1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
|
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1997-1998
%
% Author: Juan J. Quintela <quintela@krilin.dc.fi.udc.es>
\begin{code}
module Check ( check , ExhaustivePat ) where
#include "HsVersions.h"
import HsSyn
import TcHsSyn
import DsUtils
import MatchLit
import Id
import ConLike
import DataCon
import PatSyn
import Name
import TysWiredIn
import PrelNames
import TyCon
import Type
import SrcLoc
import UniqSet
import Util
import BasicTypes
import Outputable
import FastString
\end{code}
This module performs checks about if one list of equations are:
\begin{itemize}
\item Overlapped
\item Non exhaustive
\end{itemize}
To discover that we go through the list of equations in a tree-like fashion.
If you like theory, a similar algorithm is described in:
\begin{quotation}
{\em Two Techniques for Compiling Lazy Pattern Matching},
Luc Maranguet,
INRIA Rocquencourt (RR-2385, 1994)
\end{quotation}
The algorithm is based on the first technique, but there are some differences:
\begin{itemize}
\item We don't generate code
\item We have constructors and literals (not only literals as in the
article)
\item We don't use directions, we must select the columns from
left-to-right
\end{itemize}
(By the way the second technique is really similar to the one used in
@Match.lhs@ to generate code)
This function takes the equations of a pattern and returns:
\begin{itemize}
\item The patterns that are not recognized
\item The equations that are not overlapped
\end{itemize}
It simplify the patterns and then call @check'@ (the same semantics), and it
needs to reconstruct the patterns again ....
The problem appear with things like:
\begin{verbatim}
f [x,y] = ....
f (x:xs) = .....
\end{verbatim}
We want to put the two patterns with the same syntax, (prefix form) and
then all the constructors are equal:
\begin{verbatim}
f (: x (: y [])) = ....
f (: x xs) = .....
\end{verbatim}
(more about that in @tidy_eqns@)
We would prefer to have a @WarningPat@ of type @String@, but Strings and the
Pretty Printer are not friends.
We use @InPat@ in @WarningPat@ instead of @OutPat@
because we need to print the
warning messages in the same way they are introduced, i.e. if the user
wrote:
\begin{verbatim}
f [x,y] = ..
\end{verbatim}
He don't want a warning message written:
\begin{verbatim}
f (: x (: y [])) ........
\end{verbatim}
Then we need to use InPats.
\begin{quotation}
Juan Quintela 5 JUL 1998\\
User-friendliness and compiler writers are no friends.
\end{quotation}
\begin{code}
type WarningPat = InPat Name
type ExhaustivePat = ([WarningPat], [(Name, [HsLit])])
type EqnNo = Int
type EqnSet = UniqSet EqnNo
check :: [EquationInfo] -> ([ExhaustivePat], [EquationInfo])
-- Second result is the shadowed equations
-- if there are view patterns, just give up - don't know what the function is
check qs = (untidy_warns, shadowed_eqns)
where
tidy_qs = map tidy_eqn qs
(warns, used_nos) = check' ([1..] `zip` tidy_qs)
untidy_warns = map untidy_exhaustive warns
shadowed_eqns = [eqn | (eqn,i) <- qs `zip` [1..],
not (i `elementOfUniqSet` used_nos)]
untidy_exhaustive :: ExhaustivePat -> ExhaustivePat
untidy_exhaustive ([pat], messages) =
([untidy_no_pars pat], map untidy_message messages)
untidy_exhaustive (pats, messages) =
(map untidy_pars pats, map untidy_message messages)
untidy_message :: (Name, [HsLit]) -> (Name, [HsLit])
untidy_message (string, lits) = (string, map untidy_lit lits)
\end{code}
The function @untidy@ does the reverse work of the @tidy_pat@ function.
\begin{code}
type NeedPars = Bool
untidy_no_pars :: WarningPat -> WarningPat
untidy_no_pars p = untidy False p
untidy_pars :: WarningPat -> WarningPat
untidy_pars p = untidy True p
untidy :: NeedPars -> WarningPat -> WarningPat
untidy b (L loc p) = L loc (untidy' b p)
where
untidy' _ p@(WildPat _) = p
untidy' _ p@(VarPat _) = p
untidy' _ (LitPat lit) = LitPat (untidy_lit lit)
untidy' _ p@(ConPatIn _ (PrefixCon [])) = p
untidy' b (ConPatIn name ps) = pars b (L loc (ConPatIn name (untidy_con ps)))
untidy' _ (ListPat pats ty Nothing) = ListPat (map untidy_no_pars pats) ty Nothing
untidy' _ (TuplePat pats box ty) = TuplePat (map untidy_no_pars pats) box ty
untidy' _ (ListPat _ _ (Just _)) = panic "Check.untidy: Overloaded ListPat"
untidy' _ (PArrPat _ _) = panic "Check.untidy: Shouldn't get a parallel array here!"
untidy' _ (SigPatIn _ _) = panic "Check.untidy: SigPat"
untidy' _ (LazyPat {}) = panic "Check.untidy: LazyPat"
untidy' _ (AsPat {}) = panic "Check.untidy: AsPat"
untidy' _ (ParPat {}) = panic "Check.untidy: ParPat"
untidy' _ (BangPat {}) = panic "Check.untidy: BangPat"
untidy' _ (ConPatOut {}) = panic "Check.untidy: ConPatOut"
untidy' _ (ViewPat {}) = panic "Check.untidy: ViewPat"
untidy' _ (SplicePat {}) = panic "Check.untidy: SplicePat"
untidy' _ (QuasiQuotePat {}) = panic "Check.untidy: QuasiQuotePat"
untidy' _ (NPat {}) = panic "Check.untidy: NPat"
untidy' _ (NPlusKPat {}) = panic "Check.untidy: NPlusKPat"
untidy' _ (SigPatOut {}) = panic "Check.untidy: SigPatOut"
untidy' _ (CoPat {}) = panic "Check.untidy: CoPat"
untidy_con :: HsConPatDetails Name -> HsConPatDetails Name
untidy_con (PrefixCon pats) = PrefixCon (map untidy_pars pats)
untidy_con (InfixCon p1 p2) = InfixCon (untidy_pars p1) (untidy_pars p2)
untidy_con (RecCon (HsRecFields flds dd))
= RecCon (HsRecFields [ fld { hsRecFieldArg = untidy_pars (hsRecFieldArg fld) }
| fld <- flds ] dd)
pars :: NeedPars -> WarningPat -> Pat Name
pars True p = ParPat p
pars _ p = unLoc p
untidy_lit :: HsLit -> HsLit
untidy_lit (HsCharPrim c) = HsChar c
untidy_lit lit = lit
\end{code}
This equation is the same that check, the only difference is that the
boring work is done, that work needs to be done only once, this is
the reason top have two functions, check is the external interface,
@check'@ is called recursively.
There are several cases:
\begin{itemize}
\item There are no equations: Everything is OK.
\item There are only one equation, that can fail, and all the patterns are
variables. Then that equation is used and the same equation is
non-exhaustive.
\item All the patterns are variables, and the match can fail, there are
more equations then the results is the result of the rest of equations
and this equation is used also.
\item The general case, if all the patterns are variables (here the match
can't fail) then the result is that this equation is used and this
equation doesn't generate non-exhaustive cases.
\item In the general case, there can exist literals ,constructors or only
vars in the first column, we actuate in consequence.
\end{itemize}
\begin{code}
check' :: [(EqnNo, EquationInfo)]
-> ([ExhaustivePat], -- Pattern scheme that might not be matched at all
EqnSet) -- Eqns that are used (others are overlapped)
check' [] = ([],emptyUniqSet)
-- Was ([([],[])], emptyUniqSet)
-- But that (a) seems weird, and (b) triggered Trac #7669
-- So now I'm just doing the simple obvious thing
check' ((n, EqnInfo { eqn_pats = ps, eqn_rhs = MatchResult can_fail _ }) : rs)
| first_eqn_all_vars && case can_fail of { CantFail -> True; CanFail -> False }
= ([], unitUniqSet n) -- One eqn, which can't fail
| first_eqn_all_vars && null rs -- One eqn, but it can fail
= ([(takeList ps (repeat nlWildPat),[])], unitUniqSet n)
| first_eqn_all_vars -- Several eqns, first can fail
= (pats, addOneToUniqSet indexs n)
where
first_eqn_all_vars = all_vars ps
(pats,indexs) = check' rs
check' qs
| some_literals = split_by_literals qs
| some_constructors = split_by_constructor qs
| only_vars = first_column_only_vars qs
| otherwise = pprPanic "Check.check': Not implemented :-(" (ppr first_pats)
-- Shouldn't happen
where
-- Note: RecPats will have been simplified to ConPats
-- at this stage.
first_pats = ASSERT2( okGroup qs, pprGroup qs ) map firstPatN qs
some_constructors = any is_con first_pats
some_literals = any is_lit first_pats
only_vars = all is_var first_pats
\end{code}
Here begins the code to deal with literals, we need to split the matrix
in different matrix beginning by each literal and a last matrix with the
rest of values.
\begin{code}
split_by_literals :: [(EqnNo, EquationInfo)] -> ([ExhaustivePat], EqnSet)
split_by_literals qs = process_literals used_lits qs
where
used_lits = get_used_lits qs
\end{code}
@process_explicit_literals@ is a function that process each literal that appears
in the column of the matrix.
\begin{code}
process_explicit_literals :: [HsLit] -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
process_explicit_literals lits qs = (concat pats, unionManyUniqSets indexs)
where
pats_indexs = map (\x -> construct_literal_matrix x qs) lits
(pats,indexs) = unzip pats_indexs
\end{code}
@process_literals@ calls @process_explicit_literals@ to deal with the literals
that appears in the matrix and deal also with the rest of the cases. It
must be one Variable to be complete.
\begin{code}
process_literals :: [HsLit] -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
process_literals used_lits qs
| null default_eqns = ASSERT( not (null qs) ) ([make_row_vars used_lits (head qs)] ++ pats,indexs)
| otherwise = (pats_default,indexs_default)
where
(pats,indexs) = process_explicit_literals used_lits qs
default_eqns = ASSERT2( okGroup qs, pprGroup qs )
[remove_var q | q <- qs, is_var (firstPatN q)]
(pats',indexs') = check' default_eqns
pats_default = [(nlWildPat:ps,constraints) | (ps,constraints) <- (pats')] ++ pats
indexs_default = unionUniqSets indexs' indexs
\end{code}
Here we have selected the literal and we will select all the equations that
begins for that literal and create a new matrix.
\begin{code}
construct_literal_matrix :: HsLit -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
construct_literal_matrix lit qs =
(map (\ (xs,ys) -> (new_lit:xs,ys)) pats,indexs)
where
(pats,indexs) = (check' (remove_first_column_lit lit qs))
new_lit = nlLitPat lit
remove_first_column_lit :: HsLit
-> [(EqnNo, EquationInfo)]
-> [(EqnNo, EquationInfo)]
remove_first_column_lit lit qs
= ASSERT2( okGroup qs, pprGroup qs )
[(n, shift_pat eqn) | q@(n,eqn) <- qs, is_var_lit lit (firstPatN q)]
where
shift_pat eqn@(EqnInfo { eqn_pats = _:ps}) = eqn { eqn_pats = ps }
shift_pat _ = panic "Check.shift_var: no patterns"
\end{code}
This function splits the equations @qs@ in groups that deal with the
same constructor.
\begin{code}
split_by_constructor :: [(EqnNo, EquationInfo)] -> ([ExhaustivePat], EqnSet)
split_by_constructor qs
| null used_cons = ([], mkUniqSet $ map fst qs)
| notNull unused_cons = need_default_case used_cons unused_cons qs
| otherwise = no_need_default_case used_cons qs
where
used_cons = get_used_cons qs
unused_cons = get_unused_cons used_cons
\end{code}
The first column of the patterns matrix only have vars, then there is
nothing to do.
\begin{code}
first_column_only_vars :: [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
first_column_only_vars qs = (map (\ (xs,ys) -> (nlWildPat:xs,ys)) pats,indexs)
where
(pats, indexs) = check' (map remove_var qs)
\end{code}
This equation takes a matrix of patterns and split the equations by
constructor, using all the constructors that appears in the first column
of the pattern matching.
We can need a default clause or not ...., it depends if we used all the
constructors or not explicitly. The reasoning is similar to @process_literals@,
the difference is that here the default case is not always needed.
\begin{code}
no_need_default_case :: [Pat Id] -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
no_need_default_case cons qs = (concat pats, unionManyUniqSets indexs)
where
pats_indexs = map (\x -> construct_matrix x qs) cons
(pats,indexs) = unzip pats_indexs
need_default_case :: [Pat Id] -> [DataCon] -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
need_default_case used_cons unused_cons qs
| null default_eqns = (pats_default_no_eqns,indexs)
| otherwise = (pats_default,indexs_default)
where
(pats,indexs) = no_need_default_case used_cons qs
default_eqns = ASSERT2( okGroup qs, pprGroup qs )
[remove_var q | q <- qs, is_var (firstPatN q)]
(pats',indexs') = check' default_eqns
pats_default = [(make_whole_con c:ps,constraints) |
c <- unused_cons, (ps,constraints) <- pats'] ++ pats
new_wilds = ASSERT( not (null qs) ) make_row_vars_for_constructor (head qs)
pats_default_no_eqns = [(make_whole_con c:new_wilds,[]) | c <- unused_cons] ++ pats
indexs_default = unionUniqSets indexs' indexs
construct_matrix :: Pat Id -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
construct_matrix con qs =
(map (make_con con) pats,indexs)
where
(pats,indexs) = (check' (remove_first_column con qs))
\end{code}
Here remove first column is more difficult that with literals due to the fact
that constructors can have arguments.
For instance, the matrix
\begin{verbatim}
(: x xs) y
z y
\end{verbatim}
is transformed in:
\begin{verbatim}
x xs y
_ _ y
\end{verbatim}
\begin{code}
remove_first_column :: Pat Id -- Constructor
-> [(EqnNo, EquationInfo)]
-> [(EqnNo, EquationInfo)]
remove_first_column (ConPatOut{ pat_con = L _ con, pat_args = PrefixCon con_pats }) qs
= ASSERT2( okGroup qs, pprGroup qs )
[(n, shift_var eqn) | q@(n, eqn) <- qs, is_var_con con (firstPatN q)]
where
new_wilds = [WildPat (hsLPatType arg_pat) | arg_pat <- con_pats]
shift_var eqn@(EqnInfo { eqn_pats = ConPatOut{ pat_args = PrefixCon ps' } : ps})
= eqn { eqn_pats = map unLoc ps' ++ ps }
shift_var eqn@(EqnInfo { eqn_pats = WildPat _ : ps })
= eqn { eqn_pats = new_wilds ++ ps }
shift_var _ = panic "Check.Shift_var:No done"
remove_first_column _ _ = panic "Check.remove_first_column: Not ConPatOut"
make_row_vars :: [HsLit] -> (EqnNo, EquationInfo) -> ExhaustivePat
make_row_vars used_lits (_, EqnInfo { eqn_pats = pats})
= (nlVarPat new_var:takeList (tail pats) (repeat nlWildPat),[(new_var,used_lits)])
where
new_var = hash_x
hash_x :: Name
hash_x = mkInternalName unboundKey {- doesn't matter much -}
(mkVarOccFS (fsLit "#x"))
noSrcSpan
make_row_vars_for_constructor :: (EqnNo, EquationInfo) -> [WarningPat]
make_row_vars_for_constructor (_, EqnInfo { eqn_pats = pats})
= takeList (tail pats) (repeat nlWildPat)
compare_cons :: Pat Id -> Pat Id -> Bool
compare_cons (ConPatOut{ pat_con = L _ con1 }) (ConPatOut{ pat_con = L _ con2 })
= case (con1, con2) of
(RealDataCon id1, RealDataCon id2) -> id1 == id2
_ -> False
compare_cons _ _ = panic "Check.compare_cons: Not ConPatOut with RealDataCon"
remove_dups :: [Pat Id] -> [Pat Id]
remove_dups [] = []
remove_dups (x:xs) | any (\y -> compare_cons x y) xs = remove_dups xs
| otherwise = x : remove_dups xs
get_used_cons :: [(EqnNo, EquationInfo)] -> [Pat Id]
get_used_cons qs = remove_dups [pat | q <- qs, let pat = firstPatN q,
isConPatOut pat]
isConPatOut :: Pat Id -> Bool
isConPatOut ConPatOut{ pat_con = L _ RealDataCon{} } = True
isConPatOut _ = False
remove_dups' :: [HsLit] -> [HsLit]
remove_dups' [] = []
remove_dups' (x:xs) | x `elem` xs = remove_dups' xs
| otherwise = x : remove_dups' xs
get_used_lits :: [(EqnNo, EquationInfo)] -> [HsLit]
get_used_lits qs = remove_dups' all_literals
where
all_literals = get_used_lits' qs
get_used_lits' :: [(EqnNo, EquationInfo)] -> [HsLit]
get_used_lits' [] = []
get_used_lits' (q:qs)
| Just lit <- get_lit (firstPatN q) = lit : get_used_lits' qs
| otherwise = get_used_lits qs
get_lit :: Pat id -> Maybe HsLit
-- Get a representative HsLit to stand for the OverLit
-- It doesn't matter which one, because they will only be compared
-- with other HsLits gotten in the same way
get_lit (LitPat lit) = Just lit
get_lit (NPat (OverLit { ol_val = HsIntegral i}) mb _) = Just (HsIntPrim (mb_neg negate mb i))
get_lit (NPat (OverLit { ol_val = HsFractional f }) mb _) = Just (HsFloatPrim (mb_neg negateFractionalLit mb f))
get_lit (NPat (OverLit { ol_val = HsIsString s }) _ _) = Just (HsStringPrim (fastStringToByteString s))
get_lit _ = Nothing
mb_neg :: (a -> a) -> Maybe b -> a -> a
mb_neg _ Nothing v = v
mb_neg negate (Just _) v = negate v
get_unused_cons :: [Pat Id] -> [DataCon]
get_unused_cons used_cons = ASSERT( not (null used_cons) ) unused_cons
where
used_set :: UniqSet DataCon
used_set = mkUniqSet [d | ConPatOut{ pat_con = L _ (RealDataCon d) } <- used_cons]
(ConPatOut { pat_ty = ty }) = head used_cons
Just (ty_con, inst_tys) = splitTyConApp_maybe ty
unused_cons = filterOut is_used (tyConDataCons ty_con)
is_used con = con `elementOfUniqSet` used_set
|| dataConCannotMatch inst_tys con
all_vars :: [Pat Id] -> Bool
all_vars [] = True
all_vars (WildPat _:ps) = all_vars ps
all_vars _ = False
remove_var :: (EqnNo, EquationInfo) -> (EqnNo, EquationInfo)
remove_var (n, eqn@(EqnInfo { eqn_pats = WildPat _ : ps})) = (n, eqn { eqn_pats = ps })
remove_var _ = panic "Check.remove_var: equation does not begin with a variable"
-----------------------
eqnPats :: (EqnNo, EquationInfo) -> [Pat Id]
eqnPats (_, eqn) = eqn_pats eqn
okGroup :: [(EqnNo, EquationInfo)] -> Bool
-- True if all equations have at least one pattern, and
-- all have the same number of patterns
okGroup [] = True
okGroup (e:es) = n_pats > 0 && and [length (eqnPats e) == n_pats | e <- es]
where
n_pats = length (eqnPats e)
-- Half-baked print
pprGroup :: [(EqnNo, EquationInfo)] -> SDoc
pprEqnInfo :: (EqnNo, EquationInfo) -> SDoc
pprGroup es = vcat (map pprEqnInfo es)
pprEqnInfo e = ppr (eqnPats e)
firstPatN :: (EqnNo, EquationInfo) -> Pat Id
firstPatN (_, eqn) = firstPat eqn
is_con :: Pat Id -> Bool
is_con (ConPatOut {}) = True
is_con _ = False
is_lit :: Pat Id -> Bool
is_lit (LitPat _) = True
is_lit (NPat _ _ _) = True
is_lit _ = False
is_var :: Pat Id -> Bool
is_var (WildPat _) = True
is_var _ = False
is_var_con :: ConLike -> Pat Id -> Bool
is_var_con _ (WildPat _) = True
is_var_con con (ConPatOut{ pat_con = L _ id }) = id == con
is_var_con _ _ = False
is_var_lit :: HsLit -> Pat Id -> Bool
is_var_lit _ (WildPat _) = True
is_var_lit lit pat
| Just lit' <- get_lit pat = lit == lit'
| otherwise = False
\end{code}
The difference beteewn @make_con@ and @make_whole_con@ is that
@make_wole_con@ creates a new constructor with all their arguments, and
@make_con@ takes a list of argumntes, creates the contructor getting their
arguments from the list. See where \fbox{\ ???\ } are used for details.
We need to reconstruct the patterns (make the constructors infix and
similar) at the same time that we create the constructors.
You can tell tuple constructors using
\begin{verbatim}
Id.isTupleDataCon
\end{verbatim}
You can see if one constructor is infix with this clearer code :-))))))))))
\begin{verbatim}
Lex.isLexConSym (Name.occNameString (Name.getOccName con))
\end{verbatim}
Rather clumsy but it works. (Simon Peyton Jones)
We don't mind the @nilDataCon@ because it doesn't change the way to
print the message, we are searching only for things like: @[1,2,3]@,
not @x:xs@ ....
In @reconstruct_pat@ we want to ``undo'' the work
that we have done in @tidy_pat@.
In particular:
\begin{tabular}{lll}
@((,) x y)@ & returns to be & @(x, y)@
\\ @((:) x xs)@ & returns to be & @(x:xs)@
\\ @(x:(...:[])@ & returns to be & @[x,...]@
\end{tabular}
%
The difficult case is the third one becouse we need to follow all the
contructors until the @[]@ to know that we need to use the second case,
not the second. \fbox{\ ???\ }
%
\begin{code}
isInfixCon :: DataCon -> Bool
isInfixCon con = isDataSymOcc (getOccName con)
is_nil :: Pat Name -> Bool
is_nil (ConPatIn con (PrefixCon [])) = unLoc con == getName nilDataCon
is_nil _ = False
is_list :: Pat Name -> Bool
is_list (ListPat _ _ Nothing) = True
is_list _ = False
return_list :: DataCon -> Pat Name -> Bool
return_list id q = id == consDataCon && (is_nil q || is_list q)
make_list :: LPat Name -> Pat Name -> Pat Name
make_list p q | is_nil q = ListPat [p] placeHolderType Nothing
make_list p (ListPat ps ty Nothing) = ListPat (p:ps) ty Nothing
make_list _ _ = panic "Check.make_list: Invalid argument"
make_con :: Pat Id -> ExhaustivePat -> ExhaustivePat
make_con (ConPatOut{ pat_con = L _ (RealDataCon id) }) (lp:lq:ps, constraints)
| return_list id q = (noLoc (make_list lp q) : ps, constraints)
| isInfixCon id = (nlInfixConPat (getName id) lp lq : ps, constraints)
where q = unLoc lq
make_con (ConPatOut{ pat_con = L _ (RealDataCon id), pat_args = PrefixCon pats, pat_ty = ty }) (ps, constraints)
| isTupleTyCon tc = (noLoc (TuplePat pats_con (tupleTyConBoxity tc) ty) : rest_pats, constraints)
| isPArrFakeCon id = (noLoc (PArrPat pats_con placeHolderType) : rest_pats, constraints)
| otherwise = (nlConPat name pats_con : rest_pats, constraints)
where
name = getName id
(pats_con, rest_pats) = splitAtList pats ps
tc = dataConTyCon id
make_con _ _ = panic "Check.make_con: Not ConPatOut"
-- reconstruct parallel array pattern
--
-- * don't check for the type only; we need to make sure that we are really
-- dealing with one of the fake constructors and not with the real
-- representation
make_whole_con :: DataCon -> WarningPat
make_whole_con con | isInfixCon con = nlInfixConPat name nlWildPat nlWildPat
| otherwise = nlConPat name pats
where
name = getName con
pats = [nlWildPat | _ <- dataConOrigArgTys con]
\end{code}
------------------------------------------------------------------------
Tidying equations
------------------------------------------------------------------------
tidy_eqn does more or less the same thing as @tidy@ in @Match.lhs@;
that is, it removes syntactic sugar, reducing the number of cases that
must be handled by the main checking algorithm. One difference is
that here we can do *all* the tidying at once (recursively), rather
than doing it incrementally.
\begin{code}
tidy_eqn :: EquationInfo -> EquationInfo
tidy_eqn eqn = eqn { eqn_pats = map tidy_pat (eqn_pats eqn),
eqn_rhs = tidy_rhs (eqn_rhs eqn) }
where
-- Horrible hack. The tidy_pat stuff converts "might-fail" patterns to
-- WildPats which of course loses the info that they can fail to match.
-- So we stick in a CanFail as if it were a guard.
tidy_rhs (MatchResult can_fail body)
| any might_fail_pat (eqn_pats eqn) = MatchResult CanFail body
| otherwise = MatchResult can_fail body
--------------
might_fail_pat :: Pat Id -> Bool
-- Returns True of patterns that might fail (i.e. fall through) in a way
-- that is not covered by the checking algorithm. Specifically:
-- NPlusKPat
-- ViewPat (if refutable)
-- ConPatOut of a PatSynCon
-- First the two special cases
might_fail_pat (NPlusKPat {}) = True
might_fail_pat (ViewPat _ p _) = not (isIrrefutableHsPat p)
-- Now the recursive stuff
might_fail_pat (ParPat p) = might_fail_lpat p
might_fail_pat (AsPat _ p) = might_fail_lpat p
might_fail_pat (SigPatOut p _ ) = might_fail_lpat p
might_fail_pat (ListPat ps _ Nothing) = any might_fail_lpat ps
might_fail_pat (ListPat _ _ (Just _)) = True
might_fail_pat (TuplePat ps _ _) = any might_fail_lpat ps
might_fail_pat (PArrPat ps _) = any might_fail_lpat ps
might_fail_pat (BangPat p) = might_fail_lpat p
might_fail_pat (ConPatOut { pat_con = con, pat_args = ps })
= case unLoc con of
RealDataCon _dcon -> any might_fail_lpat (hsConPatArgs ps)
PatSynCon _psyn -> True
-- Finally the ones that are sure to succeed, or which are covered by the checking algorithm
might_fail_pat (LazyPat _) = False -- Always succeeds
might_fail_pat _ = False -- VarPat, WildPat, LitPat, NPat
--------------
might_fail_lpat :: LPat Id -> Bool
might_fail_lpat (L _ p) = might_fail_pat p
--------------
tidy_lpat :: LPat Id -> LPat Id
tidy_lpat p = fmap tidy_pat p
--------------
tidy_pat :: Pat Id -> Pat Id
tidy_pat pat@(WildPat _) = pat
tidy_pat (VarPat id) = WildPat (idType id)
tidy_pat (ParPat p) = tidy_pat (unLoc p)
tidy_pat (LazyPat p) = WildPat (hsLPatType p) -- For overlap and exhaustiveness checking
-- purposes, a ~pat is like a wildcard
tidy_pat (BangPat p) = tidy_pat (unLoc p)
tidy_pat (AsPat _ p) = tidy_pat (unLoc p)
tidy_pat (SigPatOut p _) = tidy_pat (unLoc p)
tidy_pat (CoPat _ pat _) = tidy_pat pat
-- These two are might_fail patterns, so we map them to
-- WildPats. The might_fail_pat stuff arranges that the
-- guard says "this equation might fall through".
tidy_pat (NPlusKPat id _ _ _) = WildPat (idType (unLoc id))
tidy_pat (ViewPat _ _ ty) = WildPat ty
tidy_pat (ListPat _ _ (Just (ty,_))) = WildPat ty
tidy_pat (ConPatOut { pat_con = L _ PatSynCon{}, pat_ty = ty })
= WildPat ty
tidy_pat pat@(ConPatOut { pat_con = L _ con, pat_args = ps })
= pat { pat_args = tidy_con con ps }
tidy_pat (ListPat ps ty Nothing)
= unLoc $ foldr (\ x y -> mkPrefixConPat consDataCon [x,y] list_ty)
(mkNilPat list_ty)
(map tidy_lpat ps)
where list_ty = mkListTy ty
-- introduce fake parallel array constructors to be able to handle parallel
-- arrays with the existing machinery for constructor pattern
--
tidy_pat (PArrPat ps ty)
= unLoc $ mkPrefixConPat (parrFakeCon (length ps))
(map tidy_lpat ps)
(mkPArrTy ty)
tidy_pat (TuplePat ps boxity ty)
= unLoc $ mkPrefixConPat (tupleCon (boxityNormalTupleSort boxity) arity)
(map tidy_lpat ps) ty
where
arity = length ps
tidy_pat (NPat lit mb_neg eq) = tidyNPat tidy_lit_pat lit mb_neg eq
tidy_pat (LitPat lit) = tidy_lit_pat lit
tidy_pat (ConPatIn {}) = panic "Check.tidy_pat: ConPatIn"
tidy_pat (SplicePat {}) = panic "Check.tidy_pat: SplicePat"
tidy_pat (QuasiQuotePat {}) = panic "Check.tidy_pat: QuasiQuotePat"
tidy_pat (SigPatIn {}) = panic "Check.tidy_pat: SigPatIn"
tidy_lit_pat :: HsLit -> Pat Id
-- Unpack string patterns fully, so we can see when they
-- overlap with each other, or even explicit lists of Chars.
tidy_lit_pat lit
| HsString s <- lit
= unLoc $ foldr (\c pat -> mkPrefixConPat consDataCon [mkCharLitPat c, pat] stringTy)
(mkPrefixConPat nilDataCon [] stringTy) (unpackFS s)
| otherwise
= tidyLitPat lit
-----------------
tidy_con :: ConLike -> HsConPatDetails Id -> HsConPatDetails Id
tidy_con _ (PrefixCon ps) = PrefixCon (map tidy_lpat ps)
tidy_con _ (InfixCon p1 p2) = PrefixCon [tidy_lpat p1, tidy_lpat p2]
tidy_con con (RecCon (HsRecFields fs _))
| null fs = PrefixCon (replicate arity nlWildPat)
-- Special case for null patterns; maybe not a record at all
| otherwise = PrefixCon (map (tidy_lpat.snd) all_pats)
where
arity = case con of
RealDataCon dcon -> dataConSourceArity dcon
PatSynCon psyn -> patSynArity psyn
-- pad out all the missing fields with WildPats.
field_pats = case con of
RealDataCon dc -> map (\ f -> (f, nlWildPat)) (dataConFieldLabels dc)
PatSynCon{} -> panic "Check.tidy_con: pattern synonym with record syntax"
all_pats = foldr (\(HsRecField id p _) acc -> insertNm (getName (unLoc id)) p acc)
field_pats fs
insertNm nm p [] = [(nm,p)]
insertNm nm p (x@(n,_):xs)
| nm == n = (nm,p):xs
| otherwise = x : insertNm nm p xs
\end{code}
|