UTF16.mkUTF16 cfm
"UTF16LE" -> return $ UTF16.mkUTF16le cfm
...
Each clause gets translated to a list of variables with an equal number of
guards. For every guard we generate two cases (equals True/equals False) which
means that we generate 2^n cases to feed the oracle with, where n is the sum of
the length of all strings that appear in the patterns. For this particular
example this means over 2^40 cases. Instead, by representing them like with
constructor we get the following:
1. We exploit the common prefix with our representation of VSAs
2. We prune immediately non-reachable cases
(e.g. False == (x == "U"), True == (x == "U"))
Note [Translating As Patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Instead of translating x@p as: x (p <- x)
we instead translate it as: p (x <- coercePattern p)
for performance reasons. For example:
f x@True = 1
f y@False = 2
Gives the following with the first translation:
x |> {x == False, x == y, y == True}
If we use the second translation we get an empty set, independently of the
oracle. Since the pattern `p' may contain guard patterns though, it cannot be
used as an expression. That's why we call `coercePatVec' to drop the guard and
`vaToPmExpr' to transform the value abstraction to an expression in the
guard pattern (value abstractions are a subset of expressions). We keep the
guards in the first pattern `p' though.
%************************************************************************
%* *
Pretty printing of exhaustiveness/redundancy check warnings
%* *
%************************************************************************
-}
-- | Check whether any part of pattern match checking is enabled (does not
-- matter whether it is the redundancy check or the exhaustiveness check).
isAnyPmCheckEnabled :: DynFlags -> DsMatchContext -> Bool
isAnyPmCheckEnabled dflags (DsMatchContext kind _loc)
= wopt Opt_WarnOverlappingPatterns dflags || exhaustive dflags kind
instance Outputable ValVec where
ppr (ValVec vva delta)
= let (subst, refuts) = wrapUpTmState (delta_tm_cs delta)
vector = substInValAbs subst vva
in pprUncovered (vector, refuts)
-- | Apply a term substitution to a value vector abstraction. All VAs are
-- transformed to PmExpr (used only before pretty printing).
substInValAbs :: TmVarCtEnv -> [ValAbs] -> [PmExpr]
substInValAbs subst = map (exprDeepLookup subst . vaToPmExpr)
-- | Issue all the warnings (coverage, exhaustiveness, inaccessibility)
dsPmWarn :: DynFlags -> DsMatchContext -> PmResult -> DsM ()
dsPmWarn dflags ctx@(DsMatchContext kind loc) pm_result
= when (flag_i || flag_u) $ do
let exists_r = flag_i && notNull redundant && onlyBuiltin
exists_i = flag_i && notNull inaccessible && onlyBuiltin && not is_rec_upd
exists_u = flag_u && (case uncovered of
TypeOfUncovered _ -> True
UncoveredPatterns u -> notNull u)
when exists_r $ forM_ redundant $ \(dL->L l q) -> do
putSrcSpanDs l (warnDs (Reason Opt_WarnOverlappingPatterns)
(pprEqn q "is redundant"))
when exists_i $ forM_ inaccessible $ \(dL->L l q) -> do
putSrcSpanDs l (warnDs (Reason Opt_WarnOverlappingPatterns)
(pprEqn q "has inaccessible right hand side"))
when exists_u $ putSrcSpanDs loc $ warnDs flag_u_reason $
case uncovered of
TypeOfUncovered ty -> warnEmptyCase ty
UncoveredPatterns candidates -> pprEqns candidates
where
PmResult
{ pmresultProvenance = prov
, pmresultRedundant = redundant
, pmresultUncovered = uncovered
, pmresultInaccessible = inaccessible } = pm_result
flag_i = wopt Opt_WarnOverlappingPatterns dflags
flag_u = exhaustive dflags kind
flag_u_reason = maybe NoReason Reason (exhaustiveWarningFlag kind)
is_rec_upd = case kind of { RecUpd -> True; _ -> False }
-- See Note [Inaccessible warnings for record updates]
onlyBuiltin = prov == FromBuiltin
maxPatterns = maxUncoveredPatterns dflags
-- Print a single clause (for redundant/with-inaccessible-rhs)
pprEqn q txt = pprContext True ctx (text txt) $ \f ->
f (pprPats kind (map unLoc q))
-- Print several clauses (for uncovered clauses)
pprEqns qs = pprContext False ctx (text "are non-exhaustive") $ \_ ->
case qs of -- See #11245
[ValVec [] _]
-> text "Guards do not cover entire pattern space"
_missing -> let us = map ppr qs
in hang (text "Patterns not matched:") 4
(vcat (take maxPatterns us)
$$ dots maxPatterns us)
-- Print a type-annotated wildcard (for non-exhaustive `EmptyCase`s for
-- which we only know the type and have no inhabitants at hand)
warnEmptyCase ty = pprContext False ctx (text "are non-exhaustive") $ \_ ->
hang (text "Patterns not matched:") 4 (underscore <+> dcolon <+> ppr ty)
{- Note [Inaccessible warnings for record updates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#12957)
data T a where
T1 :: { x :: Int } -> T Bool
T2 :: { x :: Int } -> T a
T3 :: T a
f :: T Char -> T a
f r = r { x = 3 }
The desugarer will (conservatively generate a case for T1 even though
it's impossible:
f r = case r of
T1 x -> T1 3 -- Inaccessible branch
T2 x -> T2 3
_ -> error "Missing"
We don't want to warn about the inaccessible branch because the programmer
didn't put it there! So we filter out the warning here.
-}
-- | Issue a warning when the predefined number of iterations is exceeded
-- for the pattern match checker
warnPmIters :: DynFlags -> DsMatchContext -> DsM ()
warnPmIters dflags (DsMatchContext kind loc)
= when (flag_i || flag_u) $ do
iters <- maxPmCheckIterations <$> getDynFlags
putSrcSpanDs loc (warnDs NoReason (msg iters))
where
ctxt = pprMatchContext kind
msg is = fsep [ text "Pattern match checker exceeded"
, parens (ppr is), text "iterations in", ctxt <> dot
, text "(Use -fmax-pmcheck-iterations=n"
, text "to set the maximum number of iterations to n)" ]
flag_i = wopt Opt_WarnOverlappingPatterns dflags
flag_u = exhaustive dflags kind
dots :: Int -> [a] -> SDoc
dots maxPatterns qs
| qs `lengthExceeds` maxPatterns = text "..."
| otherwise = empty
-- | Check whether the exhaustiveness checker should run (exhaustiveness only)
exhaustive :: DynFlags -> HsMatchContext id -> Bool
exhaustive dflags = maybe False (`wopt` dflags) . exhaustiveWarningFlag
-- | Denotes whether an exhaustiveness check is supported, and if so,
-- via which 'WarningFlag' it's controlled.
-- Returns 'Nothing' if check is not supported.
exhaustiveWarningFlag :: HsMatchContext id -> Maybe WarningFlag
exhaustiveWarningFlag (FunRhs {}) = Just Opt_WarnIncompletePatterns
exhaustiveWarningFlag CaseAlt = Just Opt_WarnIncompletePatterns
exhaustiveWarningFlag IfAlt = Just Opt_WarnIncompletePatterns
exhaustiveWarningFlag LambdaExpr = Just Opt_WarnIncompleteUniPatterns
exhaustiveWarningFlag PatBindRhs = Just Opt_WarnIncompleteUniPatterns
exhaustiveWarningFlag PatBindGuards = Just Opt_WarnIncompletePatterns
exhaustiveWarningFlag ProcExpr = Just Opt_WarnIncompleteUniPatterns
exhaustiveWarningFlag RecUpd = Just Opt_WarnIncompletePatternsRecUpd
exhaustiveWarningFlag ThPatSplice = Nothing
exhaustiveWarningFlag PatSyn = Nothing
exhaustiveWarningFlag ThPatQuote = Nothing
exhaustiveWarningFlag (StmtCtxt {}) = Nothing -- Don't warn about incomplete patterns
-- in list comprehensions, pattern guards
-- etc. They are often *supposed* to be
-- incomplete
-- True <==> singular
pprContext :: Bool -> DsMatchContext -> SDoc -> ((SDoc -> SDoc) -> SDoc) -> SDoc
pprContext singular (DsMatchContext kind _loc) msg rest_of_msg_fun
= vcat [text txt <+> msg,
sep [ text "In" <+> ppr_match <> char ':'
, nest 4 (rest_of_msg_fun pref)]]
where
txt | singular = "Pattern match"
| otherwise = "Pattern match(es)"
(ppr_match, pref)
= case kind of
FunRhs { mc_fun = (dL->L _ fun) }
-> (pprMatchContext kind, \ pp -> ppr fun <+> pp)
_ -> (pprMatchContext kind, \ pp -> pp)
pprPats :: HsMatchContext Name -> [Pat GhcTc] -> SDoc
pprPats kind pats
= sep [sep (map ppr pats), matchSeparator kind, text "..."]
-- Debugging Infrastructre
tracePm :: String -> SDoc -> PmM ()
tracePm herald doc = liftD $ tracePmD herald doc
tracePmD :: String -> SDoc -> DsM ()
tracePmD herald doc = do
dflags <- getDynFlags
printer <- mkPrintUnqualifiedDs
liftIO $ dumpIfSet_dyn_printer printer dflags
Opt_D_dump_ec_trace (text herald $$ (nest 2 doc))
pprPmPatDebug :: PmPat a -> SDoc
pprPmPatDebug (PmCon cc _arg_tys _con_tvs _con_dicts con_args)
= hsep [text "PmCon", ppr cc, hsep (map pprPmPatDebug con_args)]
pprPmPatDebug (PmVar vid) = text "PmVar" <+> ppr vid
pprPmPatDebug (PmLit li) = text "PmLit" <+> ppr li
pprPmPatDebug (PmNLit i nl) = text "PmNLit" <+> ppr i <+> ppr nl
pprPmPatDebug (PmGrd pv ge) = text "PmGrd" <+> hsep (map pprPmPatDebug pv)
<+> ppr ge
pprPmPatDebug PmFake = text "PmFake"
pprPatVec :: PatVec -> SDoc
pprPatVec ps = hang (text "Pattern:") 2
(brackets $ sep
$ punctuate (comma <> char '\n') (map pprPmPatDebug ps))
pprValAbs :: [ValAbs] -> SDoc
pprValAbs ps = hang (text "ValAbs:") 2
(brackets $ sep
$ punctuate (comma) (map pprPmPatDebug ps))
pprValVecDebug :: ValVec -> SDoc
pprValVecDebug (ValVec vas _d) = text "ValVec" <+>
parens (pprValAbs vas)
-- <not a haddock> $$ ppr (delta_tm_cs _d)
-- <not a haddock> $$ ppr (delta_ty_cs _d)
|