summaryrefslogtreecommitdiff
path: root/compiler/deSugar/DsBinds.lhs
blob: a878e74c6b2acf308b57947e6dbe30ed13aa8517 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%

Pattern-matching bindings (HsBinds and MonoBinds)

Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).

\begin{code}
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
		 dsHsWrapper, dsTcEvBinds, dsEvBinds, wrapDsEvBinds, 
		 DsEvBind(..), AutoScc(..)
  ) where

#include "HsVersions.h"

import {-# SOURCE #-}	DsExpr( dsLExpr )
import {-# SOURCE #-}	Match( matchWrapper )

import DsMonad
import DsGRHSs
import DsUtils

import HsSyn		-- lots of things
import CoreSyn		-- lots of things
import CoreSubst
import MkCore
import CoreUtils
import CoreArity ( etaExpand )
import CoreUnfold
import CoreFVs
import Digraph

import TcType
import Type
import Coercion
import TysPrim  ( anyTypeOfKind )
import CostCentre
import Module
import Id
import TyCon	( tyConDataCons )
import Class
import DataCon	( dataConRepType )
import Name	( localiseName )
import MkId	( seqId )
import Var
import VarSet
import Rules
import VarEnv
import Outputable
import SrcLoc
import Maybes
import OrdList
import Bag
import BasicTypes hiding ( TopLevel )
import FastString
import Util

import MonadUtils
\end{code}

%************************************************************************
%*									*
\subsection[dsMonoBinds]{Desugaring a @MonoBinds@}
%*									*
%************************************************************************

\begin{code}
dsTopLHsBinds :: AutoScc -> LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
dsTopLHsBinds auto_scc binds = ds_lhs_binds auto_scc binds

dsLHsBinds :: LHsBinds Id -> DsM [(Id,CoreExpr)]
dsLHsBinds binds = do { binds' <- ds_lhs_binds NoSccs binds
                      ; return (fromOL binds') }

------------------------
ds_lhs_binds :: AutoScc -> LHsBinds Id -> DsM (OrdList (Id,CoreExpr))

	 -- scc annotation policy (see below)
ds_lhs_binds auto_scc binds = do { ds_bs <- mapBagM (dsLHsBind auto_scc) binds
                                 ; return (foldBag appOL id nilOL ds_bs) }

dsLHsBind :: AutoScc -> LHsBind Id -> DsM (OrdList (Id,CoreExpr))
dsLHsBind auto_scc (L loc bind)
  = putSrcSpanDs loc $ dsHsBind auto_scc bind

dsHsBind :: AutoScc -> HsBind Id -> DsM (OrdList (Id,CoreExpr))

dsHsBind _ (VarBind { var_id = var, var_rhs = expr, var_inline = inline_regardless })
  = do  { core_expr <- dsLExpr expr

	        -- Dictionary bindings are always VarBinds,
	        -- so we only need do this here
	; core_expr' <- addDictScc var core_expr
	; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr'
	      	   | otherwise         = var

	; return (unitOL (makeCorePair var' False 0 core_expr')) }

dsHsBind auto_scc (FunBind { fun_id = L _ fun, fun_matches = matches
		    , fun_co_fn = co_fn, fun_tick = tick 
                    , fun_infix = inf }) 
 = do	{ (args, body) <- matchWrapper (FunRhs (idName fun) inf) matches
	; body'    <- mkOptTickBox tick body
	; wrap_fn' <- dsHsWrapper co_fn 
	; let rhs = addAutoScc auto_scc fun $ wrap_fn' (mkLams args body')
	; return (unitOL (makeCorePair fun False 0 rhs)) }

dsHsBind auto_scc (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty })
  = do	{ body_expr <- dsGuarded grhss ty
	; sel_binds <- mkSelectorBinds pat body_expr
	  -- We silently ignore inline pragmas; no makeCorePair
	  -- Not so cool, but really doesn't matter
    ; let sel_binds' = [ (v, addAutoScc auto_scc v expr)
                       | (v, expr) <- sel_binds ]
	; return (toOL sel_binds') }

	-- A common case: one exported variable
	-- Non-recursive bindings come through this way
	-- So do self-recursive bindings, and recursive bindings
	-- that have been chopped up with type signatures
dsHsBind auto_scc (AbsBinds { abs_tvs = all_tyvars, abs_ev_vars = dicts
               		    , abs_exports = [(tyvars, global, local, prags)]
               		    , abs_ev_binds = ev_binds, abs_binds = binds })
  = ASSERT( all (`elem` tyvars) all_tyvars )
    do	{ bind_prs    <- ds_lhs_binds NoSccs binds
        ; ds_ev_binds <- dsTcEvBinds ev_binds

	; let	core_bind = Rec (fromOL bind_prs)
	        rhs       = addAutoScc auto_scc global $
			    mkLams tyvars $ mkLams dicts $ 
	                    wrapDsEvBinds ds_ev_binds $
                            Let core_bind $
                            Var local
    
	; (spec_binds, rules) <- dsSpecs rhs prags

	; let   global'   = addIdSpecialisations global rules
		main_bind = makeCorePair global' (isDefaultMethod prags)
                                         (dictArity dicts) rhs 
    
	; return (main_bind `consOL` spec_binds) }

dsHsBind auto_scc (AbsBinds { abs_tvs = all_tyvars, abs_ev_vars = dicts
                            , abs_exports = exports, abs_ev_binds = ev_binds
                       	    , abs_binds = binds })
  = do	{ bind_prs    <- ds_lhs_binds NoSccs binds
        ; ds_ev_binds <- dsTcEvBinds ev_binds
	; let env = mkABEnv exports
	      do_one (lcl_id,rhs) | Just (_, gbl_id, _, _prags) <- lookupVarEnv env lcl_id
			          = (lcl_id, addAutoScc auto_scc gbl_id rhs)
				  | otherwise = (lcl_id,rhs)
	       
	      core_bind = Rec (map do_one (fromOL bind_prs))
	      	-- Monomorphic recursion possible, hence Rec

	      tup_expr     = mkBigCoreVarTup locals
	      tup_ty	   = exprType tup_expr
	      poly_tup_rhs = mkLams all_tyvars $ mkLams dicts $
	      		     wrapDsEvBinds ds_ev_binds $
			     Let core_bind $
	 	     	     tup_expr
	      locals       = [local | (_, _, local, _) <- exports]
	      local_tys    = map idType locals

	; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)

	; let mk_bind ((tyvars, global, _, spec_prags), n)  -- locals!!n == local
	        = 	-- Need to make fresh locals to bind in the selector,
		      	-- because some of the tyvars will be bound to 'Any'
		  do { let ty_args = map mk_ty_arg all_tyvars
		           substitute = substTyWith all_tyvars ty_args
		     ; locals' <- newSysLocalsDs (map substitute local_tys)
		     ; tup_id  <- newSysLocalDs  (substitute tup_ty)
	             ; let rhs = mkLams tyvars $ mkLams dicts $
	      	     		 mkTupleSelector locals' (locals' !! n) tup_id $
			         mkVarApps (mkTyApps (Var poly_tup_id) ty_args)
			 		   dicts
                           full_rhs = Let (NonRec poly_tup_id poly_tup_rhs) rhs
		     ; (spec_binds, rules) <- dsSpecs full_rhs spec_prags
				                      
		     ; let global' = addIdSpecialisations global rules
		     ; return ((global', rhs) `consOL` spec_binds) }
	        where
	          mk_ty_arg all_tyvar
			| all_tyvar `elem` tyvars = mkTyVarTy all_tyvar
	      		| otherwise		  = dsMkArbitraryType all_tyvar

	; export_binds_s <- mapM mk_bind (exports `zip` [0..])
	     -- Don't scc (auto-)annotate the tuple itself.

	; return ((poly_tup_id, poly_tup_rhs) `consOL` 
		    concatOL export_binds_s) }

--------------------------------------
data DsEvBind 
  = LetEvBind		-- Dictionary or coercion
      CoreBind		-- recursive or non-recursive

  | CaseEvBind		-- Coercion binding by superclass selection
    			-- Desugars to case d of d { K _ g _ _ _ -> ... } 			
      DictId 		   -- b   The dictionary
      AltCon 		   -- K   Its constructor
      [CoreBndr] 	   -- _ g _ _ _   The binders in the alternative

wrapDsEvBinds :: [DsEvBind] -> CoreExpr -> CoreExpr
wrapDsEvBinds ds_ev_binds body = foldr wrap_one body ds_ev_binds
  where
    body_ty = exprType body
    wrap_one (LetEvBind b)       body = Let b body
    wrap_one (CaseEvBind x k xs) body = Case (Var x) x body_ty [(k,xs,body)]

dsTcEvBinds :: TcEvBinds -> DsM [DsEvBind]
dsTcEvBinds (TcEvBinds {}) = panic "dsEvBinds"	-- Zonker has got rid of this
dsTcEvBinds (EvBinds bs)   = dsEvBinds bs

dsEvBinds :: Bag EvBind -> DsM [DsEvBind]
dsEvBinds bs = return (map dsEvGroup sccs)
  where
    sccs :: [SCC EvBind]
    sccs = stronglyConnCompFromEdgedVertices edges

    edges :: [(EvBind, EvVar, [EvVar])]
    edges = foldrBag ((:) . mk_node) [] bs 

    mk_node :: EvBind -> (EvBind, EvVar, [EvVar])
    mk_node b@(EvBind var term) = (b, var, free_vars_of term)

    free_vars_of :: EvTerm -> [EvVar]
    free_vars_of (EvId v)           = [v]
    free_vars_of (EvCast v co)      = v : varSetElems (tyCoVarsOfCo co)
    free_vars_of (EvCoercion co)    = varSetElems (tyCoVarsOfCo co)
    free_vars_of (EvDFunApp _ _ vs) = vs
    free_vars_of (EvSuperClass d _) = [d]

dsEvGroup :: SCC EvBind -> DsEvBind
dsEvGroup (AcyclicSCC (EvBind co_var (EvSuperClass dict n)))
  | isCoVar co_var	 -- An equality superclass
  = ASSERT( null other_data_cons )
    CaseEvBind dict (DataAlt data_con) bndrs
  where
    (cls, tys) = getClassPredTys (evVarPred dict)
    (data_con:other_data_cons) = tyConDataCons (classTyCon cls)
    (ex_tvs, theta, rho) = tcSplitSigmaTy (applyTys (dataConRepType data_con) tys)
    (arg_tys, _) = splitFunTys rho
    bndrs = ex_tvs ++ map mk_wild_pred (theta `zip` [0..])
                   ++ map mkWildValBinder arg_tys
    mk_wild_pred (p, i) | i==n      = ASSERT( p `eqPred` (coVarPred co_var)) 
                                      co_var
                        | otherwise = mkWildEvBinder p
    
dsEvGroup (AcyclicSCC (EvBind v r))
  = LetEvBind (NonRec v (dsEvTerm r))

dsEvGroup (CyclicSCC bs)
  = LetEvBind (Rec (map ds_pair bs))
  where
    ds_pair (EvBind v r) = (v, dsEvTerm r)

dsEvTerm :: EvTerm -> CoreExpr
dsEvTerm (EvId v)                = Var v
dsEvTerm (EvCast v co)           = Cast (Var v) co
dsEvTerm (EvDFunApp df tys vars) = Var df `mkTyApps` tys `mkVarApps` vars
dsEvTerm (EvCoercion co)         = Coercion co
dsEvTerm (EvSuperClass d n)
  = ASSERT( isClassPred (classSCTheta cls !! n) )
    	    -- We can only select *dictionary* superclasses
	    -- in terms.  Equality superclasses are dealt with
	    -- in dsEvGroup, where they can generate a case expression
    Var sc_sel_id `mkTyApps` tys `App` Var d
  where
    sc_sel_id  = classSCSelId cls n	-- Zero-indexed
    (cls, tys) = getClassPredTys (evVarPred d)    
    
------------------------
makeCorePair :: Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair gbl_id is_default_method dict_arity rhs
  | is_default_method		      -- Default methods are *always* inlined
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

  | otherwise
  = case inlinePragmaSpec inline_prag of
      	  EmptyInlineSpec -> (gbl_id, rhs)
      	  NoInline        -> (gbl_id, rhs)
      	  Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
          Inline          -> inline_pair

  where
    inline_prag   = idInlinePragma gbl_id
    inlinable_unf = mkInlinableUnfolding rhs
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
      	-- Add an Unfolding for an INLINE (but not for NOINLINE)
	-- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
       , let real_arity = dict_arity + arity
        -- NB: The arity in the InlineRule takes account of the dictionaries
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)


dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts


------------------------
type AbsBindEnv = VarEnv ([TyVar], Id, Id, TcSpecPrags)
	-- Maps the "lcl_id" for an AbsBind to
	-- its "gbl_id" and associated pragmas, if any

mkABEnv :: [([TyVar], Id, Id, TcSpecPrags)] -> AbsBindEnv
-- Takes the exports of a AbsBinds, and returns a mapping
--	lcl_id -> (tyvars, gbl_id, lcl_id, prags)
mkABEnv exports = mkVarEnv [ (lcl_id, export) | export@(_, _, lcl_id, _) <- exports]
\end{code}

Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
	f_lcl = ...f_lcl...	-- The "binds" from AbsBinds
	M.f = f_lcl		-- Generated from "exports"
But we don't want that, because if M.f isn't exported,
it'll be inlined unconditionally at every call site (its rhs is 
trivial).  That would be ok unless it has RULES, which would 
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
	M.f = ...f_lcl...
	f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore), 
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
	M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
Although I'm a bit worried about whether full laziness might
float the f_lcl binding out and then inline M.f at its call site

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

The top-level AbsBinds for $cround has no tyvars or dicts (because the 
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

	AbsBinds [a,b] [ ([a,b], fg, fl, _),
		         ([b],   gg, gl, _) ]
		{ fl = e1
		  gl = e2
		   h = e3 }

and desugar it to

	fg = /\ab. let B in e1
	gg = /\b. let a = () in let B in S(e2)
	h  = /\ab. let B in e3

where B is the *non-recursive* binding
	fl = fg a b
	gl = gg b
	h  = h a b    -- See (b); note shadowing!

Notice (a) g has a different number of type variables to f, so we must
	     use the mkArbitraryType thing to fill in the gaps.  
	     We use a type-let to do that.

	 (b) The local variable h isn't in the exports, and rather than
	     clone a fresh copy we simply replace h by (h a b), where
	     the two h's have different types!  Shadowing happens here,
	     which looks confusing but works fine.

	 (c) The result is *still* quadratic-sized if there are a lot of
	     small bindings.  So if there are more than some small
	     number (10), we filter the binding set B by the free
	     variables of the particular RHS.  Tiresome.

Why got to this trouble?  It's a common case, and it removes the
quadratic-sized tuple desugaring.  Less clutter, hopefullly faster
compilation, especially in a case where there are a *lot* of
bindings.


Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
happen as a result of method sharing), there's a danger that we never 
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
has the arity with which it is declared in the source code.  In this
example it has arity 2 (one for the Eq and one for x). Doing this 
should mean that (foo d) is a PAP and we don't share it.

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!

Note [Implementing SPECIALISE pragmas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Example:
	f :: (Eq a, Ix b) => a -> b -> Bool
	{-# SPECIALISE f :: (Ix p, Ix q) => Int -> (p,q) -> Bool #-}
        f = <poly_rhs>

From this the typechecker generates

    AbsBinds [ab] [d1,d2] [([ab], f, f_mono, prags)] binds

    SpecPrag (wrap_fn :: forall a b. (Eq a, Ix b) => XXX
                      -> forall p q. (Ix p, Ix q) => XXX[ Int/a, (p,q)/b ])

Note that wrap_fn can transform *any* function with the right type prefix 
    forall ab. (Eq a, Ix b) => XXX
regardless of XXX.  It's sort of polymorphic in XXX.  This is
useful: we use the same wrapper to transform each of the class ops, as
well as the dict.

From these we generate:

    Rule: 	forall p, q, (dp:Ix p), (dq:Ix q). 
                    f Int (p,q) dInt ($dfInPair dp dq) = f_spec p q dp dq

    Spec bind:	f_spec = wrap_fn <poly_rhs>

Note that 

  * The LHS of the rule may mention dictionary *expressions* (eg
    $dfIxPair dp dq), and that is essential because the dp, dq are
    needed on the RHS.

  * The RHS of f_spec, <poly_rhs> has a *copy* of 'binds', so that it 
    can fully specialise it.

\begin{code}
------------------------
dsSpecs :: CoreExpr     -- Its rhs
        -> TcSpecPrags
        -> DsM ( OrdList (Id,CoreExpr) 	-- Binding for specialised Ids
	       , [CoreRule] )		-- Rules for the Global Ids
-- See Note [Implementing SPECIALISE pragmas]
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

dsSpec :: Maybe CoreExpr  	-- Just rhs => RULE is for a local binding
       	  			-- Nothing => RULE is for an imported Id
				-- 	      rhs is in the Id's unfolding
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
  | isJust (isClassOpId_maybe poly_id)
  = putSrcSpanDs loc $ 
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector") 
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- There is no point in trying to specialise a class op
       	 		    -- Moreover, classops don't (currently) have an inl_sat arity set
			    -- (it would be Just 0) and that in turn makes makeCorePair bleat

  | otherwise
  = putSrcSpanDs loc $ 
    do { let poly_name = idName poly_id
       ; spec_name <- newLocalName poly_name
       ; wrap_fn   <- dsHsWrapper spec_co
       ; let (bndrs, ds_lhs) = collectBinders (wrap_fn (Var poly_id))
             spec_ty = mkPiTypes bndrs (exprType ds_lhs)
       ; case decomposeRuleLhs bndrs ds_lhs of {
           Left msg -> do { warnDs msg; return Nothing } ;
           Right (final_bndrs, _fn, args) -> do

       { (spec_unf, unf_pairs) <- specUnfolding wrap_fn spec_ty (realIdUnfolding poly_id)

       ; let spec_id  = mkLocalId spec_name spec_ty 
         	            `setInlinePragma` inl_prag
         	 	    `setIdUnfolding`  spec_unf
             inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
         	      | not is_local_id  -- See Note [Specialising imported functions]
		      	    		 -- in OccurAnal
                      , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
		      | otherwise                               = idInlinePragma poly_id
       	      -- Get the INLINE pragma from SPECIALISE declaration, or,
              -- failing that, from the original Id

             rule =  mkRule False {- Not auto -} is_local_id
                        (mkFastString ("SPEC " ++ showSDoc (ppr poly_name)))
       			AlwaysActive poly_name
       		        final_bndrs args
       			(mkVarApps (Var spec_id) bndrs)

             spec_rhs  = wrap_fn poly_rhs
             spec_pair = makeCorePair spec_id False (dictArity bndrs) spec_rhs

       ; return (Just (spec_pair `consOL` unf_pairs, rule))
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
             = rhs  	    -- Local Id; this is its rhs
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
	       		    -- Use realIdUnfolding so we get the unfolding 
			    -- even when it is a loop breaker. 
			    -- We want to specialise recursive functions!
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
	                    -- The type checker has checked that it *has* an unfolding

specUnfolding :: (CoreExpr -> CoreExpr) -> Type 
              -> Unfolding -> DsM (Unfolding, OrdList (Id,CoreExpr))
{-   [Dec 10: TEMPORARILY commented out, until we can straighten out how to
              generate unfoldings for specialised DFuns

specUnfolding wrap_fn spec_ty (DFunUnfolding _ _ ops)
  = do { let spec_rhss = map wrap_fn ops
       ; spec_ids <- mapM (mkSysLocalM (fsLit "spec") . exprType) spec_rhss
       ; return (mkDFunUnfolding spec_ty (map Var spec_ids), toOL (spec_ids `zip` spec_rhss)) }
-}
specUnfolding _ _ _
  = return (noUnfolding, nilOL)

dsMkArbitraryType :: TcTyVar -> Type
dsMkArbitraryType tv = anyTypeOfKind (tyVarKind tv)
\end{code}

%************************************************************************
%*									*
\subsection{Adding inline pragmas}
%*									*
%************************************************************************

\begin{code}
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
-- Take apart the LHS of a RULE.  It's suuposed to look like
--     /\a. f a Int dOrdInt
-- or  /\a.\d:Ord a. let { dl::Ord [a] = dOrdList a d } in f [a] dl
-- That is, the RULE binders are lambda-bound
-- Returns Nothing if the LHS isn't of the expected shape
decomposeRuleLhs bndrs lhs 
  =  -- Note [Simplifying the left-hand side of a RULE]
    case collectArgs opt_lhs of
        (Var fn, args) -> check_bndrs fn args

        (Case scrut bndr ty [(DEFAULT, _, body)], args)
	        | isDeadBinder bndr	-- Note [Matching seqId]
		-> check_bndrs seqId (args' ++ args)
		where
		   args' = [Type (idType bndr), Type ty, scrut, body]
	   
	_other -> Left bad_shape_msg
 where
   opt_lhs = simpleOptExpr lhs

   check_bndrs fn args
     | null (dead_bndrs) = Right (extra_dict_bndrs ++ bndrs, fn, args)
     | otherwise         = Left (vcat (map dead_msg dead_bndrs))
     where
       arg_fvs = exprsFreeVars args

            -- Check for dead binders: Note [Unused spec binders]
       dead_bndrs = filterOut (`elemVarSet` arg_fvs) bndrs

            -- Add extra dict binders: Note [Constant rule dicts]
       extra_dict_bndrs = [ mkLocalId (localiseName (idName d)) (idType d)
                          | d <- varSetElems (arg_fvs `delVarSetList` bndrs)
         	          , isDictId d]


   bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
                      2 (ppr opt_lhs)
   dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
			     , ptext (sLit "is not bound in RULE lhs")])
                      2 (ppr opt_lhs)
   pp_bndr bndr
    | isTyVar bndr  = ptext (sLit "type variable") <+> quotes (ppr bndr)
    | isEvVar bndr  = ptext (sLit "constraint") <+> quotes (ppr (evVarPred bndr))
    | otherwise     = ptext (sLit "variable") <+> quotes (ppr bndr)
\end{code}

Note [Simplifying the left-hand side of a RULE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
simpleOptExpr occurrence-analyses and simplifies the lhs
and thereby
(a) sorts dict bindings into NonRecs and inlines them
(b) substitute trivial lets so that they don't get in the way
    Note that we substitute the function too; we might 
    have this as a LHS:  let f71 = M.f Int in f71
(c) does eta reduction

For (c) consider the fold/build rule, which without simplification
looked like:
	fold k z (build (/\a. g a))  ==>  ...
This doesn't match unless you do eta reduction on the build argument.
Similarly for a LHS like
	augment g (build h) 
we do not want to get
	augment (\a. g a) (build h)
otherwise we don't match when given an argument like
	augment (\a. h a a) (build h)

NB: tcSimplifyRuleLhs is very careful not to generate complicated
    dictionary expressions that we might have to match

Note [Matching seqId]
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
and this code turns it back into an application of seq!  
See Note [Rules for seq] in MkId for the details.

Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
	f :: a -> a
	{-# SPECIALISE f :: Eq a => a -> a #-}
It's true that this *is* a more specialised type, but the rule
we get is something like this:
	f_spec d = f
	RULE: f = f_spec d
Note that the rule is bogus, becuase it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, becuase
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

Note [Constant rule dicts]
~~~~~~~~~~~~~~~~~~~~~~~
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict, 
which is presumably in scope at the function definition site, we can quantify 
over it too.  *Any* dict with that type will do.

So for example when you have
	f :: Eq a => a -> a
	f = <rhs>
	{-# SPECIALISE f :: Int -> Int #-}

Then we get the SpecPrag
	SpecPrag (f Int dInt) 

And from that we want the rule
	
	RULE forall dInt. f Int dInt = f_spec
	f_spec = let f = <rhs> in f Int dInt

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.


%************************************************************************
%*									*
\subsection[addAutoScc]{Adding automatic sccs}
%*									*
%************************************************************************

\begin{code}
data AutoScc = NoSccs 
	     | AddSccs Module (Id -> Bool)
-- The (Id->Bool) says which Ids to add SCCs to 
-- But we never add a SCC to function marked INLINE

addAutoScc :: AutoScc	
	   -> Id	-- Binder
	   -> CoreExpr 	-- Rhs
	   -> CoreExpr	-- Scc'd Rhs

addAutoScc NoSccs _ rhs
  = rhs
addAutoScc _ id rhs | isInlinePragma (idInlinePragma id)
  = rhs
addAutoScc (AddSccs mod add_scc) id rhs
  | add_scc id = mkSCC (mkAutoCC id mod NotCafCC) rhs
  | otherwise  = rhs
\end{code}

If profiling and dealing with a dict binding,
wrap the dict in @_scc_ DICT <dict>@:

\begin{code}
addDictScc :: Id -> CoreExpr -> DsM CoreExpr
addDictScc _ rhs = return rhs

{- DISABLED for now (need to somehow make up a name for the scc) -- SDM
  | not ( opt_SccProfilingOn && opt_AutoSccsOnDicts)
    || not (isDictId var)
  = return rhs				-- That's easy: do nothing

  | otherwise
  = do (mod, grp) <- getModuleAndGroupDs
	-- ToDo: do -dicts-all flag (mark dict things with individual CCs)
       return (Note (SCC (mkAllDictsCC mod grp False)) rhs)
-}
\end{code}


%************************************************************************
%*									*
		Desugaring coercions
%*									*
%************************************************************************


\begin{code}
dsHsWrapper :: HsWrapper -> DsM (CoreExpr -> CoreExpr)
dsHsWrapper WpHole 	      = return (\e -> e)
dsHsWrapper (WpTyApp ty)      = return (\e -> App e (Type ty))
dsHsWrapper (WpLet ev_binds)  = do { ds_ev_binds <- dsTcEvBinds ev_binds
                                   ; return (wrapDsEvBinds ds_ev_binds) }
dsHsWrapper (WpCompose c1 c2) = do { k1 <- dsHsWrapper c1 
                                   ; k2 <- dsHsWrapper c2
                                   ; return (k1 . k2) }
dsHsWrapper (WpCast co)       = return (\e -> Cast e co) 
dsHsWrapper (WpEvLam ev)      = return (\e -> Lam ev e) 
dsHsWrapper (WpTyLam tv)      = return (\e -> Lam tv e) 
dsHsWrapper (WpEvApp evtrm)   = return (\e -> App e (dsEvTerm evtrm))
\end{code}