1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
|
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
Desugaring arrow commands
\begin{code}
{-# OPTIONS -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
-- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
-- for details
module DsArrows ( dsProcExpr ) where
#include "HsVersions.h"
import Match
import DsUtils
import DsMonad
import HsSyn hiding (collectPatBinders, collectLocatedPatBinders, collectl,
collectPatsBinders, collectLocatedPatsBinders)
import TcHsSyn
-- NB: The desugarer, which straddles the source and Core worlds, sometimes
-- needs to see source types (newtypes etc), and sometimes not
-- So WATCH OUT; check each use of split*Ty functions.
-- Sigh. This is a pain.
import {-# SOURCE #-} DsExpr ( dsExpr, dsLExpr, dsLocalBinds )
import TcType
import Type
import CoreSyn
import CoreFVs
import CoreUtils
import Id
import Name
import PrelInfo
import DataCon
import TysWiredIn
import BasicTypes
import PrelNames
import Util
import VarSet
import SrcLoc
import Data.List
\end{code}
\begin{code}
data DsCmdEnv = DsCmdEnv {
meth_binds :: [CoreBind],
arr_id, compose_id, first_id, app_id, choice_id, loop_id :: CoreExpr
}
mkCmdEnv :: SyntaxTable Id -> DsM DsCmdEnv
mkCmdEnv ids
= dsSyntaxTable ids `thenDs` \ (meth_binds, ds_meths) ->
return $ DsCmdEnv {
meth_binds = meth_binds,
arr_id = Var (lookupEvidence ds_meths arrAName),
compose_id = Var (lookupEvidence ds_meths composeAName),
first_id = Var (lookupEvidence ds_meths firstAName),
app_id = Var (lookupEvidence ds_meths appAName),
choice_id = Var (lookupEvidence ds_meths choiceAName),
loop_id = Var (lookupEvidence ds_meths loopAName)
}
bindCmdEnv :: DsCmdEnv -> CoreExpr -> CoreExpr
bindCmdEnv ids body = foldr Let body (meth_binds ids)
-- arr :: forall b c. (b -> c) -> a b c
do_arr :: DsCmdEnv -> Type -> Type -> CoreExpr -> CoreExpr
do_arr ids b_ty c_ty f = mkApps (arr_id ids) [Type b_ty, Type c_ty, f]
-- (>>>) :: forall b c d. a b c -> a c d -> a b d
do_compose :: DsCmdEnv -> Type -> Type -> Type ->
CoreExpr -> CoreExpr -> CoreExpr
do_compose ids b_ty c_ty d_ty f g
= mkApps (compose_id ids) [Type b_ty, Type c_ty, Type d_ty, f, g]
-- first :: forall b c d. a b c -> a (b,d) (c,d)
do_first :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr
do_first ids b_ty c_ty d_ty f
= mkApps (first_id ids) [Type b_ty, Type c_ty, Type d_ty, f]
-- app :: forall b c. a (a b c, b) c
do_app :: DsCmdEnv -> Type -> Type -> CoreExpr
do_app ids b_ty c_ty = mkApps (app_id ids) [Type b_ty, Type c_ty]
-- (|||) :: forall b d c. a b d -> a c d -> a (Either b c) d
-- note the swapping of d and c
do_choice :: DsCmdEnv -> Type -> Type -> Type ->
CoreExpr -> CoreExpr -> CoreExpr
do_choice ids b_ty c_ty d_ty f g
= mkApps (choice_id ids) [Type b_ty, Type d_ty, Type c_ty, f, g]
-- loop :: forall b d c. a (b,d) (c,d) -> a b c
-- note the swapping of d and c
do_loop :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr
do_loop ids b_ty c_ty d_ty f
= mkApps (loop_id ids) [Type b_ty, Type d_ty, Type c_ty, f]
-- map_arrow (f :: b -> c) (g :: a c d) = arr f >>> g :: a b d
do_map_arrow :: DsCmdEnv -> Type -> Type -> Type ->
CoreExpr -> CoreExpr -> CoreExpr
do_map_arrow ids b_ty c_ty d_ty f c
= do_compose ids b_ty c_ty d_ty (do_arr ids b_ty c_ty f) c
mkFailExpr :: HsMatchContext Id -> Type -> DsM CoreExpr
mkFailExpr ctxt ty
= mkErrorAppDs pAT_ERROR_ID ty (matchContextErrString ctxt)
-- construct CoreExpr for \ (a :: a_ty, b :: b_ty) -> b
mkSndExpr :: Type -> Type -> DsM CoreExpr
mkSndExpr a_ty b_ty
= newSysLocalDs a_ty `thenDs` \ a_var ->
newSysLocalDs b_ty `thenDs` \ b_var ->
newSysLocalDs (mkCorePairTy a_ty b_ty) `thenDs` \ pair_var ->
returnDs (Lam pair_var
(coreCasePair pair_var a_var b_var (Var b_var)))
\end{code}
Build case analysis of a tuple. This cannot be done in the DsM monad,
because the list of variables is typically not yet defined.
\begin{code}
-- coreCaseTuple [u1..] v [x1..xn] body
-- = case v of v { (x1, .., xn) -> body }
-- But the matching may be nested if the tuple is very big
coreCaseTuple :: UniqSupply -> Id -> [Id] -> CoreExpr -> CoreExpr
coreCaseTuple uniqs scrut_var vars body
= mkTupleCase uniqs vars body scrut_var (Var scrut_var)
coreCasePair :: Id -> Id -> Id -> CoreExpr -> CoreExpr
coreCasePair scrut_var var1 var2 body
= Case (Var scrut_var) scrut_var (exprType body)
[(DataAlt (tupleCon Boxed 2), [var1, var2], body)]
\end{code}
\begin{code}
mkCorePairTy :: Type -> Type -> Type
mkCorePairTy t1 t2 = mkCoreTupTy [t1, t2]
mkCorePairExpr :: CoreExpr -> CoreExpr -> CoreExpr
mkCorePairExpr e1 e2 = mkCoreTup [e1, e2]
\end{code}
The input is divided into a local environment, which is a flat tuple
(unless it's too big), and a stack, each element of which is paired
with the stack in turn. In general, the input has the form
(...((x1,...,xn),s1),...sk)
where xi are the environment values, and si the ones on the stack,
with s1 being the "top", the first one to be matched with a lambda.
\begin{code}
envStackType :: [Id] -> [Type] -> Type
envStackType ids stack_tys = foldl mkCorePairTy (mkTupleType ids) stack_tys
----------------------------------------------
-- buildEnvStack
--
-- (...((x1,...,xn),s1),...sk)
buildEnvStack :: [Id] -> [Id] -> CoreExpr
buildEnvStack env_ids stack_ids
= foldl mkCorePairExpr (mkTupleExpr env_ids) (map Var stack_ids)
----------------------------------------------
-- matchEnvStack
--
-- \ (...((x1,...,xn),s1),...sk) -> e
-- =>
-- \ zk ->
-- case zk of (zk-1,sk) ->
-- ...
-- case z1 of (z0,s1) ->
-- case z0 of (x1,...,xn) ->
-- e
matchEnvStack :: [Id] -- x1..xn
-> [Id] -- s1..sk
-> CoreExpr -- e
-> DsM CoreExpr
matchEnvStack env_ids stack_ids body
= newUniqueSupply `thenDs` \ uniqs ->
newSysLocalDs (mkTupleType env_ids) `thenDs` \ tup_var ->
matchVarStack tup_var stack_ids
(coreCaseTuple uniqs tup_var env_ids body)
----------------------------------------------
-- matchVarStack
--
-- \ (...(z0,s1),...sk) -> e
-- =>
-- \ zk ->
-- case zk of (zk-1,sk) ->
-- ...
-- case z1 of (z0,s1) ->
-- e
matchVarStack :: Id -- z0
-> [Id] -- s1..sk
-> CoreExpr -- e
-> DsM CoreExpr
matchVarStack env_id [] body
= returnDs (Lam env_id body)
matchVarStack env_id (stack_id:stack_ids) body
= newSysLocalDs (mkCorePairTy (idType env_id) (idType stack_id))
`thenDs` \ pair_id ->
matchVarStack pair_id stack_ids
(coreCasePair pair_id env_id stack_id body)
\end{code}
\begin{code}
mkHsTupleExpr :: [HsExpr Id] -> HsExpr Id
mkHsTupleExpr [e] = e
mkHsTupleExpr es = ExplicitTuple (map noLoc es) Boxed
mkHsPairExpr :: HsExpr Id -> HsExpr Id -> HsExpr Id
mkHsPairExpr e1 e2 = mkHsTupleExpr [e1, e2]
mkHsEnvStackExpr :: [Id] -> [Id] -> HsExpr Id
mkHsEnvStackExpr env_ids stack_ids
= foldl mkHsPairExpr (mkHsTupleExpr (map HsVar env_ids)) (map HsVar stack_ids)
\end{code}
Translation of arrow abstraction
\begin{code}
-- A | xs |- c :: [] t' ---> c'
-- --------------------------
-- A |- proc p -> c :: a t t' ---> arr (\ p -> (xs)) >>> c'
--
-- where (xs) is the tuple of variables bound by p
dsProcExpr
:: LPat Id
-> LHsCmdTop Id
-> DsM CoreExpr
dsProcExpr pat (L _ (HsCmdTop cmd [] cmd_ty ids))
= mkCmdEnv ids `thenDs` \ meth_ids ->
let
locals = mkVarSet (collectPatBinders pat)
in
dsfixCmd meth_ids locals [] cmd_ty cmd
`thenDs` \ (core_cmd, free_vars, env_ids) ->
let
env_ty = mkTupleType env_ids
in
mkFailExpr ProcExpr env_ty `thenDs` \ fail_expr ->
selectSimpleMatchVarL pat `thenDs` \ var ->
matchSimply (Var var) ProcExpr pat (mkTupleExpr env_ids) fail_expr
`thenDs` \ match_code ->
let
pat_ty = hsLPatType pat
proc_code = do_map_arrow meth_ids pat_ty env_ty cmd_ty
(Lam var match_code)
core_cmd
in
returnDs (bindCmdEnv meth_ids proc_code)
\end{code}
Translation of command judgements of the form
A | xs |- c :: [ts] t
\begin{code}
dsLCmd ids local_vars env_ids stack res_ty cmd
= dsCmd ids local_vars env_ids stack res_ty (unLoc cmd)
dsCmd :: DsCmdEnv -- arrow combinators
-> IdSet -- set of local vars available to this command
-> [Id] -- list of vars in the input to this command
-- This is typically fed back,
-- so don't pull on it too early
-> [Type] -- type of the stack
-> Type -- return type of the command
-> HsCmd Id -- command to desugar
-> DsM (CoreExpr, -- desugared expression
IdSet) -- set of local vars that occur free
-- A |- f :: a (t*ts) t'
-- A, xs |- arg :: t
-- -----------------------------
-- A | xs |- f -< arg :: [ts] t'
--
-- ---> arr (\ ((xs)*ts) -> (arg*ts)) >>> f
dsCmd ids local_vars env_ids stack res_ty
(HsArrApp arrow arg arrow_ty HsFirstOrderApp _)
= let
(a_arg_ty, _res_ty') = tcSplitAppTy arrow_ty
(_a_ty, arg_ty) = tcSplitAppTy a_arg_ty
env_ty = mkTupleType env_ids
in
dsLExpr arrow `thenDs` \ core_arrow ->
dsLExpr arg `thenDs` \ core_arg ->
mappM newSysLocalDs stack `thenDs` \ stack_ids ->
matchEnvStack env_ids stack_ids
(foldl mkCorePairExpr core_arg (map Var stack_ids))
`thenDs` \ core_make_arg ->
returnDs (do_map_arrow ids
(envStackType env_ids stack)
arg_ty
res_ty
core_make_arg
core_arrow,
exprFreeVars core_arg `intersectVarSet` local_vars)
-- A, xs |- f :: a (t*ts) t'
-- A, xs |- arg :: t
-- ------------------------------
-- A | xs |- f -<< arg :: [ts] t'
--
-- ---> arr (\ ((xs)*ts) -> (f,(arg*ts))) >>> app
dsCmd ids local_vars env_ids stack res_ty
(HsArrApp arrow arg arrow_ty HsHigherOrderApp _)
= let
(a_arg_ty, _res_ty') = tcSplitAppTy arrow_ty
(_a_ty, arg_ty) = tcSplitAppTy a_arg_ty
env_ty = mkTupleType env_ids
in
dsLExpr arrow `thenDs` \ core_arrow ->
dsLExpr arg `thenDs` \ core_arg ->
mappM newSysLocalDs stack `thenDs` \ stack_ids ->
matchEnvStack env_ids stack_ids
(mkCorePairExpr core_arrow
(foldl mkCorePairExpr core_arg (map Var stack_ids)))
`thenDs` \ core_make_pair ->
returnDs (do_map_arrow ids
(envStackType env_ids stack)
(mkCorePairTy arrow_ty arg_ty)
res_ty
core_make_pair
(do_app ids arg_ty res_ty),
(exprFreeVars core_arrow `unionVarSet` exprFreeVars core_arg)
`intersectVarSet` local_vars)
-- A | ys |- c :: [t:ts] t'
-- A, xs |- e :: t
-- ------------------------
-- A | xs |- c e :: [ts] t'
--
-- ---> arr (\ ((xs)*ts) -> let z = e in (((ys),z)*ts)) >>> c
dsCmd ids local_vars env_ids stack res_ty (HsApp cmd arg)
= dsLExpr arg `thenDs` \ core_arg ->
let
arg_ty = exprType core_arg
stack' = arg_ty:stack
in
dsfixCmd ids local_vars stack' res_ty cmd
`thenDs` \ (core_cmd, free_vars, env_ids') ->
mappM newSysLocalDs stack `thenDs` \ stack_ids ->
newSysLocalDs arg_ty `thenDs` \ arg_id ->
-- push the argument expression onto the stack
let
core_body = bindNonRec arg_id core_arg
(buildEnvStack env_ids' (arg_id:stack_ids))
in
-- match the environment and stack against the input
matchEnvStack env_ids stack_ids core_body
`thenDs` \ core_map ->
returnDs (do_map_arrow ids
(envStackType env_ids stack)
(envStackType env_ids' stack')
res_ty
core_map
core_cmd,
(exprFreeVars core_arg `intersectVarSet` local_vars)
`unionVarSet` free_vars)
-- A | ys |- c :: [ts] t'
-- -----------------------------------------------
-- A | xs |- \ p1 ... pk -> c :: [t1:...:tk:ts] t'
--
-- ---> arr (\ ((((xs), p1), ... pk)*ts) -> ((ys)*ts)) >>> c
dsCmd ids local_vars env_ids stack res_ty
(HsLam (MatchGroup [L _ (Match pats _ (GRHSs [L _ (GRHS [] body)] _ ))] _))
= let
pat_vars = mkVarSet (collectPatsBinders pats)
local_vars' = local_vars `unionVarSet` pat_vars
stack' = drop (length pats) stack
in
dsfixCmd ids local_vars' stack' res_ty body
`thenDs` \ (core_body, free_vars, env_ids') ->
mappM newSysLocalDs stack `thenDs` \ stack_ids ->
-- the expression is built from the inside out, so the actions
-- are presented in reverse order
let
(actual_ids, stack_ids') = splitAt (length pats) stack_ids
-- build a new environment, plus what's left of the stack
core_expr = buildEnvStack env_ids' stack_ids'
in_ty = envStackType env_ids stack
in_ty' = envStackType env_ids' stack'
in
mkFailExpr LambdaExpr in_ty' `thenDs` \ fail_expr ->
-- match the patterns against the top of the old stack
matchSimplys (map Var actual_ids) LambdaExpr pats core_expr fail_expr
`thenDs` \ match_code ->
-- match the old environment and stack against the input
matchEnvStack env_ids stack_ids match_code
`thenDs` \ select_code ->
returnDs (do_map_arrow ids in_ty in_ty' res_ty select_code core_body,
free_vars `minusVarSet` pat_vars)
dsCmd ids local_vars env_ids stack res_ty (HsPar cmd)
= dsLCmd ids local_vars env_ids stack res_ty cmd
-- A, xs |- e :: Bool
-- A | xs1 |- c1 :: [ts] t
-- A | xs2 |- c2 :: [ts] t
-- ----------------------------------------
-- A | xs |- if e then c1 else c2 :: [ts] t
--
-- ---> arr (\ ((xs)*ts) ->
-- if e then Left ((xs1)*ts) else Right ((xs2)*ts)) >>>
-- c1 ||| c2
dsCmd ids local_vars env_ids stack res_ty (HsIf cond then_cmd else_cmd)
= dsLExpr cond `thenDs` \ core_cond ->
dsfixCmd ids local_vars stack res_ty then_cmd
`thenDs` \ (core_then, fvs_then, then_ids) ->
dsfixCmd ids local_vars stack res_ty else_cmd
`thenDs` \ (core_else, fvs_else, else_ids) ->
mappM newSysLocalDs stack `thenDs` \ stack_ids ->
dsLookupTyCon eitherTyConName `thenDs` \ either_con ->
dsLookupDataCon leftDataConName `thenDs` \ left_con ->
dsLookupDataCon rightDataConName `thenDs` \ right_con ->
let
left_expr ty1 ty2 e = mkConApp left_con [Type ty1, Type ty2, e]
right_expr ty1 ty2 e = mkConApp right_con [Type ty1, Type ty2, e]
in_ty = envStackType env_ids stack
then_ty = envStackType then_ids stack
else_ty = envStackType else_ids stack
sum_ty = mkTyConApp either_con [then_ty, else_ty]
fvs_cond = exprFreeVars core_cond `intersectVarSet` local_vars
in
matchEnvStack env_ids stack_ids
(mkIfThenElse core_cond
(left_expr then_ty else_ty (buildEnvStack then_ids stack_ids))
(right_expr then_ty else_ty (buildEnvStack else_ids stack_ids)))
`thenDs` \ core_if ->
returnDs(do_map_arrow ids in_ty sum_ty res_ty
core_if
(do_choice ids then_ty else_ty res_ty core_then core_else),
fvs_cond `unionVarSet` fvs_then `unionVarSet` fvs_else)
\end{code}
Case commands are treated in much the same way as if commands
(see above) except that there are more alternatives. For example
case e of { p1 -> c1; p2 -> c2; p3 -> c3 }
is translated to
arr (\ ((xs)*ts) -> case e of
p1 -> (Left (Left (xs1)*ts))
p2 -> Left ((Right (xs2)*ts))
p3 -> Right ((xs3)*ts)) >>>
(c1 ||| c2) ||| c3
The idea is to extract the commands from the case, build a balanced tree
of choices, and replace the commands with expressions that build tagged
tuples, obtaining a case expression that can be desugared normally.
To build all this, we use quadruples decribing segments of the list of
case bodies, containing the following fields:
1. an IdSet containing the environment variables free in the case bodies
2. a list of expressions of the form (Left|Right)* ((xs)*ts), to be put
into the case replacing the commands
3. a sum type that is the common type of these expressions, and also the
input type of the arrow
4. a CoreExpr for an arrow built by combining the translated command
bodies with |||.
\begin{code}
dsCmd ids local_vars env_ids stack res_ty (HsCase exp (MatchGroup matches match_ty))
= dsLExpr exp `thenDs` \ core_exp ->
mappM newSysLocalDs stack `thenDs` \ stack_ids ->
-- Extract and desugar the leaf commands in the case, building tuple
-- expressions that will (after tagging) replace these leaves
let
leaves = concatMap leavesMatch matches
make_branch (leaf, bound_vars)
= dsfixCmd ids (local_vars `unionVarSet` bound_vars) stack res_ty leaf
`thenDs` \ (core_leaf, fvs, leaf_ids) ->
returnDs (fvs `minusVarSet` bound_vars,
[noLoc $ mkHsEnvStackExpr leaf_ids stack_ids],
envStackType leaf_ids stack,
core_leaf)
in
mappM make_branch leaves `thenDs` \ branches ->
dsLookupTyCon eitherTyConName `thenDs` \ either_con ->
dsLookupDataCon leftDataConName `thenDs` \ left_con ->
dsLookupDataCon rightDataConName `thenDs` \ right_con ->
let
left_id = HsVar (dataConWrapId left_con)
right_id = HsVar (dataConWrapId right_con)
left_expr ty1 ty2 e = noLoc $ HsApp (noLoc $ HsWrap (mkWpTyApps [ty1, ty2]) left_id ) e
right_expr ty1 ty2 e = noLoc $ HsApp (noLoc $ HsWrap (mkWpTyApps [ty1, ty2]) right_id) e
-- Prefix each tuple with a distinct series of Left's and Right's,
-- in a balanced way, keeping track of the types.
merge_branches (fvs1, builds1, in_ty1, core_exp1)
(fvs2, builds2, in_ty2, core_exp2)
= (fvs1 `unionVarSet` fvs2,
map (left_expr in_ty1 in_ty2) builds1 ++
map (right_expr in_ty1 in_ty2) builds2,
mkTyConApp either_con [in_ty1, in_ty2],
do_choice ids in_ty1 in_ty2 res_ty core_exp1 core_exp2)
(fvs_alts, leaves', sum_ty, core_choices)
= foldb merge_branches branches
-- Replace the commands in the case with these tagged tuples,
-- yielding a HsExpr Id we can feed to dsExpr.
(_, matches') = mapAccumL (replaceLeavesMatch res_ty) leaves' matches
in_ty = envStackType env_ids stack
fvs_exp = exprFreeVars core_exp `intersectVarSet` local_vars
pat_ty = funArgTy match_ty
match_ty' = mkFunTy pat_ty sum_ty
-- Note that we replace the HsCase result type by sum_ty,
-- which is the type of matches'
in
dsExpr (HsCase exp (MatchGroup matches' match_ty')) `thenDs` \ core_body ->
matchEnvStack env_ids stack_ids core_body
`thenDs` \ core_matches ->
returnDs(do_map_arrow ids in_ty sum_ty res_ty core_matches core_choices,
fvs_exp `unionVarSet` fvs_alts)
-- A | ys |- c :: [ts] t
-- ----------------------------------
-- A | xs |- let binds in c :: [ts] t
--
-- ---> arr (\ ((xs)*ts) -> let binds in ((ys)*ts)) >>> c
dsCmd ids local_vars env_ids stack res_ty (HsLet binds body)
= let
defined_vars = mkVarSet (map unLoc (collectLocalBinders binds))
local_vars' = local_vars `unionVarSet` defined_vars
in
dsfixCmd ids local_vars' stack res_ty body
`thenDs` \ (core_body, free_vars, env_ids') ->
mappM newSysLocalDs stack `thenDs` \ stack_ids ->
-- build a new environment, plus the stack, using the let bindings
dsLocalBinds binds (buildEnvStack env_ids' stack_ids)
`thenDs` \ core_binds ->
-- match the old environment and stack against the input
matchEnvStack env_ids stack_ids core_binds
`thenDs` \ core_map ->
returnDs (do_map_arrow ids
(envStackType env_ids stack)
(envStackType env_ids' stack)
res_ty
core_map
core_body,
exprFreeVars core_binds `intersectVarSet` local_vars)
dsCmd ids local_vars env_ids [] res_ty (HsDo _ctxt stmts body _)
= dsCmdDo ids local_vars env_ids res_ty stmts body
-- A |- e :: forall e. a1 (e*ts1) t1 -> ... an (e*tsn) tn -> a (e*ts) t
-- A | xs |- ci :: [tsi] ti
-- -----------------------------------
-- A | xs |- (|e c1 ... cn|) :: [ts] t ---> e [t_xs] c1 ... cn
dsCmd _ids local_vars env_ids _stack _res_ty (HsArrForm op _ args)
= let
env_ty = mkTupleType env_ids
in
dsLExpr op `thenDs` \ core_op ->
mapAndUnzipDs (dsTrimCmdArg local_vars env_ids) args
`thenDs` \ (core_args, fv_sets) ->
returnDs (mkApps (App core_op (Type env_ty)) core_args,
unionVarSets fv_sets)
dsCmd ids local_vars env_ids stack res_ty (HsTick ix vars expr)
= dsLCmd ids local_vars env_ids stack res_ty expr `thenDs` \ (expr1,id_set) ->
mkTickBox ix vars expr1 `thenDs` \ expr2 ->
return (expr2,id_set)
-- A | ys |- c :: [ts] t (ys <= xs)
-- ---------------------
-- A | xs |- c :: [ts] t ---> arr_ts (\ (xs) -> (ys)) >>> c
dsTrimCmdArg
:: IdSet -- set of local vars available to this command
-> [Id] -- list of vars in the input to this command
-> LHsCmdTop Id -- command argument to desugar
-> DsM (CoreExpr, -- desugared expression
IdSet) -- set of local vars that occur free
dsTrimCmdArg local_vars env_ids (L _ (HsCmdTop cmd stack cmd_ty ids))
= mkCmdEnv ids `thenDs` \ meth_ids ->
dsfixCmd meth_ids local_vars stack cmd_ty cmd
`thenDs` \ (core_cmd, free_vars, env_ids') ->
mappM newSysLocalDs stack `thenDs` \ stack_ids ->
matchEnvStack env_ids stack_ids (buildEnvStack env_ids' stack_ids)
`thenDs` \ trim_code ->
let
in_ty = envStackType env_ids stack
in_ty' = envStackType env_ids' stack
arg_code = if env_ids' == env_ids then core_cmd else
do_map_arrow meth_ids in_ty in_ty' cmd_ty trim_code core_cmd
in
returnDs (bindCmdEnv meth_ids arg_code, free_vars)
-- Given A | xs |- c :: [ts] t, builds c with xs fed back.
-- Typically needs to be prefixed with arr (\p -> ((xs)*ts))
dsfixCmd
:: DsCmdEnv -- arrow combinators
-> IdSet -- set of local vars available to this command
-> [Type] -- type of the stack
-> Type -- return type of the command
-> LHsCmd Id -- command to desugar
-> DsM (CoreExpr, -- desugared expression
IdSet, -- set of local vars that occur free
[Id]) -- set as a list, fed back
dsfixCmd ids local_vars stack cmd_ty cmd
= fixDs (\ ~(_,_,env_ids') ->
dsLCmd ids local_vars env_ids' stack cmd_ty cmd
`thenDs` \ (core_cmd, free_vars) ->
returnDs (core_cmd, free_vars, varSetElems free_vars))
\end{code}
Translation of command judgements of the form
A | xs |- do { ss } :: [] t
\begin{code}
dsCmdDo :: DsCmdEnv -- arrow combinators
-> IdSet -- set of local vars available to this statement
-> [Id] -- list of vars in the input to this statement
-- This is typically fed back,
-- so don't pull on it too early
-> Type -- return type of the statement
-> [LStmt Id] -- statements to desugar
-> LHsExpr Id -- body
-> DsM (CoreExpr, -- desugared expression
IdSet) -- set of local vars that occur free
-- A | xs |- c :: [] t
-- --------------------------
-- A | xs |- do { c } :: [] t
dsCmdDo ids local_vars env_ids res_ty [] body
= dsLCmd ids local_vars env_ids [] res_ty body
dsCmdDo ids local_vars env_ids res_ty (stmt:stmts) body
= let
bound_vars = mkVarSet (map unLoc (collectLStmtBinders stmt))
local_vars' = local_vars `unionVarSet` bound_vars
in
fixDs (\ ~(_,_,env_ids') ->
dsCmdDo ids local_vars' env_ids' res_ty stmts body
`thenDs` \ (core_stmts, fv_stmts) ->
returnDs (core_stmts, fv_stmts, varSetElems fv_stmts))
`thenDs` \ (core_stmts, fv_stmts, env_ids') ->
dsCmdLStmt ids local_vars env_ids env_ids' stmt
`thenDs` \ (core_stmt, fv_stmt) ->
returnDs (do_compose ids
(mkTupleType env_ids)
(mkTupleType env_ids')
res_ty
core_stmt
core_stmts,
fv_stmt)
\end{code}
A statement maps one local environment to another, and is represented
as an arrow from one tuple type to another. A statement sequence is
translated to a composition of such arrows.
\begin{code}
dsCmdLStmt ids local_vars env_ids out_ids cmd
= dsCmdStmt ids local_vars env_ids out_ids (unLoc cmd)
dsCmdStmt
:: DsCmdEnv -- arrow combinators
-> IdSet -- set of local vars available to this statement
-> [Id] -- list of vars in the input to this statement
-- This is typically fed back,
-- so don't pull on it too early
-> [Id] -- list of vars in the output of this statement
-> Stmt Id -- statement to desugar
-> DsM (CoreExpr, -- desugared expression
IdSet) -- set of local vars that occur free
-- A | xs1 |- c :: [] t
-- A | xs' |- do { ss } :: [] t'
-- ------------------------------
-- A | xs |- do { c; ss } :: [] t'
--
-- ---> arr (\ (xs) -> ((xs1),(xs'))) >>> first c >>>
-- arr snd >>> ss
dsCmdStmt ids local_vars env_ids out_ids (ExprStmt cmd _ c_ty)
= dsfixCmd ids local_vars [] c_ty cmd
`thenDs` \ (core_cmd, fv_cmd, env_ids1) ->
matchEnvStack env_ids []
(mkCorePairExpr (mkTupleExpr env_ids1) (mkTupleExpr out_ids))
`thenDs` \ core_mux ->
let
in_ty = mkTupleType env_ids
in_ty1 = mkTupleType env_ids1
out_ty = mkTupleType out_ids
before_c_ty = mkCorePairTy in_ty1 out_ty
after_c_ty = mkCorePairTy c_ty out_ty
in
mkSndExpr c_ty out_ty `thenDs` \ snd_fn ->
returnDs (do_map_arrow ids in_ty before_c_ty out_ty core_mux $
do_compose ids before_c_ty after_c_ty out_ty
(do_first ids in_ty1 c_ty out_ty core_cmd) $
do_arr ids after_c_ty out_ty snd_fn,
extendVarSetList fv_cmd out_ids)
where
-- A | xs1 |- c :: [] t
-- A | xs' |- do { ss } :: [] t' xs2 = xs' - defs(p)
-- -----------------------------------
-- A | xs |- do { p <- c; ss } :: [] t'
--
-- ---> arr (\ (xs) -> ((xs1),(xs2))) >>> first c >>>
-- arr (\ (p, (xs2)) -> (xs')) >>> ss
--
-- It would be simpler and more consistent to do this using second,
-- but that's likely to be defined in terms of first.
dsCmdStmt ids local_vars env_ids out_ids (BindStmt pat cmd _ _)
= dsfixCmd ids local_vars [] (hsLPatType pat) cmd
`thenDs` \ (core_cmd, fv_cmd, env_ids1) ->
let
pat_ty = hsLPatType pat
pat_vars = mkVarSet (collectPatBinders pat)
env_ids2 = varSetElems (mkVarSet out_ids `minusVarSet` pat_vars)
env_ty2 = mkTupleType env_ids2
in
-- multiplexing function
-- \ (xs) -> ((xs1),(xs2))
matchEnvStack env_ids []
(mkCorePairExpr (mkTupleExpr env_ids1) (mkTupleExpr env_ids2))
`thenDs` \ core_mux ->
-- projection function
-- \ (p, (xs2)) -> (zs)
newSysLocalDs env_ty2 `thenDs` \ env_id ->
newUniqueSupply `thenDs` \ uniqs ->
let
after_c_ty = mkCorePairTy pat_ty env_ty2
out_ty = mkTupleType out_ids
body_expr = coreCaseTuple uniqs env_id env_ids2 (mkTupleExpr out_ids)
in
mkFailExpr (StmtCtxt DoExpr) out_ty `thenDs` \ fail_expr ->
selectSimpleMatchVarL pat `thenDs` \ pat_id ->
matchSimply (Var pat_id) (StmtCtxt DoExpr) pat body_expr fail_expr
`thenDs` \ match_code ->
newSysLocalDs after_c_ty `thenDs` \ pair_id ->
let
proj_expr = Lam pair_id (coreCasePair pair_id pat_id env_id match_code)
in
-- put it all together
let
in_ty = mkTupleType env_ids
in_ty1 = mkTupleType env_ids1
in_ty2 = mkTupleType env_ids2
before_c_ty = mkCorePairTy in_ty1 in_ty2
in
returnDs (do_map_arrow ids in_ty before_c_ty out_ty core_mux $
do_compose ids before_c_ty after_c_ty out_ty
(do_first ids in_ty1 pat_ty in_ty2 core_cmd) $
do_arr ids after_c_ty out_ty proj_expr,
fv_cmd `unionVarSet` (mkVarSet out_ids `minusVarSet` pat_vars))
-- A | xs' |- do { ss } :: [] t
-- --------------------------------------
-- A | xs |- do { let binds; ss } :: [] t
--
-- ---> arr (\ (xs) -> let binds in (xs')) >>> ss
dsCmdStmt ids local_vars env_ids out_ids (LetStmt binds)
-- build a new environment using the let bindings
= dsLocalBinds binds (mkTupleExpr out_ids) `thenDs` \ core_binds ->
-- match the old environment against the input
matchEnvStack env_ids [] core_binds `thenDs` \ core_map ->
returnDs (do_arr ids
(mkTupleType env_ids)
(mkTupleType out_ids)
core_map,
exprFreeVars core_binds `intersectVarSet` local_vars)
-- A | ys |- do { ss; returnA -< ((xs1), (ys2)) } :: [] ...
-- A | xs' |- do { ss' } :: [] t
-- ------------------------------------
-- A | xs |- do { rec ss; ss' } :: [] t
--
-- xs1 = xs' /\ defs(ss)
-- xs2 = xs' - defs(ss)
-- ys1 = ys - defs(ss)
-- ys2 = ys /\ defs(ss)
--
-- ---> arr (\(xs) -> ((ys1),(xs2))) >>>
-- first (loop (arr (\((ys1),~(ys2)) -> (ys)) >>> ss)) >>>
-- arr (\((xs1),(xs2)) -> (xs')) >>> ss'
dsCmdStmt ids local_vars env_ids out_ids (RecStmt stmts later_ids rec_ids rhss binds)
= let -- ToDo: ****** binds not desugared; ROSS PLEASE FIX ********
env2_id_set = mkVarSet out_ids `minusVarSet` mkVarSet later_ids
env2_ids = varSetElems env2_id_set
env2_ty = mkTupleType env2_ids
in
-- post_loop_fn = \((later_ids),(env2_ids)) -> (out_ids)
newUniqueSupply `thenDs` \ uniqs ->
newSysLocalDs env2_ty `thenDs` \ env2_id ->
let
later_ty = mkTupleType later_ids
post_pair_ty = mkCorePairTy later_ty env2_ty
post_loop_body = coreCaseTuple uniqs env2_id env2_ids (mkTupleExpr out_ids)
in
matchEnvStack later_ids [env2_id] post_loop_body
`thenDs` \ post_loop_fn ->
--- loop (...)
dsRecCmd ids local_vars stmts later_ids rec_ids rhss
`thenDs` \ (core_loop, env1_id_set, env1_ids) ->
-- pre_loop_fn = \(env_ids) -> ((env1_ids),(env2_ids))
let
env1_ty = mkTupleType env1_ids
pre_pair_ty = mkCorePairTy env1_ty env2_ty
pre_loop_body = mkCorePairExpr (mkTupleExpr env1_ids)
(mkTupleExpr env2_ids)
in
matchEnvStack env_ids [] pre_loop_body
`thenDs` \ pre_loop_fn ->
-- arr pre_loop_fn >>> first (loop (...)) >>> arr post_loop_fn
let
env_ty = mkTupleType env_ids
out_ty = mkTupleType out_ids
core_body = do_map_arrow ids env_ty pre_pair_ty out_ty
pre_loop_fn
(do_compose ids pre_pair_ty post_pair_ty out_ty
(do_first ids env1_ty later_ty env2_ty
core_loop)
(do_arr ids post_pair_ty out_ty
post_loop_fn))
in
returnDs (core_body, env1_id_set `unionVarSet` env2_id_set)
-- loop (arr (\ ((env1_ids), ~(rec_ids)) -> (env_ids)) >>>
-- ss >>>
-- arr (\ (out_ids) -> ((later_ids),(rhss))) >>>
dsRecCmd ids local_vars stmts later_ids rec_ids rhss
= let
rec_id_set = mkVarSet rec_ids
out_ids = varSetElems (mkVarSet later_ids `unionVarSet` rec_id_set)
out_ty = mkTupleType out_ids
local_vars' = local_vars `unionVarSet` rec_id_set
in
-- mk_pair_fn = \ (out_ids) -> ((later_ids),(rhss))
mappM dsExpr rhss `thenDs` \ core_rhss ->
let
later_tuple = mkTupleExpr later_ids
later_ty = mkTupleType later_ids
rec_tuple = mkBigCoreTup core_rhss
rec_ty = mkTupleType rec_ids
out_pair = mkCorePairExpr later_tuple rec_tuple
out_pair_ty = mkCorePairTy later_ty rec_ty
in
matchEnvStack out_ids [] out_pair
`thenDs` \ mk_pair_fn ->
-- ss
dsfixCmdStmts ids local_vars' out_ids stmts
`thenDs` \ (core_stmts, fv_stmts, env_ids) ->
-- squash_pair_fn = \ ((env1_ids), ~(rec_ids)) -> (env_ids)
newSysLocalDs rec_ty `thenDs` \ rec_id ->
let
env1_id_set = fv_stmts `minusVarSet` rec_id_set
env1_ids = varSetElems env1_id_set
env1_ty = mkTupleType env1_ids
in_pair_ty = mkCorePairTy env1_ty rec_ty
core_body = mkBigCoreTup (map selectVar env_ids)
where
selectVar v
| v `elemVarSet` rec_id_set
= mkTupleSelector rec_ids v rec_id (Var rec_id)
| otherwise = Var v
in
matchEnvStack env1_ids [rec_id] core_body
`thenDs` \ squash_pair_fn ->
-- loop (arr squash_pair_fn >>> ss >>> arr mk_pair_fn)
let
env_ty = mkTupleType env_ids
core_loop = do_loop ids env1_ty later_ty rec_ty
(do_map_arrow ids in_pair_ty env_ty out_pair_ty
squash_pair_fn
(do_compose ids env_ty out_ty out_pair_ty
core_stmts
(do_arr ids out_ty out_pair_ty mk_pair_fn)))
in
returnDs (core_loop, env1_id_set, env1_ids)
\end{code}
A sequence of statements (as in a rec) is desugared to an arrow between
two environments
\begin{code}
dsfixCmdStmts
:: DsCmdEnv -- arrow combinators
-> IdSet -- set of local vars available to this statement
-> [Id] -- output vars of these statements
-> [LStmt Id] -- statements to desugar
-> DsM (CoreExpr, -- desugared expression
IdSet, -- set of local vars that occur free
[Id]) -- input vars
dsfixCmdStmts ids local_vars out_ids stmts
= fixDs (\ ~(_,_,env_ids) ->
dsCmdStmts ids local_vars env_ids out_ids stmts
`thenDs` \ (core_stmts, fv_stmts) ->
returnDs (core_stmts, fv_stmts, varSetElems fv_stmts))
dsCmdStmts
:: DsCmdEnv -- arrow combinators
-> IdSet -- set of local vars available to this statement
-> [Id] -- list of vars in the input to these statements
-> [Id] -- output vars of these statements
-> [LStmt Id] -- statements to desugar
-> DsM (CoreExpr, -- desugared expression
IdSet) -- set of local vars that occur free
dsCmdStmts ids local_vars env_ids out_ids [stmt]
= dsCmdLStmt ids local_vars env_ids out_ids stmt
dsCmdStmts ids local_vars env_ids out_ids (stmt:stmts)
= let
bound_vars = mkVarSet (map unLoc (collectLStmtBinders stmt))
local_vars' = local_vars `unionVarSet` bound_vars
in
dsfixCmdStmts ids local_vars' out_ids stmts
`thenDs` \ (core_stmts, fv_stmts, env_ids') ->
dsCmdLStmt ids local_vars env_ids env_ids' stmt
`thenDs` \ (core_stmt, fv_stmt) ->
returnDs (do_compose ids
(mkTupleType env_ids)
(mkTupleType env_ids')
(mkTupleType out_ids)
core_stmt
core_stmts,
fv_stmt)
\end{code}
Match a list of expressions against a list of patterns, left-to-right.
\begin{code}
matchSimplys :: [CoreExpr] -- Scrutinees
-> HsMatchContext Name -- Match kind
-> [LPat Id] -- Patterns they should match
-> CoreExpr -- Return this if they all match
-> CoreExpr -- Return this if they don't
-> DsM CoreExpr
matchSimplys [] _ctxt [] result_expr _fail_expr = returnDs result_expr
matchSimplys (exp:exps) ctxt (pat:pats) result_expr fail_expr
= matchSimplys exps ctxt pats result_expr fail_expr
`thenDs` \ match_code ->
matchSimply exp ctxt pat match_code fail_expr
\end{code}
List of leaf expressions, with set of variables bound in each
\begin{code}
leavesMatch :: LMatch Id -> [(LHsExpr Id, IdSet)]
leavesMatch (L _ (Match pats _ (GRHSs grhss binds)))
= let
defined_vars = mkVarSet (collectPatsBinders pats)
`unionVarSet`
mkVarSet (map unLoc (collectLocalBinders binds))
in
[(expr,
mkVarSet (map unLoc (collectLStmtsBinders stmts))
`unionVarSet` defined_vars)
| L _ (GRHS stmts expr) <- grhss]
\end{code}
Replace the leaf commands in a match
\begin{code}
replaceLeavesMatch
:: Type -- new result type
-> [LHsExpr Id] -- replacement leaf expressions of that type
-> LMatch Id -- the matches of a case command
-> ([LHsExpr Id],-- remaining leaf expressions
LMatch Id) -- updated match
replaceLeavesMatch res_ty leaves (L loc (Match pat mt (GRHSs grhss binds)))
= let
(leaves', grhss') = mapAccumL replaceLeavesGRHS leaves grhss
in
(leaves', L loc (Match pat mt (GRHSs grhss' binds)))
replaceLeavesGRHS
:: [LHsExpr Id] -- replacement leaf expressions of that type
-> LGRHS Id -- rhss of a case command
-> ([LHsExpr Id],-- remaining leaf expressions
LGRHS Id) -- updated GRHS
replaceLeavesGRHS (leaf:leaves) (L loc (GRHS stmts rhs))
= (leaves, L loc (GRHS stmts leaf))
\end{code}
Balanced fold of a non-empty list.
\begin{code}
foldb :: (a -> a -> a) -> [a] -> a
foldb _ [] = error "foldb of empty list"
foldb _ [x] = x
foldb f xs = foldb f (fold_pairs xs)
where
fold_pairs [] = []
fold_pairs [x] = [x]
fold_pairs (x1:x2:xs) = f x1 x2:fold_pairs xs
\end{code}
The following functions to collect value variables from patterns are
copied from HsUtils, with one change: we also collect the dictionary
bindings (pat_binds) from ConPatOut. We need them for cases like
h :: Arrow a => Int -> a (Int,Int) Int
h x = proc (y,z) -> case compare x y of
GT -> returnA -< z+x
The type checker turns the case into
case compare x y of
GT { p77 = plusInt } -> returnA -< p77 z x
Here p77 is a local binding for the (+) operation.
See comments in HsUtils for why the other version does not include
these bindings.
\begin{code}
collectPatBinders :: LPat a -> [a]
collectPatBinders pat = map unLoc (collectLocatedPatBinders pat)
collectLocatedPatBinders :: LPat a -> [Located a]
collectLocatedPatBinders pat = collectl pat []
collectPatsBinders :: [LPat a] -> [a]
collectPatsBinders pats = map unLoc (collectLocatedPatsBinders pats)
collectLocatedPatsBinders :: [LPat a] -> [Located a]
collectLocatedPatsBinders pats = foldr collectl [] pats
---------------------
collectl (L l pat) bndrs
= go pat
where
go (VarPat var) = L l var : bndrs
go (VarPatOut var bs) = L l var : collectHsBindLocatedBinders bs
++ bndrs
go (WildPat _) = bndrs
go (LazyPat pat) = collectl pat bndrs
go (BangPat pat) = collectl pat bndrs
go (AsPat a pat) = a : collectl pat bndrs
go (ParPat pat) = collectl pat bndrs
go (ListPat pats _) = foldr collectl bndrs pats
go (PArrPat pats _) = foldr collectl bndrs pats
go (TuplePat pats _ _) = foldr collectl bndrs pats
go (ConPatIn c ps) = foldr collectl bndrs (hsConPatArgs ps)
go (ConPatOut {pat_args=ps, pat_binds=ds}) =
collectHsBindLocatedBinders ds
++ foldr collectl bndrs (hsConPatArgs ps)
go (LitPat _) = bndrs
go (NPat _ _ _ _) = bndrs
go (NPlusKPat n _ _ _) = n : bndrs
go (SigPatIn pat _) = collectl pat bndrs
go (SigPatOut pat _) = collectl pat bndrs
go (TypePat ty) = bndrs
go (CoPat _ pat ty) = collectl (noLoc pat) bndrs
\end{code}
|