1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
|
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
Desugaring exporessions.
\begin{code}
{-# LANGUAGE CPP #-}
module DsExpr ( dsExpr, dsLExpr, dsLocalBinds, dsValBinds, dsLit ) where
#include "HsVersions.h"
import Match
import MatchLit
import DsBinds
import DsGRHSs
import DsListComp
import DsUtils
import DsArrows
import DsMonad
import Name
import NameEnv
import FamInstEnv( topNormaliseType )
#ifdef GHCI
-- Template Haskell stuff iff bootstrapped
import DsMeta
#endif
import HsSyn
-- NB: The desugarer, which straddles the source and Core worlds, sometimes
-- needs to see source types
import TcType
import Coercion ( Role(..) )
import TcEvidence
import TcRnMonad
import Type
import CoreSyn
import CoreUtils
import CoreFVs
import MkCore
import DynFlags
import CostCentre
import Id
import Module
import VarSet
import VarEnv
import ConLike
import DataCon
import TysWiredIn
import BasicTypes
import Maybes
import SrcLoc
import Util
import Bag
import Outputable
import FastString
import Control.Monad
\end{code}
%************************************************************************
%* *
dsLocalBinds, dsValBinds
%* *
%************************************************************************
\begin{code}
dsLocalBinds :: HsLocalBinds Id -> CoreExpr -> DsM CoreExpr
dsLocalBinds EmptyLocalBinds body = return body
dsLocalBinds (HsValBinds binds) body = dsValBinds binds body
dsLocalBinds (HsIPBinds binds) body = dsIPBinds binds body
-------------------------
dsValBinds :: HsValBinds Id -> CoreExpr -> DsM CoreExpr
dsValBinds (ValBindsOut binds _) body = foldrM ds_val_bind body binds
dsValBinds (ValBindsIn _ _) _ = panic "dsValBinds ValBindsIn"
-------------------------
dsIPBinds :: HsIPBinds Id -> CoreExpr -> DsM CoreExpr
dsIPBinds (IPBinds ip_binds ev_binds) body
= do { ds_binds <- dsTcEvBinds ev_binds
; let inner = mkCoreLets ds_binds body
-- The dict bindings may not be in
-- dependency order; hence Rec
; foldrM ds_ip_bind inner ip_binds }
where
ds_ip_bind (L _ (IPBind ~(Right n) e)) body
= do e' <- dsLExpr e
return (Let (NonRec n e') body)
-------------------------
ds_val_bind :: (RecFlag, LHsBinds Id) -> CoreExpr -> DsM CoreExpr
-- Special case for bindings which bind unlifted variables
-- We need to do a case right away, rather than building
-- a tuple and doing selections.
-- Silently ignore INLINE and SPECIALISE pragmas...
ds_val_bind (NonRecursive, hsbinds) body
| [L loc bind] <- bagToList hsbinds,
-- Non-recursive, non-overloaded bindings only come in ones
-- ToDo: in some bizarre case it's conceivable that there
-- could be dict binds in the 'binds'. (See the notes
-- below. Then pattern-match would fail. Urk.)
strictMatchOnly bind
= putSrcSpanDs loc (dsStrictBind bind body)
-- Ordinary case for bindings; none should be unlifted
ds_val_bind (_is_rec, binds) body
= do { prs <- dsLHsBinds binds
; ASSERT2( not (any (isUnLiftedType . idType . fst) prs), ppr _is_rec $$ ppr binds )
case prs of
[] -> return body
_ -> return (Let (Rec prs) body) }
-- Use a Rec regardless of is_rec.
-- Why? Because it allows the binds to be all
-- mixed up, which is what happens in one rare case
-- Namely, for an AbsBind with no tyvars and no dicts,
-- but which does have dictionary bindings.
-- See notes with TcSimplify.inferLoop [NO TYVARS]
-- It turned out that wrapping a Rec here was the easiest solution
--
-- NB The previous case dealt with unlifted bindings, so we
-- only have to deal with lifted ones now; so Rec is ok
------------------
dsStrictBind :: HsBind Id -> CoreExpr -> DsM CoreExpr
dsStrictBind (AbsBinds { abs_tvs = [], abs_ev_vars = []
, abs_exports = exports
, abs_ev_binds = ev_binds
, abs_binds = lbinds }) body
= do { let body1 = foldr bind_export body exports
bind_export export b = bindNonRec (abe_poly export) (Var (abe_mono export)) b
; body2 <- foldlBagM (\body lbind -> dsStrictBind (unLoc lbind) body)
body1 lbinds
; ds_binds <- dsTcEvBinds ev_binds
; return (mkCoreLets ds_binds body2) }
dsStrictBind (FunBind { fun_id = L _ fun, fun_matches = matches, fun_co_fn = co_fn
, fun_tick = tick, fun_infix = inf }) body
-- Can't be a bang pattern (that looks like a PatBind)
-- so must be simply unboxed
= do { (args, rhs) <- matchWrapper (FunRhs (idName fun ) inf) matches
; MASSERT( null args ) -- Functions aren't lifted
; MASSERT( isIdHsWrapper co_fn )
; let rhs' = mkOptTickBox tick rhs
; return (bindNonRec fun rhs' body) }
dsStrictBind (PatBind {pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty }) body
= -- let C x# y# = rhs in body
-- ==> case rhs of C x# y# -> body
do { rhs <- dsGuarded grhss ty
; let upat = unLoc pat
eqn = EqnInfo { eqn_pats = [upat],
eqn_rhs = cantFailMatchResult body }
; var <- selectMatchVar upat
; result <- matchEquations PatBindRhs [var] [eqn] (exprType body)
; return (bindNonRec var rhs result) }
dsStrictBind bind body = pprPanic "dsLet: unlifted" (ppr bind $$ ppr body)
----------------------
strictMatchOnly :: HsBind Id -> Bool
strictMatchOnly (AbsBinds { abs_binds = lbinds })
= anyBag (strictMatchOnly . unLoc) lbinds
strictMatchOnly (PatBind { pat_lhs = lpat, pat_rhs_ty = rhs_ty })
= isUnLiftedType rhs_ty
|| isStrictLPat lpat
|| any (isUnLiftedType . idType) (collectPatBinders lpat)
strictMatchOnly (FunBind { fun_id = L _ id })
= isUnLiftedType (idType id)
strictMatchOnly _ = False -- I hope! Checked immediately by caller in fact
\end{code}
%************************************************************************
%* *
\subsection[DsExpr-vars-and-cons]{Variables, constructors, literals}
%* *
%************************************************************************
\begin{code}
dsLExpr :: LHsExpr Id -> DsM CoreExpr
dsLExpr (L loc e) = putSrcSpanDs loc $ dsExpr e
dsExpr :: HsExpr Id -> DsM CoreExpr
dsExpr (HsPar e) = dsLExpr e
dsExpr (ExprWithTySigOut e _) = dsLExpr e
dsExpr (HsVar var) = return (varToCoreExpr var) -- See Note [Desugaring vars]
dsExpr (HsIPVar _) = panic "dsExpr: HsIPVar"
dsExpr (HsLit lit) = dsLit lit
dsExpr (HsOverLit lit) = dsOverLit lit
dsExpr (HsWrap co_fn e)
= do { e' <- dsExpr e
; wrapped_e <- dsHsWrapper co_fn e'
; dflags <- getDynFlags
; warnAboutIdentities dflags e' (exprType wrapped_e)
; return wrapped_e }
dsExpr (NegApp expr neg_expr)
= App <$> dsExpr neg_expr <*> dsLExpr expr
dsExpr (HsLam a_Match)
= uncurry mkLams <$> matchWrapper LambdaExpr a_Match
dsExpr (HsLamCase arg matches)
= do { arg_var <- newSysLocalDs arg
; ([discrim_var], matching_code) <- matchWrapper CaseAlt matches
; return $ Lam arg_var $ bindNonRec discrim_var (Var arg_var) matching_code }
dsExpr (HsApp fun arg)
= mkCoreAppDs <$> dsLExpr fun <*> dsLExpr arg
dsExpr (HsUnboundVar _) = panic "dsExpr: HsUnboundVar"
\end{code}
Note [Desugaring vars]
~~~~~~~~~~~~~~~~~~~~~~
In one situation we can get a *coercion* variable in a HsVar, namely
the support method for an equality superclass:
class (a~b) => C a b where ...
instance (blah) => C (T a) (T b) where ..
Then we get
$dfCT :: forall ab. blah => C (T a) (T b)
$dfCT ab blah = MkC ($c$p1C a blah) ($cop a blah)
$c$p1C :: forall ab. blah => (T a ~ T b)
$c$p1C ab blah = let ...; g :: T a ~ T b = ... } in g
That 'g' in the 'in' part is an evidence variable, and when
converting to core it must become a CO.
Operator sections. At first it looks as if we can convert
\begin{verbatim}
(expr op)
\end{verbatim}
to
\begin{verbatim}
\x -> op expr x
\end{verbatim}
But no! expr might be a redex, and we can lose laziness badly this
way. Consider
\begin{verbatim}
map (expr op) xs
\end{verbatim}
for example. So we convert instead to
\begin{verbatim}
let y = expr in \x -> op y x
\end{verbatim}
If \tr{expr} is actually just a variable, say, then the simplifier
will sort it out.
\begin{code}
dsExpr (OpApp e1 op _ e2)
= -- for the type of y, we need the type of op's 2nd argument
mkCoreAppsDs <$> dsLExpr op <*> mapM dsLExpr [e1, e2]
dsExpr (SectionL expr op) -- Desugar (e !) to ((!) e)
= mkCoreAppDs <$> dsLExpr op <*> dsLExpr expr
-- dsLExpr (SectionR op expr) -- \ x -> op x expr
dsExpr (SectionR op expr) = do
core_op <- dsLExpr op
-- for the type of x, we need the type of op's 2nd argument
let (x_ty:y_ty:_, _) = splitFunTys (exprType core_op)
-- See comment with SectionL
y_core <- dsLExpr expr
x_id <- newSysLocalDs x_ty
y_id <- newSysLocalDs y_ty
return (bindNonRec y_id y_core $
Lam x_id (mkCoreAppsDs core_op [Var x_id, Var y_id]))
dsExpr (ExplicitTuple tup_args boxity)
= do { let go (lam_vars, args) (Missing ty)
-- For every missing expression, we need
-- another lambda in the desugaring.
= do { lam_var <- newSysLocalDs ty
; return (lam_var : lam_vars, Var lam_var : args) }
go (lam_vars, args) (Present expr)
-- Expressions that are present don't generate
-- lambdas, just arguments.
= do { core_expr <- dsLExpr expr
; return (lam_vars, core_expr : args) }
; (lam_vars, args) <- foldM go ([], []) (reverse tup_args)
-- The reverse is because foldM goes left-to-right
; return $ mkCoreLams lam_vars $
mkCoreConApps (tupleCon (boxityNormalTupleSort boxity) (length tup_args))
(map (Type . exprType) args ++ args) }
dsExpr (HsSCC cc expr@(L loc _)) = do
mod_name <- getModule
count <- goptM Opt_ProfCountEntries
uniq <- newUnique
Tick (ProfNote (mkUserCC cc mod_name loc uniq) count True) <$> dsLExpr expr
dsExpr (HsCoreAnn _ expr)
= dsLExpr expr
dsExpr (HsCase discrim matches)
= do { core_discrim <- dsLExpr discrim
; ([discrim_var], matching_code) <- matchWrapper CaseAlt matches
; return (bindNonRec discrim_var core_discrim matching_code) }
-- Pepe: The binds are in scope in the body but NOT in the binding group
-- This is to avoid silliness in breakpoints
dsExpr (HsLet binds body) = do
body' <- dsLExpr body
dsLocalBinds binds body'
-- We need the `ListComp' form to use `deListComp' (rather than the "do" form)
-- because the interpretation of `stmts' depends on what sort of thing it is.
--
dsExpr (HsDo ListComp stmts res_ty) = dsListComp stmts res_ty
dsExpr (HsDo PArrComp stmts _) = dsPArrComp (map unLoc stmts)
dsExpr (HsDo DoExpr stmts _) = dsDo stmts
dsExpr (HsDo GhciStmtCtxt stmts _) = dsDo stmts
dsExpr (HsDo MDoExpr stmts _) = dsDo stmts
dsExpr (HsDo MonadComp stmts _) = dsMonadComp stmts
dsExpr (HsIf mb_fun guard_expr then_expr else_expr)
= do { pred <- dsLExpr guard_expr
; b1 <- dsLExpr then_expr
; b2 <- dsLExpr else_expr
; case mb_fun of
Just fun -> do { core_fun <- dsExpr fun
; return (mkCoreApps core_fun [pred,b1,b2]) }
Nothing -> return $ mkIfThenElse pred b1 b2 }
dsExpr (HsMultiIf res_ty alts)
| null alts
= mkErrorExpr
| otherwise
= do { match_result <- liftM (foldr1 combineMatchResults)
(mapM (dsGRHS IfAlt res_ty) alts)
; error_expr <- mkErrorExpr
; extractMatchResult match_result error_expr }
where
mkErrorExpr = mkErrorAppDs nON_EXHAUSTIVE_GUARDS_ERROR_ID res_ty
(ptext (sLit "multi-way if"))
\end{code}
\noindent
\underline{\bf Various data construction things}
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\begin{code}
dsExpr (ExplicitList elt_ty wit xs)
= dsExplicitList elt_ty wit xs
-- We desugar [:x1, ..., xn:] as
-- singletonP x1 +:+ ... +:+ singletonP xn
--
dsExpr (ExplicitPArr ty []) = do
emptyP <- dsDPHBuiltin emptyPVar
return (Var emptyP `App` Type ty)
dsExpr (ExplicitPArr ty xs) = do
singletonP <- dsDPHBuiltin singletonPVar
appP <- dsDPHBuiltin appPVar
xs' <- mapM dsLExpr xs
return . foldr1 (binary appP) $ map (unary singletonP) xs'
where
unary fn x = mkApps (Var fn) [Type ty, x]
binary fn x y = mkApps (Var fn) [Type ty, x, y]
dsExpr (ArithSeq expr witness seq)
= case witness of
Nothing -> dsArithSeq expr seq
Just fl -> do {
; fl' <- dsExpr fl
; newArithSeq <- dsArithSeq expr seq
; return (App fl' newArithSeq)}
dsExpr (PArrSeq expr (FromTo from to))
= mkApps <$> dsExpr expr <*> mapM dsLExpr [from, to]
dsExpr (PArrSeq expr (FromThenTo from thn to))
= mkApps <$> dsExpr expr <*> mapM dsLExpr [from, thn, to]
dsExpr (PArrSeq _ _)
= panic "DsExpr.dsExpr: Infinite parallel array!"
-- the parser shouldn't have generated it and the renamer and typechecker
-- shouldn't have let it through
\end{code}
\noindent
\underline{\bf Record construction and update}
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For record construction we do this (assuming T has three arguments)
\begin{verbatim}
T { op2 = e }
==>
let err = /\a -> recConErr a
T (recConErr t1 "M.lhs/230/op1")
e
(recConErr t1 "M.lhs/230/op3")
\end{verbatim}
@recConErr@ then converts its arugment string into a proper message
before printing it as
\begin{verbatim}
M.lhs, line 230: missing field op1 was evaluated
\end{verbatim}
We also handle @C{}@ as valid construction syntax for an unlabelled
constructor @C@, setting all of @C@'s fields to bottom.
\begin{code}
dsExpr (RecordCon (L _ data_con_id) con_expr rbinds) = do
con_expr' <- dsExpr con_expr
let
(arg_tys, _) = tcSplitFunTys (exprType con_expr')
-- A newtype in the corner should be opaque;
-- hence TcType.tcSplitFunTys
mk_arg (arg_ty, lbl) -- Selector id has the field label as its name
= case findField (rec_flds rbinds) lbl of
(rhs:rhss) -> ASSERT( null rhss )
dsLExpr rhs
[] -> mkErrorAppDs rEC_CON_ERROR_ID arg_ty (ppr lbl)
unlabelled_bottom arg_ty = mkErrorAppDs rEC_CON_ERROR_ID arg_ty Outputable.empty
labels = dataConFieldLabels (idDataCon data_con_id)
-- The data_con_id is guaranteed to be the wrapper id of the constructor
con_args <- if null labels
then mapM unlabelled_bottom arg_tys
else mapM mk_arg (zipEqual "dsExpr:RecordCon" arg_tys labels)
return (mkCoreApps con_expr' con_args)
\end{code}
Record update is a little harder. Suppose we have the decl:
\begin{verbatim}
data T = T1 {op1, op2, op3 :: Int}
| T2 {op4, op2 :: Int}
| T3
\end{verbatim}
Then we translate as follows:
\begin{verbatim}
r { op2 = e }
===>
let op2 = e in
case r of
T1 op1 _ op3 -> T1 op1 op2 op3
T2 op4 _ -> T2 op4 op2
other -> recUpdError "M.lhs/230"
\end{verbatim}
It's important that we use the constructor Ids for @T1@, @T2@ etc on the
RHSs, and do not generate a Core constructor application directly, because the constructor
might do some argument-evaluation first; and may have to throw away some
dictionaries.
Note [Update for GADTs]
~~~~~~~~~~~~~~~~~~~~~~~
Consider
data T a b where
T1 { f1 :: a } :: T a Int
Then the wrapper function for T1 has type
$WT1 :: a -> T a Int
But if x::T a b, then
x { f1 = v } :: T a b (not T a Int!)
So we need to cast (T a Int) to (T a b). Sigh.
\begin{code}
dsExpr expr@(RecordUpd record_expr (HsRecFields { rec_flds = fields })
cons_to_upd in_inst_tys out_inst_tys)
| null fields
= dsLExpr record_expr
| otherwise
= ASSERT2( notNull cons_to_upd, ppr expr )
do { record_expr' <- dsLExpr record_expr
; field_binds' <- mapM ds_field fields
; let upd_fld_env :: NameEnv Id -- Maps field name to the LocalId of the field binding
upd_fld_env = mkNameEnv [(f,l) | (f,l,_) <- field_binds']
-- It's important to generate the match with matchWrapper,
-- and the right hand sides with applications of the wrapper Id
-- so that everything works when we are doing fancy unboxing on the
-- constructor aguments.
; alts <- mapM (mk_alt upd_fld_env) cons_to_upd
; ([discrim_var], matching_code)
<- matchWrapper RecUpd (MG { mg_alts = alts, mg_arg_tys = [in_ty], mg_res_ty = out_ty, mg_origin = Generated })
; return (add_field_binds field_binds' $
bindNonRec discrim_var record_expr' matching_code) }
where
ds_field :: HsRecField Id (LHsExpr Id) -> DsM (Name, Id, CoreExpr)
-- Clone the Id in the HsRecField, because its Name is that
-- of the record selector, and we must not make that a lcoal binder
-- else we shadow other uses of the record selector
-- Hence 'lcl_id'. Cf Trac #2735
ds_field rec_field = do { rhs <- dsLExpr (hsRecFieldArg rec_field)
; let fld_id = unLoc (hsRecFieldId rec_field)
; lcl_id <- newSysLocalDs (idType fld_id)
; return (idName fld_id, lcl_id, rhs) }
add_field_binds [] expr = expr
add_field_binds ((_,b,r):bs) expr = bindNonRec b r (add_field_binds bs expr)
-- Awkwardly, for families, the match goes
-- from instance type to family type
tycon = dataConTyCon (head cons_to_upd)
in_ty = mkTyConApp tycon in_inst_tys
out_ty = mkFamilyTyConApp tycon out_inst_tys
mk_alt upd_fld_env con
= do { let (univ_tvs, ex_tvs, eq_spec,
theta, arg_tys, _) = dataConFullSig con
subst = mkTopTvSubst (univ_tvs `zip` in_inst_tys)
-- I'm not bothering to clone the ex_tvs
; eqs_vars <- mapM newPredVarDs (substTheta subst (eqSpecPreds eq_spec))
; theta_vars <- mapM newPredVarDs (substTheta subst theta)
; arg_ids <- newSysLocalsDs (substTys subst arg_tys)
; let val_args = zipWithEqual "dsExpr:RecordUpd" mk_val_arg
(dataConFieldLabels con) arg_ids
mk_val_arg field_name pat_arg_id
= nlHsVar (lookupNameEnv upd_fld_env field_name `orElse` pat_arg_id)
inst_con = noLoc $ HsWrap wrap (HsVar (dataConWrapId con))
-- Reconstruct with the WrapId so that unpacking happens
wrap = mkWpEvVarApps theta_vars <.>
mkWpTyApps (mkTyVarTys ex_tvs) <.>
mkWpTyApps [ty | (tv, ty) <- univ_tvs `zip` out_inst_tys
, not (tv `elemVarEnv` wrap_subst) ]
rhs = foldl (\a b -> nlHsApp a b) inst_con val_args
-- Tediously wrap the application in a cast
-- Note [Update for GADTs]
wrap_co = mkTcTyConAppCo Nominal tycon
[ lookup tv ty | (tv,ty) <- univ_tvs `zip` out_inst_tys ]
lookup univ_tv ty = case lookupVarEnv wrap_subst univ_tv of
Just co' -> co'
Nothing -> mkTcReflCo Nominal ty
wrap_subst = mkVarEnv [ (tv, mkTcSymCo (mkTcCoVarCo eq_var))
| ((tv,_),eq_var) <- eq_spec `zip` eqs_vars ]
pat = noLoc $ ConPatOut { pat_con = noLoc (RealDataCon con)
, pat_tvs = ex_tvs
, pat_dicts = eqs_vars ++ theta_vars
, pat_binds = emptyTcEvBinds
, pat_args = PrefixCon $ map nlVarPat arg_ids
, pat_arg_tys = in_inst_tys
, pat_wrap = idHsWrapper }
; let wrapped_rhs | null eq_spec = rhs
| otherwise = mkLHsWrap (mkWpCast (mkTcSubCo wrap_co)) rhs
; return (mkSimpleMatch [pat] wrapped_rhs) }
\end{code}
Here is where we desugar the Template Haskell brackets and escapes
\begin{code}
-- Template Haskell stuff
dsExpr (HsRnBracketOut _ _) = panic "dsExpr HsRnBracketOut"
#ifdef GHCI
dsExpr (HsTcBracketOut x ps) = dsBracket x ps
#else
dsExpr (HsTcBracketOut _ _) = panic "dsExpr HsBracketOut"
#endif
dsExpr (HsSpliceE _ s) = pprPanic "dsExpr:splice" (ppr s)
-- Arrow notation extension
dsExpr (HsProc pat cmd) = dsProcExpr pat cmd
\end{code}
Hpc Support
\begin{code}
dsExpr (HsTick tickish e) = do
e' <- dsLExpr e
return (Tick tickish e')
-- There is a problem here. The then and else branches
-- have no free variables, so they are open to lifting.
-- We need someway of stopping this.
-- This will make no difference to binary coverage
-- (did you go here: YES or NO), but will effect accurate
-- tick counting.
dsExpr (HsBinTick ixT ixF e) = do
e2 <- dsLExpr e
do { ASSERT(exprType e2 `eqType` boolTy)
mkBinaryTickBox ixT ixF e2
}
\end{code}
\begin{code}
-- HsSyn constructs that just shouldn't be here:
dsExpr (ExprWithTySig {}) = panic "dsExpr:ExprWithTySig"
dsExpr (HsBracket {}) = panic "dsExpr:HsBracket"
dsExpr (HsQuasiQuoteE {}) = panic "dsExpr:HsQuasiQuoteE"
dsExpr (HsArrApp {}) = panic "dsExpr:HsArrApp"
dsExpr (HsArrForm {}) = panic "dsExpr:HsArrForm"
dsExpr (HsTickPragma {}) = panic "dsExpr:HsTickPragma"
dsExpr (EWildPat {}) = panic "dsExpr:EWildPat"
dsExpr (EAsPat {}) = panic "dsExpr:EAsPat"
dsExpr (EViewPat {}) = panic "dsExpr:EViewPat"
dsExpr (ELazyPat {}) = panic "dsExpr:ELazyPat"
dsExpr (HsType {}) = panic "dsExpr:HsType"
dsExpr (HsDo {}) = panic "dsExpr:HsDo"
findField :: [HsRecField Id arg] -> Name -> [arg]
findField rbinds lbl
= [rhs | HsRecField { hsRecFieldId = id, hsRecFieldArg = rhs } <- rbinds
, lbl == idName (unLoc id) ]
\end{code}
%--------------------------------------------------------------------
Note [Desugaring explicit lists]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Explicit lists are desugared in a cleverer way to prevent some
fruitless allocations. Essentially, whenever we see a list literal
[x_1, ..., x_n] we:
1. Find the tail of the list that can be allocated statically (say
[x_k, ..., x_n]) by later stages and ensure we desugar that
normally: this makes sure that we don't cause a code size increase
by having the cons in that expression fused (see later) and hence
being unable to statically allocate any more
2. For the prefix of the list which cannot be allocated statically,
say [x_1, ..., x_(k-1)], we turn it into an expression involving
build so that if we find any foldrs over it it will fuse away
entirely!
So in this example we will desugar to:
build (\c n -> x_1 `c` x_2 `c` .... `c` foldr c n [x_k, ..., x_n]
If fusion fails to occur then build will get inlined and (since we
defined a RULE for foldr (:) []) we will get back exactly the
normal desugaring for an explicit list.
This optimisation can be worth a lot: up to 25% of the total
allocation in some nofib programs. Specifically
Program Size Allocs Runtime CompTime
rewrite +0.0% -26.3% 0.02 -1.8%
ansi -0.3% -13.8% 0.00 +0.0%
lift +0.0% -8.7% 0.00 -2.3%
Of course, if rules aren't turned on then there is pretty much no
point doing this fancy stuff, and it may even be harmful.
=======> Note by SLPJ Dec 08.
I'm unconvinced that we should *ever* generate a build for an explicit
list. See the comments in GHC.Base about the foldr/cons rule, which
points out that (foldr k z [a,b,c]) may generate *much* less code than
(a `k` b `k` c `k` z).
Furthermore generating builds messes up the LHS of RULES.
Example: the foldr/single rule in GHC.Base
foldr k z [x] = ...
We do not want to generate a build invocation on the LHS of this RULE!
We fix this by disabling rules in rule LHSs, and testing that
flag here; see Note [Desugaring RULE left hand sides] in Desugar
To test this I've added a (static) flag -fsimple-list-literals, which
makes all list literals be generated via the simple route.
\begin{code}
dsExplicitList :: PostTc Id Type -> Maybe (SyntaxExpr Id) -> [LHsExpr Id]
-> DsM CoreExpr
-- See Note [Desugaring explicit lists]
dsExplicitList elt_ty Nothing xs
= do { dflags <- getDynFlags
; xs' <- mapM dsLExpr xs
; let (dynamic_prefix, static_suffix) = spanTail is_static xs'
; if gopt Opt_SimpleListLiterals dflags -- -fsimple-list-literals
|| not (gopt Opt_EnableRewriteRules dflags) -- Rewrite rules off
-- Don't generate a build if there are no rules to eliminate it!
-- See Note [Desugaring RULE left hand sides] in Desugar
|| null dynamic_prefix -- Avoid build (\c n. foldr c n xs)!
then return $ mkListExpr elt_ty xs'
else mkBuildExpr elt_ty (mkSplitExplicitList dynamic_prefix static_suffix) }
where
is_static :: CoreExpr -> Bool
is_static e = all is_static_var (varSetElems (exprFreeVars e))
is_static_var :: Var -> Bool
is_static_var v
| isId v = isExternalName (idName v) -- Top-level things are given external names
| otherwise = False -- Type variables
mkSplitExplicitList prefix suffix (c, _) (n, n_ty)
= do { let suffix' = mkListExpr elt_ty suffix
; folded_suffix <- mkFoldrExpr elt_ty n_ty (Var c) (Var n) suffix'
; return (foldr (App . App (Var c)) folded_suffix prefix) }
dsExplicitList elt_ty (Just fln) xs
= do { fln' <- dsExpr fln
; list <- dsExplicitList elt_ty Nothing xs
; dflags <- getDynFlags
; return (App (App fln' (mkIntExprInt dflags (length xs))) list) }
spanTail :: (a -> Bool) -> [a] -> ([a], [a])
spanTail f xs = (reverse rejected, reverse satisfying)
where (satisfying, rejected) = span f $ reverse xs
dsArithSeq :: PostTcExpr -> (ArithSeqInfo Id) -> DsM CoreExpr
dsArithSeq expr (From from)
= App <$> dsExpr expr <*> dsLExpr from
dsArithSeq expr (FromTo from to)
= do dflags <- getDynFlags
warnAboutEmptyEnumerations dflags from Nothing to
expr' <- dsExpr expr
from' <- dsLExpr from
to' <- dsLExpr to
return $ mkApps expr' [from', to']
dsArithSeq expr (FromThen from thn)
= mkApps <$> dsExpr expr <*> mapM dsLExpr [from, thn]
dsArithSeq expr (FromThenTo from thn to)
= do dflags <- getDynFlags
warnAboutEmptyEnumerations dflags from (Just thn) to
expr' <- dsExpr expr
from' <- dsLExpr from
thn' <- dsLExpr thn
to' <- dsLExpr to
return $ mkApps expr' [from', thn', to']
\end{code}
Desugar 'do' and 'mdo' expressions (NOT list comprehensions, they're
handled in DsListComp). Basically does the translation given in the
Haskell 98 report:
\begin{code}
dsDo :: [ExprLStmt Id] -> DsM CoreExpr
dsDo stmts
= goL stmts
where
goL [] = panic "dsDo"
goL (L loc stmt:lstmts) = putSrcSpanDs loc (go loc stmt lstmts)
go _ (LastStmt body _) stmts
= ASSERT( null stmts ) dsLExpr body
-- The 'return' op isn't used for 'do' expressions
go _ (BodyStmt rhs then_expr _ _) stmts
= do { rhs2 <- dsLExpr rhs
; warnDiscardedDoBindings rhs (exprType rhs2)
; then_expr2 <- dsExpr then_expr
; rest <- goL stmts
; return (mkApps then_expr2 [rhs2, rest]) }
go _ (LetStmt binds) stmts
= do { rest <- goL stmts
; dsLocalBinds binds rest }
go _ (BindStmt pat rhs bind_op fail_op) stmts
= do { body <- goL stmts
; rhs' <- dsLExpr rhs
; bind_op' <- dsExpr bind_op
; var <- selectSimpleMatchVarL pat
; let bind_ty = exprType bind_op' -- rhs -> (pat -> res1) -> res2
res1_ty = funResultTy (funArgTy (funResultTy bind_ty))
; match <- matchSinglePat (Var var) (StmtCtxt DoExpr) pat
res1_ty (cantFailMatchResult body)
; match_code <- handle_failure pat match fail_op
; return (mkApps bind_op' [rhs', Lam var match_code]) }
go loc (RecStmt { recS_stmts = rec_stmts, recS_later_ids = later_ids
, recS_rec_ids = rec_ids, recS_ret_fn = return_op
, recS_mfix_fn = mfix_op, recS_bind_fn = bind_op
, recS_rec_rets = rec_rets, recS_ret_ty = body_ty }) stmts
= goL (new_bind_stmt : stmts) -- rec_ids can be empty; eg rec { print 'x' }
where
new_bind_stmt = L loc $ BindStmt (mkBigLHsPatTup later_pats)
mfix_app bind_op
noSyntaxExpr -- Tuple cannot fail
tup_ids = rec_ids ++ filterOut (`elem` rec_ids) later_ids
tup_ty = mkBigCoreTupTy (map idType tup_ids) -- Deals with singleton case
rec_tup_pats = map nlVarPat tup_ids
later_pats = rec_tup_pats
rets = map noLoc rec_rets
mfix_app = nlHsApp (noLoc mfix_op) mfix_arg
mfix_arg = noLoc $ HsLam (MG { mg_alts = [mkSimpleMatch [mfix_pat] body]
, mg_arg_tys = [tup_ty], mg_res_ty = body_ty
, mg_origin = Generated })
mfix_pat = noLoc $ LazyPat $ mkBigLHsPatTup rec_tup_pats
body = noLoc $ HsDo DoExpr (rec_stmts ++ [ret_stmt]) body_ty
ret_app = nlHsApp (noLoc return_op) (mkBigLHsTup rets)
ret_stmt = noLoc $ mkLastStmt ret_app
-- This LastStmt will be desugared with dsDo,
-- which ignores the return_op in the LastStmt,
-- so we must apply the return_op explicitly
go _ (ParStmt {}) _ = panic "dsDo ParStmt"
go _ (TransStmt {}) _ = panic "dsDo TransStmt"
handle_failure :: LPat Id -> MatchResult -> SyntaxExpr Id -> DsM CoreExpr
-- In a do expression, pattern-match failure just calls
-- the monadic 'fail' rather than throwing an exception
handle_failure pat match fail_op
| matchCanFail match
= do { fail_op' <- dsExpr fail_op
; dflags <- getDynFlags
; fail_msg <- mkStringExpr (mk_fail_msg dflags pat)
; extractMatchResult match (App fail_op' fail_msg) }
| otherwise
= extractMatchResult match (error "It can't fail")
mk_fail_msg :: DynFlags -> Located e -> String
mk_fail_msg dflags pat = "Pattern match failure in do expression at " ++
showPpr dflags (getLoc pat)
\end{code}
%************************************************************************
%* *
\subsection{Errors and contexts}
%* *
%************************************************************************
\begin{code}
-- Warn about certain types of values discarded in monadic bindings (#3263)
warnDiscardedDoBindings :: LHsExpr Id -> Type -> DsM ()
warnDiscardedDoBindings rhs rhs_ty
| Just (m_ty, elt_ty) <- tcSplitAppTy_maybe rhs_ty
= do { warn_unused <- woptM Opt_WarnUnusedDoBind
; warn_wrong <- woptM Opt_WarnWrongDoBind
; when (warn_unused || warn_wrong) $
do { fam_inst_envs <- dsGetFamInstEnvs
; let norm_elt_ty = topNormaliseType fam_inst_envs elt_ty
-- Warn about discarding non-() things in 'monadic' binding
; if warn_unused && not (isUnitTy norm_elt_ty)
then warnDs (badMonadBind rhs elt_ty
(ptext (sLit "-fno-warn-unused-do-bind")))
else
-- Warn about discarding m a things in 'monadic' binding of the same type,
-- but only if we didn't already warn due to Opt_WarnUnusedDoBind
when warn_wrong $
do { case tcSplitAppTy_maybe norm_elt_ty of
Just (elt_m_ty, _)
| m_ty `eqType` topNormaliseType fam_inst_envs elt_m_ty
-> warnDs (badMonadBind rhs elt_ty
(ptext (sLit "-fno-warn-wrong-do-bind")))
_ -> return () } } }
| otherwise -- RHS does have type of form (m ty), which is weird
= return () -- but at lesat this warning is irrelevant
badMonadBind :: LHsExpr Id -> Type -> SDoc -> SDoc
badMonadBind rhs elt_ty flag_doc
= vcat [ hang (ptext (sLit "A do-notation statement discarded a result of type"))
2 (quotes (ppr elt_ty))
, hang (ptext (sLit "Suppress this warning by saying"))
2 (quotes $ ptext (sLit "_ <-") <+> ppr rhs)
, ptext (sLit "or by using the flag") <+> flag_doc ]
\end{code}
|