1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
|
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
Pattern-matching bindings (HsBinds and MonoBinds)
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
\begin{code}
{-# LANGUAGE CPP #-}
{-# OPTIONS_GHC -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
-- http://ghc.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
dsHsWrapper, dsTcEvBinds, dsEvBinds
) where
#include "HsVersions.h"
import {-# SOURCE #-} DsExpr( dsLExpr )
import {-# SOURCE #-} Match( matchWrapper )
import DsMonad
import DsGRHSs
import DsUtils
import HsSyn -- lots of things
import CoreSyn -- lots of things
import Literal ( Literal(MachStr) )
import CoreSubst
import MkCore
import CoreUtils
import CoreArity ( etaExpand )
import CoreUnfold
import CoreFVs
import UniqSupply
import Unique( Unique )
import Digraph
import TyCon ( isTupleTyCon, tyConDataCons_maybe )
import TcEvidence
import TcType
import Type
import Coercion hiding (substCo)
import TysWiredIn ( eqBoxDataCon, coercibleDataCon, tupleCon )
import Id
import Class
import DataCon ( dataConWorkId )
import Name
import MkId ( seqId )
import Var
import VarSet
import Rules
import VarEnv
import Outputable
import SrcLoc
import Maybes
import OrdList
import Bag
import BasicTypes hiding ( TopLevel )
import DynFlags
import FastString
import ErrUtils( MsgDoc )
import ListSetOps( getNth )
import Util
import Control.Monad( when )
import MonadUtils
import Control.Monad(liftM)
\end{code}
%************************************************************************
%* *
\subsection[dsMonoBinds]{Desugaring a @MonoBinds@}
%* *
%************************************************************************
\begin{code}
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
dsTopLHsBinds binds = ds_lhs_binds binds
dsLHsBinds :: LHsBinds Id -> DsM [(Id,CoreExpr)]
dsLHsBinds binds = do { binds' <- ds_lhs_binds binds
; return (fromOL binds') }
------------------------
ds_lhs_binds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
ds_lhs_binds binds = do { ds_bs <- mapBagM dsLHsBind binds
; return (foldBag appOL id nilOL ds_bs) }
dsLHsBind :: LHsBind Id -> DsM (OrdList (Id,CoreExpr))
dsLHsBind (L loc bind) = putSrcSpanDs loc $ dsHsBind bind
dsHsBind :: HsBind Id -> DsM (OrdList (Id,CoreExpr))
dsHsBind (VarBind { var_id = var, var_rhs = expr, var_inline = inline_regardless })
= do { dflags <- getDynFlags
; core_expr <- dsLExpr expr
-- Dictionary bindings are always VarBinds,
-- so we only need do this here
; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
| otherwise = var
; return (unitOL (makeCorePair dflags var' False 0 core_expr)) }
dsHsBind (FunBind { fun_id = L _ fun, fun_matches = matches
, fun_co_fn = co_fn, fun_tick = tick
, fun_infix = inf })
= do { dflags <- getDynFlags
; (args, body) <- matchWrapper (FunRhs (idName fun) inf) matches
; let body' = mkOptTickBox tick body
; rhs <- dsHsWrapper co_fn (mkLams args body')
; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
return (unitOL (makeCorePair dflags fun False 0 rhs)) }
dsHsBind (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
, pat_ticks = (rhs_tick, var_ticks) })
= do { body_expr <- dsGuarded grhss ty
; let body' = mkOptTickBox rhs_tick body_expr
; sel_binds <- mkSelectorBinds var_ticks pat body'
-- We silently ignore inline pragmas; no makeCorePair
-- Not so cool, but really doesn't matter
; return (toOL sel_binds) }
-- A common case: one exported variable
-- Non-recursive bindings come through this way
-- So do self-recursive bindings, and recursive bindings
-- that have been chopped up with type signatures
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
, abs_exports = [export]
, abs_ev_binds = ev_binds, abs_binds = binds })
| ABE { abe_wrap = wrap, abe_poly = global
, abe_mono = local, abe_prags = prags } <- export
= do { dflags <- getDynFlags
; bind_prs <- ds_lhs_binds binds
; let core_bind = Rec (fromOL bind_prs)
; ds_binds <- dsTcEvBinds ev_binds
; rhs <- dsHsWrapper wrap $ -- Usually the identity
mkLams tyvars $ mkLams dicts $
mkCoreLets ds_binds $
Let core_bind $
Var local
; (spec_binds, rules) <- dsSpecs rhs prags
; let global' = addIdSpecialisations global rules
main_bind = makeCorePair dflags global' (isDefaultMethod prags)
(dictArity dicts) rhs
; return (main_bind `consOL` spec_binds) }
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
, abs_exports = exports, abs_ev_binds = ev_binds
, abs_binds = binds })
-- See Note [Desugaring AbsBinds]
= do { dflags <- getDynFlags
; bind_prs <- ds_lhs_binds binds
; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
| (lcl_id, rhs) <- fromOL bind_prs ]
-- Monomorphic recursion possible, hence Rec
locals = map abe_mono exports
tup_expr = mkBigCoreVarTup locals
tup_ty = exprType tup_expr
; ds_binds <- dsTcEvBinds ev_binds
; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
mkCoreLets ds_binds $
Let core_bind $
tup_expr
; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
; let mk_bind (ABE { abe_wrap = wrap, abe_poly = global
, abe_mono = local, abe_prags = spec_prags })
= do { tup_id <- newSysLocalDs tup_ty
; rhs <- dsHsWrapper wrap $
mkLams tyvars $ mkLams dicts $
mkTupleSelector locals local tup_id $
mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
; let global' = (global `setInlinePragma` defaultInlinePragma)
`addIdSpecialisations` rules
-- Kill the INLINE pragma because it applies to
-- the user written (local) function. The global
-- Id is just the selector. Hmm.
; return ((global', rhs) `consOL` spec_binds) }
; export_binds_s <- mapM mk_bind exports
; return ((poly_tup_id, poly_tup_rhs) `consOL`
concatOL export_binds_s) }
where
inline_env :: IdEnv Id -- Maps a monomorphic local Id to one with
-- the inline pragma from the source
-- The type checker put the inline pragma
-- on the *global* Id, so we need to transfer it
inline_env = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
| ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
, let prag = idInlinePragma gbl_id ]
add_inline :: Id -> Id -- tran
add_inline lcl_id = lookupVarEnv inline_env lcl_id `orElse` lcl_id
dsHsBind (PatSynBind{}) = panic "dsHsBind: PatSynBind"
------------------------
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
| is_default_method -- Default methods are *always* inlined
= (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)
| otherwise
= case inlinePragmaSpec inline_prag of
EmptyInlineSpec -> (gbl_id, rhs)
NoInline -> (gbl_id, rhs)
Inlinable -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
Inline -> inline_pair
where
inline_prag = idInlinePragma gbl_id
inlinable_unf = mkInlinableUnfolding dflags rhs
inline_pair
| Just arity <- inlinePragmaSat inline_prag
-- Add an Unfolding for an INLINE (but not for NOINLINE)
-- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
, let real_arity = dict_arity + arity
-- NB: The arity in the InlineRule takes account of the dictionaries
= ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
, etaExpand real_arity rhs)
| otherwise
= pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
(gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
\end{code}
[Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~
In the general AbsBinds case we desugar the binding to this:
tup a (d:Num a) = let fm = ...gm...
gm = ...fm...
in (fm,gm)
f a d = case tup a d of { (fm,gm) -> fm }
g a d = case tup a d of { (fm,gm) -> fm }
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
f_lcl = ...f_lcl... -- The "binds" from AbsBinds
M.f = f_lcl -- Generated from "exports"
But we don't want that, because if M.f isn't exported,
it'll be inlined unconditionally at every call site (its rhs is
trivial). That would be ok unless it has RULES, which would
thereby be completely lost. Bad, bad, bad.
Instead we want to generate
M.f = ...f_lcl...
f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
and f_lcl is rapidly inlined away.
This does not happen in the same way to polymorphic binds,
because they desugar to
M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
Although I'm a bit worried about whether full laziness might
float the f_lcl binding out and then inline M.f at its call site
Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
AbsBinds [] [] [( ... spec-prag]
{ AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:
class (Real a, Fractional a) => RealFrac a where
round :: (Integral b) => a -> b
instance RealFrac Float where
{-# SPECIALIZE round :: Float -> Int #-}
The top-level AbsBinds for $cround has no tyvars or dicts (because the
instance does not). But the method is locally overloaded!
Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take
AbsBinds [a,b] [ ([a,b], fg, fl, _),
([b], gg, gl, _) ]
{ fl = e1
gl = e2
h = e3 }
and desugar it to
fg = /\ab. let B in e1
gg = /\b. let a = () in let B in S(e2)
h = /\ab. let B in e3
where B is the *non-recursive* binding
fl = fg a b
gl = gg b
h = h a b -- See (b); note shadowing!
Notice (a) g has a different number of type variables to f, so we must
use the mkArbitraryType thing to fill in the gaps.
We use a type-let to do that.
(b) The local variable h isn't in the exports, and rather than
clone a fresh copy we simply replace h by (h a b), where
the two h's have different types! Shadowing happens here,
which looks confusing but works fine.
(c) The result is *still* quadratic-sized if there are a lot of
small bindings. So if there are more than some small
number (10), we filter the binding set B by the free
variables of the particular RHS. Tiresome.
Why got to this trouble? It's a common case, and it removes the
quadratic-sized tuple desugaring. Less clutter, hopefullly faster
compilation, especially in a case where there are a *lot* of
bindings.
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
foo :: Eq a => a -> a
{-# INLINE foo #-}
foo x = ...
If (foo d) ever gets floated out as a common sub-expression (which can
happen as a result of method sharing), there's a danger that we never
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!
To avoid this we pre-emptively eta-expand the definition, so that foo
has the arity with which it is declared in the source code. In this
example it has arity 2 (one for the Eq and one for x). Doing this
should mean that (foo d) is a PAP and we don't share it.
Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
For reasons that are not entirely clear, method bindings come out looking like
this:
AbsBinds [] [] [$cfromT <= [] fromT]
$cfromT [InlPrag=INLINE] :: T Bool -> Bool
{ AbsBinds [] [] [fromT <= [] fromT_1]
fromT :: T Bool -> Bool
{ fromT_1 ((TBool b)) = not b } } }
Note the nested AbsBind. The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.
It might be better to have just one level of AbsBinds, but that requires more
thought!
Note [Implementing SPECIALISE pragmas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Example:
f :: (Eq a, Ix b) => a -> b -> Bool
{-# SPECIALISE f :: (Ix p, Ix q) => Int -> (p,q) -> Bool #-}
f = <poly_rhs>
From this the typechecker generates
AbsBinds [ab] [d1,d2] [([ab], f, f_mono, prags)] binds
SpecPrag (wrap_fn :: forall a b. (Eq a, Ix b) => XXX
-> forall p q. (Ix p, Ix q) => XXX[ Int/a, (p,q)/b ])
Note that wrap_fn can transform *any* function with the right type prefix
forall ab. (Eq a, Ix b) => XXX
regardless of XXX. It's sort of polymorphic in XXX. This is
useful: we use the same wrapper to transform each of the class ops, as
well as the dict.
From these we generate:
Rule: forall p, q, (dp:Ix p), (dq:Ix q).
f Int (p,q) dInt ($dfInPair dp dq) = f_spec p q dp dq
Spec bind: f_spec = wrap_fn <poly_rhs>
Note that
* The LHS of the rule may mention dictionary *expressions* (eg
$dfIxPair dp dq), and that is essential because the dp, dq are
needed on the RHS.
* The RHS of f_spec, <poly_rhs> has a *copy* of 'binds', so that it
can fully specialise it.
\begin{code}
------------------------
dsSpecs :: CoreExpr -- Its rhs
-> TcSpecPrags
-> DsM ( OrdList (Id,CoreExpr) -- Binding for specialised Ids
, [CoreRule] ) -- Rules for the Global Ids
-- See Note [Implementing SPECIALISE pragmas]
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
= do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
; let (spec_binds_s, rules) = unzip pairs
; return (concatOL spec_binds_s, rules) }
dsSpec :: Maybe CoreExpr -- Just rhs => RULE is for a local binding
-- Nothing => RULE is for an imported Id
-- rhs is in the Id's unfolding
-> Located TcSpecPrag
-> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
| isJust (isClassOpId_maybe poly_id)
= putSrcSpanDs loc $
do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector")
<+> quotes (ppr poly_id))
; return Nothing } -- There is no point in trying to specialise a class op
-- Moreover, classops don't (currently) have an inl_sat arity set
-- (it would be Just 0) and that in turn makes makeCorePair bleat
| no_act_spec && isNeverActive rule_act
= putSrcSpanDs loc $
do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:")
<+> quotes (ppr poly_id))
; return Nothing } -- Function is NOINLINE, and the specialiation inherits that
-- See Note [Activation pragmas for SPECIALISE]
| otherwise
= putSrcSpanDs loc $
do { uniq <- newUnique
; let poly_name = idName poly_id
spec_occ = mkSpecOcc (getOccName poly_name)
spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
; (bndrs, ds_lhs) <- liftM collectBinders
(dsHsWrapper spec_co (Var poly_id))
; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
; case decomposeRuleLhs bndrs ds_lhs of {
Left msg -> do { warnDs msg; return Nothing } ;
Right (rule_bndrs, _fn, args) -> do
{ dflags <- getDynFlags
; let spec_unf = specUnfolding bndrs args (realIdUnfolding poly_id)
spec_id = mkLocalId spec_name spec_ty
`setInlinePragma` inl_prag
`setIdUnfolding` spec_unf
rule = mkRule False {- Not auto -} is_local_id
(mkFastString ("SPEC " ++ showPpr dflags poly_name))
rule_act poly_name
rule_bndrs args
(mkVarApps (Var spec_id) bndrs)
; spec_rhs <- dsHsWrapper spec_co poly_rhs
; let spec_pair = makeCorePair dflags spec_id False (dictArity bndrs) spec_rhs
; when (isInlinePragma id_inl && wopt Opt_WarnPointlessPragmas dflags)
(warnDs (specOnInline poly_name))
; return (Just (unitOL spec_pair, rule))
} } }
where
is_local_id = isJust mb_poly_rhs
poly_rhs | Just rhs <- mb_poly_rhs
= rhs -- Local Id; this is its rhs
| Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
= unfolding -- Imported Id; this is its unfolding
-- Use realIdUnfolding so we get the unfolding
-- even when it is a loop breaker.
-- We want to specialise recursive functions!
| otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
-- The type checker has checked that it *has* an unfolding
id_inl = idInlinePragma poly_id
-- See Note [Activation pragmas for SPECIALISE]
inl_prag | not (isDefaultInlinePragma spec_inl) = spec_inl
| not is_local_id -- See Note [Specialising imported functions]
-- in OccurAnal
, isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
| otherwise = id_inl
-- Get the INLINE pragma from SPECIALISE declaration, or,
-- failing that, from the original Id
spec_prag_act = inlinePragmaActivation spec_inl
-- See Note [Activation pragmas for SPECIALISE]
-- no_act_spec is True if the user didn't write an explicit
-- phase specification in the SPECIALISE pragma
no_act_spec = case inlinePragmaSpec spec_inl of
NoInline -> isNeverActive spec_prag_act
_ -> isAlwaysActive spec_prag_act
rule_act | no_act_spec = inlinePragmaActivation id_inl -- Inherit
| otherwise = spec_prag_act -- Specified by user
specUnfolding :: [Var] -> [CoreExpr] -> Unfolding -> Unfolding
specUnfolding new_bndrs new_args df@(DFunUnfolding { df_bndrs = bndrs, df_args = args })
= ASSERT2( equalLength new_args bndrs, ppr df $$ ppr new_args $$ ppr new_bndrs )
df { df_bndrs = new_bndrs, df_args = map (substExpr (text "specUnfolding") subst) args }
where
subst = mkOpenSubst (mkInScopeSet fvs) (bndrs `zip` new_args)
fvs = (exprsFreeVars args `delVarSetList` bndrs) `extendVarSetList` new_bndrs
specUnfolding _ _ _ = noUnfolding
specOnInline :: Name -> MsgDoc
specOnInline f = ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:")
<+> quotes (ppr f)
\end{code}
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
a) A top-level binding spec_fn = rhs
b) A RULE f dOrd = spec_fn
We need two pragma-like things:
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
activation on SPEC), unless overriden by SPEC INLINE
* Activation of RULE: from SPECIALISE pragma (if activation given)
otherwise from f's inline pragma
This is not obvious (see Trac #5237)!
Examples Rule activation Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty [n] Always, or NOINLINE [n]
copy f's prag
NOINLINE f
SPEC [n] f :: ty [n] NOINLINE
copy f's prag
NOINLINE [k] f
SPEC [n] f :: ty [n] NOINLINE [k]
copy f's prag
INLINE [k] f
SPEC [n] f :: ty [n] INLINE [k]
copy f's prag
SPEC INLINE [n] f :: ty [n] INLINE [n]
(ignore INLINE prag on f,
same activation for rule and spec'd fn)
NOINLINE [k] f
SPEC f :: ty [n] INLINE [k]
%************************************************************************
%* *
\subsection{Adding inline pragmas}
%* *
%************************************************************************
\begin{code}
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
-- may add some extra dictionary binders (see Note [Constant rule dicts])
--
-- Returns Nothing if the LHS isn't of the expected shape
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
| not (null unbound) -- Check for things unbound on LHS
-- See Note [Unused spec binders]
= Left (vcat (map dead_msg unbound))
| Var fn_var <- fun
, not (fn_var `elemVarSet` orig_bndr_set)
= Right (bndrs1, fn_var, args)
| Case scrut bndr ty [(DEFAULT, _, body)] <- fun
, isDeadBinder bndr -- Note [Matching seqId]
, let args' = [Type (idType bndr), Type ty, scrut, body]
= Right (bndrs1, seqId, args' ++ args)
| otherwise
= Left bad_shape_msg
where
lhs1 = drop_dicts orig_lhs
lhs2 = simpleOptExpr lhs1 -- See Note [Simplify rule LHS]
(fun,args) = collectArgs lhs2
lhs_fvs = exprFreeVars lhs2
unbound = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
bndrs1 = orig_bndrs ++ extra_dict_bndrs
orig_bndr_set = mkVarSet orig_bndrs
-- Add extra dict binders: Note [Constant rule dicts]
extra_dict_bndrs = [ mkLocalId (localiseName (idName d)) (idType d)
| d <- varSetElems (lhs_fvs `delVarSetList` orig_bndrs)
, isDictId d ]
bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
, text "Orig lhs:" <+> ppr orig_lhs])
dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
, ptext (sLit "is not bound in RULE lhs")])
2 (ppr lhs2)
pp_bndr bndr
| isTyVar bndr = ptext (sLit "type variable") <+> quotes (ppr bndr)
| Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred)
| otherwise = ptext (sLit "variable") <+> quotes (ppr bndr)
drop_dicts :: CoreExpr -> CoreExpr
drop_dicts (Let (NonRec d rhs) body)
| isDictId d
, not (exprFreeVars rhs `intersectsVarSet` orig_bndr_set)
= drop_dicts body
drop_dicts (Let bnd body) = Let bnd (drop_dicts body)
drop_dicts body = body
\end{code}
Note [Decomposing the left-hand side of a RULE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are several things going on here.
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
* extra_dict_bndrs: see Note [Free rule dicts]
Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
drop_dicts drops dictionary bindings on the LHS where possible.
E.g. let d:Eq [Int] = $fEqList $fEqInt in f d
--> f d
Reasoning here is that there is only one d:Eq [Int], and so we can
quantify over it. That makes 'd' free in the LHS, but that is later
picked up by extra_dict_bndrs (Note [Dead spec binders]).
NB 1: We can only drop the binding if the RHS doesn't bind
one of the orig_bndrs, which we assume occur on RHS.
Example
f :: (Eq a) => b -> a -> a
{-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
Here we want to end up with
RULE forall d:Eq a. f ($dfEqList d) = f_spec d
Of course, the ($dfEqlist d) in the pattern makes it less likely
to match, but ther is no other way to get d:Eq a
NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
the evidence bindings to be wrapped around the outside of the
LHS. (After simplOptExpr they'll usually have been inlined.)
dsHsWrapper does dependency analysis, so that civilised ones
will be simple NonRec bindings. We don't handle recursive
dictionaries!
Trac #8848 is a good example of where there are some intersting
dictionary bindings to discard.
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:
(a) Inline any remaining dictionary bindings (which hopefully
occur just once)
(b) Substitute trivial lets so that they don't get in the way
Note that we substitute the function too; we might
have this as a LHS: let f71 = M.f Int in f71
(c) Do eta reduction. To see why, consider the fold/build rule,
which without simplification looked like:
fold k z (build (/\a. g a)) ==> ...
This doesn't match unless you do eta reduction on the build argument.
Similarly for a LHS like
augment g (build h)
we do not want to get
augment (\a. g a) (build h)
otherwise we don't match when given an argument like
augment (\a. h a a) (build h)
Note [Matching seqId]
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
and this code turns it back into an application of seq!
See Note [Rules for seq] in MkId for the details.
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
f :: a -> a
{-# SPECIALISE f :: Eq a => a -> a #-}
It's true that this *is* a more specialised type, but the rule
we get is something like this:
f_spec d = f
RULE: f = f_spec d
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS! But it's a silly specialisation anyway, because
the constraint is unused. We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake. That's what the isDeadBinder call detects.
Note [Free dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
over it too. *Any* dict with that type will do.
So for example when you have
f :: Eq a => a -> a
f = <rhs>
{-# SPECIALISE f :: Int -> Int #-}
Then we get the SpecPrag
SpecPrag (f Int dInt)
And from that we want the rule
RULE forall dInt. f Int dInt = f_spec
f_spec = let f = <rhs> in f Int dInt
But be careful! That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused. Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.
%************************************************************************
%* *
Desugaring evidence
%* *
%************************************************************************
\begin{code}
dsHsWrapper :: HsWrapper -> CoreExpr -> DsM CoreExpr
dsHsWrapper WpHole e = return e
dsHsWrapper (WpTyApp ty) e = return $ App e (Type ty)
dsHsWrapper (WpLet ev_binds) e = do bs <- dsTcEvBinds ev_binds
return (mkCoreLets bs e)
dsHsWrapper (WpCompose c1 c2) e = dsHsWrapper c1 =<< dsHsWrapper c2 e
dsHsWrapper (WpCast co) e = ASSERT(tcCoercionRole co == Representational)
dsTcCoercion co (mkCast e)
dsHsWrapper (WpEvLam ev) e = return $ Lam ev e
dsHsWrapper (WpTyLam tv) e = return $ Lam tv e
dsHsWrapper (WpEvApp evtrm) e = liftM (App e) (dsEvTerm evtrm)
--------------------------------------
dsTcEvBinds :: TcEvBinds -> DsM [CoreBind]
dsTcEvBinds (TcEvBinds {}) = panic "dsEvBinds" -- Zonker has got rid of this
dsTcEvBinds (EvBinds bs) = dsEvBinds bs
dsEvBinds :: Bag EvBind -> DsM [CoreBind]
dsEvBinds bs = mapM ds_scc (sccEvBinds bs)
where
ds_scc (AcyclicSCC (EvBind v r)) = liftM (NonRec v) (dsEvTerm r)
ds_scc (CyclicSCC bs) = liftM Rec (mapM ds_pair bs)
ds_pair (EvBind v r) = liftM ((,) v) (dsEvTerm r)
sccEvBinds :: Bag EvBind -> [SCC EvBind]
sccEvBinds bs = stronglyConnCompFromEdgedVertices edges
where
edges :: [(EvBind, EvVar, [EvVar])]
edges = foldrBag ((:) . mk_node) [] bs
mk_node :: EvBind -> (EvBind, EvVar, [EvVar])
mk_node b@(EvBind var term) = (b, var, varSetElems (evVarsOfTerm term))
---------------------------------------
dsEvTerm :: EvTerm -> DsM CoreExpr
dsEvTerm (EvId v) = return (Var v)
dsEvTerm (EvCast tm co)
= do { tm' <- dsEvTerm tm
; dsTcCoercion co $ mkCast tm' }
-- 'v' is always a lifted evidence variable so it is
-- unnecessary to call varToCoreExpr v here.
dsEvTerm (EvDFunApp df tys tms) = do { tms' <- mapM dsEvTerm tms
; return (Var df `mkTyApps` tys `mkApps` tms') }
dsEvTerm (EvCoercion (TcCoVarCo v)) = return (Var v) -- See Note [Simple coercions]
dsEvTerm (EvCoercion co) = dsTcCoercion co mkEqBox
dsEvTerm (EvTupleSel v n)
= do { tm' <- dsEvTerm v
; let scrut_ty = exprType tm'
(tc, tys) = splitTyConApp scrut_ty
Just [dc] = tyConDataCons_maybe tc
xs = mkTemplateLocals tys
the_x = getNth xs n
; ASSERT( isTupleTyCon tc )
return $
Case tm' (mkWildValBinder scrut_ty) (idType the_x) [(DataAlt dc, xs, Var the_x)] }
dsEvTerm (EvTupleMk tms)
= do { tms' <- mapM dsEvTerm tms
; let tys = map exprType tms'
; return $ Var (dataConWorkId dc) `mkTyApps` tys `mkApps` tms' }
where
dc = tupleCon ConstraintTuple (length tms)
dsEvTerm (EvSuperClass d n)
= do { d' <- dsEvTerm d
; let (cls, tys) = getClassPredTys (exprType d')
sc_sel_id = classSCSelId cls n -- Zero-indexed
; return $ Var sc_sel_id `mkTyApps` tys `App` d' }
where
dsEvTerm (EvDelayedError ty msg) = return $ Var errorId `mkTyApps` [ty] `mkApps` [litMsg]
where
errorId = rUNTIME_ERROR_ID
litMsg = Lit (MachStr (fastStringToByteString msg))
dsEvTerm (EvLit l) =
case l of
EvNum n -> mkIntegerExpr n
EvStr s -> mkStringExprFS s
---------------------------------------
dsTcCoercion :: TcCoercion -> (Coercion -> CoreExpr) -> DsM CoreExpr
-- This is the crucial function that moves
-- from TcCoercions to Coercions; see Note [TcCoercions] in Coercion
-- e.g. dsTcCoercion (trans g1 g2) k
-- = case g1 of EqBox g1# ->
-- case g2 of EqBox g2# ->
-- k (trans g1# g2#)
-- thing_inside will get a coercion at the role requested
dsTcCoercion co thing_inside
= do { us <- newUniqueSupply
; let eqvs_covs :: [(EqVar,CoVar)]
eqvs_covs = zipWith mk_co_var (varSetElems (coVarsOfTcCo co))
(uniqsFromSupply us)
subst = mkCvSubst emptyInScopeSet [(eqv, mkCoVarCo cov) | (eqv, cov) <- eqvs_covs]
result_expr = thing_inside (ds_tc_coercion subst co)
result_ty = exprType result_expr
; return (foldr (wrap_in_case result_ty) result_expr eqvs_covs) }
where
mk_co_var :: Id -> Unique -> (Id, Id)
mk_co_var eqv uniq = (eqv, mkUserLocal occ uniq ty loc)
where
eq_nm = idName eqv
occ = nameOccName eq_nm
loc = nameSrcSpan eq_nm
ty = mkCoercionType (getEqPredRole (evVarPred eqv)) ty1 ty2
(ty1, ty2) = getEqPredTys (evVarPred eqv)
wrap_in_case result_ty (eqv, cov) body
= case getEqPredRole (evVarPred eqv) of
Nominal -> Case (Var eqv) eqv result_ty [(DataAlt eqBoxDataCon, [cov], body)]
Representational -> Case (Var eqv) eqv result_ty [(DataAlt coercibleDataCon, [cov], body)]
Phantom -> panic "wrap_in_case/phantom"
ds_tc_coercion :: CvSubst -> TcCoercion -> Coercion
-- If the incoming TcCoercion if of type (a ~ b) (resp. Coercible a b)
-- the result is of type (a ~# b) (reps. a ~# b)
-- The VarEnv maps EqVars of type (a ~ b) to Coercions of type (a ~# b) (resp. and so on)
-- No need for InScope set etc because the
ds_tc_coercion subst tc_co
= go tc_co
where
go (TcRefl r ty) = Refl r (Coercion.substTy subst ty)
go (TcTyConAppCo r tc cos) = mkTyConAppCo r tc (map go cos)
go (TcAppCo co1 co2) = let leftCo = go co1
rightRole = nextRole leftCo in
mkAppCoFlexible leftCo rightRole (go co2)
go (TcForAllCo tv co) = mkForAllCo tv' (ds_tc_coercion subst' co)
where
(subst', tv') = Coercion.substTyVarBndr subst tv
go (TcAxiomInstCo ax ind cos)
= AxiomInstCo ax ind (map go cos)
go (TcPhantomCo ty1 ty2) = UnivCo Phantom ty1 ty2
go (TcSymCo co) = mkSymCo (go co)
go (TcTransCo co1 co2) = mkTransCo (go co1) (go co2)
go (TcNthCo n co) = mkNthCo n (go co)
go (TcLRCo lr co) = mkLRCo lr (go co)
go (TcSubCo co) = mkSubCo (go co)
go (TcLetCo bs co) = ds_tc_coercion (ds_co_binds bs) co
go (TcCastCo co1 co2) = mkCoCast (go co1) (go co2)
go (TcCoVarCo v) = ds_ev_id subst v
go (TcAxiomRuleCo co ts cs) = AxiomRuleCo co (map (Coercion.substTy subst) ts) (map go cs)
ds_co_binds :: TcEvBinds -> CvSubst
ds_co_binds (EvBinds bs) = foldl ds_scc subst (sccEvBinds bs)
ds_co_binds eb@(TcEvBinds {}) = pprPanic "ds_co_binds" (ppr eb)
ds_scc :: CvSubst -> SCC EvBind -> CvSubst
ds_scc subst (AcyclicSCC (EvBind v ev_term))
= extendCvSubstAndInScope subst v (ds_co_term subst ev_term)
ds_scc _ (CyclicSCC other) = pprPanic "ds_scc:cyclic" (ppr other $$ ppr tc_co)
ds_co_term :: CvSubst -> EvTerm -> Coercion
ds_co_term subst (EvCoercion tc_co) = ds_tc_coercion subst tc_co
ds_co_term subst (EvId v) = ds_ev_id subst v
ds_co_term subst (EvCast tm co) = mkCoCast (ds_co_term subst tm) (ds_tc_coercion subst co)
ds_co_term _ other = pprPanic "ds_co_term" (ppr other $$ ppr tc_co)
ds_ev_id :: CvSubst -> EqVar -> Coercion
ds_ev_id subst v
| Just co <- Coercion.lookupCoVar subst v = co
| otherwise = pprPanic "ds_tc_coercion" (ppr v $$ ppr tc_co)
\end{code}
Note [Simple coercions]
~~~~~~~~~~~~~~~~~~~~~~~
We have a special case for coercions that are simple variables.
Suppose cv :: a ~ b is in scope
Lacking the special case, if we see
f a b cv
we'd desguar to
f a b (case cv of EqBox (cv# :: a ~# b) -> EqBox cv#)
which is a bit stupid. The special case does the obvious thing.
This turns out to be important when desugaring the LHS of a RULE
(see Trac #7837). Suppose we have
normalise :: (a ~ Scalar a) => a -> a
normalise_Double :: Double -> Double
{-# RULES "normalise" normalise = normalise_Double #-}
Then the RULE we want looks like
forall a, (cv:a~Scalar a).
normalise a cv = normalise_Double
But without the special case we generate the redundant box/unbox,
which simpleOpt (currently) doesn't remove. So the rule never matches.
Maybe simpleOpt should be smarter. But it seems like a good plan
to simply never generate the redundant box/unbox in the first place.
|