1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
{-
(c) The University of Glasgow 2006
(c) The AQUA Project, Glasgow University, 1994-1998
Desugaring foreign calls
-}
{-# LANGUAGE CPP #-}
module DsCCall
( dsCCall
, mkFCall
, unboxArg
, boxResult
, resultWrapper
) where
#include "HsVersions.h"
import GhcPrelude
import CoreSyn
import DsMonad
import CoreUtils
import MkCore
import MkId
import ForeignCall
import DataCon
import DsUtils
import TcType
import Type
import Id ( Id )
import Coercion
import PrimOp
import TysPrim
import TyCon
import TysWiredIn
import BasicTypes
import Literal
import PrelNames
import DynFlags
import Outputable
import Util
import Data.Maybe
{-
Desugaring of @ccall@s consists of adding some state manipulation,
unboxing any boxed primitive arguments and boxing the result if
desired.
The state stuff just consists of adding in
@PrimIO (\ s -> case s of { S# s# -> ... })@ in an appropriate place.
The unboxing is straightforward, as all information needed to unbox is
available from the type. For each boxed-primitive argument, we
transform:
\begin{verbatim}
_ccall_ foo [ r, t1, ... tm ] e1 ... em
|
|
V
case e1 of { T1# x1# ->
...
case em of { Tm# xm# -> xm#
ccall# foo [ r, t1#, ... tm# ] x1# ... xm#
} ... }
\end{verbatim}
The reboxing of a @_ccall_@ result is a bit tricker: the types don't
contain information about the state-pairing functions so we have to
keep a list of \tr{(type, s-p-function)} pairs. We transform as
follows:
\begin{verbatim}
ccall# foo [ r, t1#, ... tm# ] e1# ... em#
|
|
V
\ s# -> case (ccall# foo [ r, t1#, ... tm# ] s# e1# ... em#) of
(StateAnd<r># result# state#) -> (R# result#, realWorld#)
\end{verbatim}
-}
dsCCall :: CLabelString -- C routine to invoke
-> [CoreExpr] -- Arguments (desugared)
-- Precondition: none have levity-polymorphic types
-> Safety -- Safety of the call
-> Type -- Type of the result: IO t
-> DsM CoreExpr -- Result, of type ???
dsCCall lbl args may_gc result_ty
= do (unboxed_args, arg_wrappers) <- mapAndUnzipM unboxArg args
(ccall_result_ty, res_wrapper) <- boxResult result_ty
uniq <- newUnique
dflags <- getDynFlags
let
target = StaticTarget NoSourceText lbl Nothing True
the_fcall = CCall (CCallSpec target CCallConv may_gc)
the_prim_app = mkFCall dflags uniq the_fcall unboxed_args ccall_result_ty
return (foldr ($) (res_wrapper the_prim_app) arg_wrappers)
mkFCall :: DynFlags -> Unique -> ForeignCall
-> [CoreExpr] -- Args
-> Type -- Result type
-> CoreExpr
-- Construct the ccall. The only tricky bit is that the ccall Id should have
-- no free vars, so if any of the arg tys do we must give it a polymorphic type.
-- [I forget *why* it should have no free vars!]
-- For example:
-- mkCCall ... [s::StablePtr (a->b), x::Addr, c::Char]
--
-- Here we build a ccall thus
-- (ccallid::(forall a b. StablePtr (a -> b) -> Addr -> Char -> IO Addr))
-- a b s x c
mkFCall dflags uniq the_fcall val_args res_ty
= ASSERT( all isTyVar tyvars ) -- this must be true because the type is top-level
mkApps (mkVarApps (Var the_fcall_id) tyvars) val_args
where
arg_tys = map exprType val_args
body_ty = (mkVisFunTys arg_tys res_ty)
tyvars = tyCoVarsOfTypeWellScoped body_ty
ty = mkInvForAllTys tyvars body_ty
the_fcall_id = mkFCallId dflags uniq the_fcall ty
unboxArg :: CoreExpr -- The supplied argument, not levity-polymorphic
-> DsM (CoreExpr, -- To pass as the actual argument
CoreExpr -> CoreExpr -- Wrapper to unbox the arg
)
-- Example: if the arg is e::Int, unboxArg will return
-- (x#::Int#, \W. case x of I# x# -> W)
-- where W is a CoreExpr that probably mentions x#
-- always returns a non-levity-polymorphic expression
unboxArg arg
-- Primitive types: nothing to unbox
| isPrimitiveType arg_ty
= return (arg, \body -> body)
-- Recursive newtypes
| Just(co, _rep_ty) <- topNormaliseNewType_maybe arg_ty
= unboxArg (mkCastDs arg co)
-- Booleans
| Just tc <- tyConAppTyCon_maybe arg_ty,
tc `hasKey` boolTyConKey
= do dflags <- getDynFlags
prim_arg <- newSysLocalDs intPrimTy
return (Var prim_arg,
\ body -> Case (mkWildCase arg arg_ty intPrimTy
[(DataAlt falseDataCon,[],mkIntLit dflags 0),
(DataAlt trueDataCon, [],mkIntLit dflags 1)])
-- In increasing tag order!
prim_arg
(exprType body)
[(DEFAULT,[],body)])
-- Data types with a single constructor, which has a single, primitive-typed arg
-- This deals with Int, Float etc; also Ptr, ForeignPtr
| is_product_type && data_con_arity == 1
= ASSERT2(isUnliftedType data_con_arg_ty1, pprType arg_ty)
-- Typechecker ensures this
do case_bndr <- newSysLocalDs arg_ty
prim_arg <- newSysLocalDs data_con_arg_ty1
return (Var prim_arg,
\ body -> Case arg case_bndr (exprType body) [(DataAlt data_con,[prim_arg],body)]
)
-- Byte-arrays, both mutable and otherwise; hack warning
-- We're looking for values of type ByteArray, MutableByteArray
-- data ByteArray ix = ByteArray ix ix ByteArray#
-- data MutableByteArray s ix = MutableByteArray ix ix (MutableByteArray# s)
| is_product_type &&
data_con_arity == 3 &&
isJust maybe_arg3_tycon &&
(arg3_tycon == byteArrayPrimTyCon ||
arg3_tycon == mutableByteArrayPrimTyCon)
= do case_bndr <- newSysLocalDs arg_ty
vars@[_l_var, _r_var, arr_cts_var] <- newSysLocalsDs data_con_arg_tys
return (Var arr_cts_var,
\ body -> Case arg case_bndr (exprType body) [(DataAlt data_con,vars,body)]
)
| otherwise
= do l <- getSrcSpanDs
pprPanic "unboxArg: " (ppr l <+> ppr arg_ty)
where
arg_ty = exprType arg
maybe_product_type = splitDataProductType_maybe arg_ty
is_product_type = isJust maybe_product_type
Just (_, _, data_con, data_con_arg_tys) = maybe_product_type
data_con_arity = dataConSourceArity data_con
(data_con_arg_ty1 : _) = data_con_arg_tys
(_ : _ : data_con_arg_ty3 : _) = data_con_arg_tys
maybe_arg3_tycon = tyConAppTyCon_maybe data_con_arg_ty3
Just arg3_tycon = maybe_arg3_tycon
boxResult :: Type
-> DsM (Type, CoreExpr -> CoreExpr)
-- Takes the result of the user-level ccall:
-- either (IO t),
-- or maybe just t for a side-effect-free call
-- Returns a wrapper for the primitive ccall itself, along with the
-- type of the result of the primitive ccall. This result type
-- will be of the form
-- State# RealWorld -> (# State# RealWorld, t' #)
-- where t' is the unwrapped form of t. If t is simply (), then
-- the result type will be
-- State# RealWorld -> (# State# RealWorld #)
boxResult result_ty
| Just (io_tycon, io_res_ty) <- tcSplitIOType_maybe result_ty
-- isIOType_maybe handles the case where the type is a
-- simple wrapping of IO. E.g.
-- newtype Wrap a = W (IO a)
-- No coercion necessary because its a non-recursive newtype
-- (If we wanted to handle a *recursive* newtype too, we'd need
-- another case, and a coercion.)
-- The result is IO t, so wrap the result in an IO constructor
= do { res <- resultWrapper io_res_ty
; let extra_result_tys
= case res of
(Just ty,_)
| isUnboxedTupleType ty
-> let Just ls = tyConAppArgs_maybe ty in tail ls
_ -> []
return_result state anss
= mkCoreUbxTup
(realWorldStatePrimTy : io_res_ty : extra_result_tys)
(state : anss)
; (ccall_res_ty, the_alt) <- mk_alt return_result res
; state_id <- newSysLocalDs realWorldStatePrimTy
; let io_data_con = head (tyConDataCons io_tycon)
toIOCon = dataConWrapId io_data_con
wrap the_call =
mkApps (Var toIOCon)
[ Type io_res_ty,
Lam state_id $
mkWildCase (App the_call (Var state_id))
ccall_res_ty
(coreAltType the_alt)
[the_alt]
]
; return (realWorldStatePrimTy `mkVisFunTy` ccall_res_ty, wrap) }
boxResult result_ty
= do -- It isn't IO, so do unsafePerformIO
-- It's not conveniently available, so we inline it
res <- resultWrapper result_ty
(ccall_res_ty, the_alt) <- mk_alt return_result res
let
wrap = \ the_call -> mkWildCase (App the_call (Var realWorldPrimId))
ccall_res_ty
(coreAltType the_alt)
[the_alt]
return (realWorldStatePrimTy `mkVisFunTy` ccall_res_ty, wrap)
where
return_result _ [ans] = ans
return_result _ _ = panic "return_result: expected single result"
mk_alt :: (Expr Var -> [Expr Var] -> Expr Var)
-> (Maybe Type, Expr Var -> Expr Var)
-> DsM (Type, (AltCon, [Id], Expr Var))
mk_alt return_result (Nothing, wrap_result)
= do -- The ccall returns ()
state_id <- newSysLocalDs realWorldStatePrimTy
let
the_rhs = return_result (Var state_id)
[wrap_result (panic "boxResult")]
ccall_res_ty = mkTupleTy Unboxed [realWorldStatePrimTy]
the_alt = (DataAlt (tupleDataCon Unboxed 1), [state_id], the_rhs)
return (ccall_res_ty, the_alt)
mk_alt return_result (Just prim_res_ty, wrap_result)
= -- The ccall returns a non-() value
ASSERT2( isPrimitiveType prim_res_ty, ppr prim_res_ty )
-- True because resultWrapper ensures it is so
do { result_id <- newSysLocalDs prim_res_ty
; state_id <- newSysLocalDs realWorldStatePrimTy
; let the_rhs = return_result (Var state_id)
[wrap_result (Var result_id)]
ccall_res_ty = mkTupleTy Unboxed [realWorldStatePrimTy, prim_res_ty]
the_alt = (DataAlt (tupleDataCon Unboxed 2), [state_id, result_id], the_rhs)
; return (ccall_res_ty, the_alt) }
resultWrapper :: Type
-> DsM (Maybe Type, -- Type of the expected result, if any
CoreExpr -> CoreExpr) -- Wrapper for the result
-- resultWrapper deals with the result *value*
-- E.g. foreign import foo :: Int -> IO T
-- Then resultWrapper deals with marshalling the 'T' part
-- So if resultWrapper ty = (Just ty_rep, marshal)
-- then marshal (e :: ty_rep) :: ty
-- That is, 'marshal' wrape the result returned by the foreign call,
-- of type ty_rep, into the value Haskell expected, of type 'ty'
--
-- Invariant: ty_rep is always a primitive type
-- i.e. (isPrimitiveType ty_rep) is True
resultWrapper result_ty
-- Base case 1: primitive types
| isPrimitiveType result_ty
= return (Just result_ty, \e -> e)
-- Base case 2: the unit type ()
| Just (tc,_) <- maybe_tc_app
, tc `hasKey` unitTyConKey
= return (Nothing, \_ -> Var unitDataConId)
-- Base case 3: the boolean type
| Just (tc,_) <- maybe_tc_app
, tc `hasKey` boolTyConKey
= do { dflags <- getDynFlags
; let marshal_bool e
= mkWildCase e intPrimTy boolTy
[ (DEFAULT ,[],Var trueDataConId )
, (LitAlt (mkLitInt dflags 0),[],Var falseDataConId)]
; return (Just intPrimTy, marshal_bool) }
-- Newtypes
| Just (co, rep_ty) <- topNormaliseNewType_maybe result_ty
= do { (maybe_ty, wrapper) <- resultWrapper rep_ty
; return (maybe_ty, \e -> mkCastDs (wrapper e) (mkSymCo co)) }
-- The type might contain foralls (eg. for dummy type arguments,
-- referring to 'Ptr a' is legal).
| Just (tyvar, rest) <- splitForAllTy_maybe result_ty
= do { (maybe_ty, wrapper) <- resultWrapper rest
; return (maybe_ty, \e -> Lam tyvar (wrapper e)) }
-- Data types with a single constructor, which has a single arg
-- This includes types like Ptr and ForeignPtr
| Just (tycon, tycon_arg_tys) <- maybe_tc_app
, Just data_con <- isDataProductTyCon_maybe tycon -- One constructor, no existentials
, [unwrapped_res_ty] <- dataConInstOrigArgTys data_con tycon_arg_tys -- One argument
= do { dflags <- getDynFlags
; (maybe_ty, wrapper) <- resultWrapper unwrapped_res_ty
; let narrow_wrapper = maybeNarrow dflags tycon
marshal_con e = Var (dataConWrapId data_con)
`mkTyApps` tycon_arg_tys
`App` wrapper (narrow_wrapper e)
; return (maybe_ty, marshal_con) }
| otherwise
= pprPanic "resultWrapper" (ppr result_ty)
where
maybe_tc_app = splitTyConApp_maybe result_ty
-- When the result of a foreign call is smaller than the word size, we
-- need to sign- or zero-extend the result up to the word size. The C
-- standard appears to say that this is the responsibility of the
-- caller, not the callee.
maybeNarrow :: DynFlags -> TyCon -> (CoreExpr -> CoreExpr)
maybeNarrow dflags tycon
| tycon `hasKey` int8TyConKey = \e -> App (Var (mkPrimOpId Narrow8IntOp)) e
| tycon `hasKey` int16TyConKey = \e -> App (Var (mkPrimOpId Narrow16IntOp)) e
| tycon `hasKey` int32TyConKey
&& wORD_SIZE dflags > 4 = \e -> App (Var (mkPrimOpId Narrow32IntOp)) e
| tycon `hasKey` word8TyConKey = \e -> App (Var (mkPrimOpId Narrow8WordOp)) e
| tycon `hasKey` word16TyConKey = \e -> App (Var (mkPrimOpId Narrow16WordOp)) e
| tycon `hasKey` word32TyConKey
&& wORD_SIZE dflags > 4 = \e -> App (Var (mkPrimOpId Narrow32WordOp)) e
| otherwise = id
|