summaryrefslogtreecommitdiff
path: root/compiler/deSugar/DsForeign.lhs
blob: 84ae740dcad44fa765bb031885cdedd3aa62da50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
%
% (c) The University of Glasgow 2006
% (c) The AQUA Project, Glasgow University, 1998
%

Desugaring foreign declarations (see also DsCCall).

\begin{code}
{-# OPTIONS -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
-- for details

module DsForeign ( dsForeigns ) where

#include "HsVersions.h"
import TcRnMonad	-- temp

import CoreSyn

import DsCCall
import DsMonad

import HsSyn
import DataCon
import MachOp
import SMRep
import CoreUtils
import Id
import Literal
import Module
import Name
import Type
import Coercion
import TcType

import HscTypes
import ForeignCall
import TysWiredIn
import TysPrim
import PrelNames
import BasicTypes
import SrcLoc
import Outputable
import FastString

import Data.Maybe
import Data.List
\end{code}

Desugaring of @foreign@ declarations is naturally split up into
parts, an @import@ and an @export@  part. A @foreign import@ 
declaration
\begin{verbatim}
  foreign import cc nm f :: prim_args -> IO prim_res
\end{verbatim}
is the same as
\begin{verbatim}
  f :: prim_args -> IO prim_res
  f a1 ... an = _ccall_ nm cc a1 ... an
\end{verbatim}
so we reuse the desugaring code in @DsCCall@ to deal with these.

\begin{code}
type Binding = (Id, CoreExpr)	-- No rec/nonrec structure;
				-- the occurrence analyser will sort it all out

dsForeigns :: [LForeignDecl Id] 
	   -> DsM (ForeignStubs, [Binding])
dsForeigns [] 
  = returnDs (NoStubs, [])
dsForeigns fos
  = do 
    fives <- mapM do_ldecl fos
    let
        (hs, cs, hdrs, idss, bindss) = unzip5 fives
        fe_ids = concat idss
        fe_init_code = map foreignExportInitialiser fe_ids
    --
    return (ForeignStubs 
             (vcat hs)
             (vcat cs $$ vcat fe_init_code)
             (nub (concat hdrs)),
           (concat bindss))
  where
   do_ldecl (L loc decl) = putSrcSpanDs loc (do_decl decl)
            
   do_decl (ForeignImport id _ spec)
    = traceIf (text "fi start" <+> ppr id)	`thenDs` \ _ ->
      dsFImport (unLoc id) spec	                `thenDs` \ (bs, h, c, mbhd) -> 
      traceIf (text "fi end" <+> ppr id)	`thenDs` \ _ ->
      returnDs (h, c, maybeToList mbhd, [], bs)

   do_decl (ForeignExport (L _ id) _ (CExport (CExportStatic ext_nm cconv)))
    = dsFExport id (idType id) 
		ext_nm cconv False                 `thenDs` \(h, c, _, _) ->
      returnDs (h, c, [], [id], [])
\end{code}


%************************************************************************
%*									*
\subsection{Foreign import}
%*									*
%************************************************************************

Desugaring foreign imports is just the matter of creating a binding
that on its RHS unboxes its arguments, performs the external call
(using the @CCallOp@ primop), before boxing the result up and returning it.

However, we create a worker/wrapper pair, thus:

	foreign import f :: Int -> IO Int
==>
	f x = IO ( \s -> case x of { I# x# ->
			 case fw s x# of { (# s1, y# #) ->
			 (# s1, I# y# #)}})

	fw s x# = ccall f s x#

The strictness/CPR analyser won't do this automatically because it doesn't look
inside returned tuples; but inlining this wrapper is a Really Good Idea 
because it exposes the boxing to the call site.

\begin{code}
dsFImport :: Id
	  -> ForeignImport
	  -> DsM ([Binding], SDoc, SDoc, Maybe FastString)
dsFImport id (CImport cconv safety header lib spec)
  = dsCImport id spec cconv safety no_hdrs	  `thenDs` \(ids, h, c) ->
    returnDs (ids, h, c, if no_hdrs then Nothing else Just header)
  where
    no_hdrs = nullFS header

  -- FIXME: the `lib' field is needed for .NET ILX generation when invoking
  --	    routines that are external to the .NET runtime, but GHC doesn't
  --	    support such calls yet; if `nullFastString lib', the value was not given
dsFImport id (DNImport spec)
  = dsFCall id (DNCall spec) True {- No headers -} `thenDs` \(ids, h, c) ->
    returnDs (ids, h, c, Nothing)

dsCImport :: Id
	  -> CImportSpec
	  -> CCallConv
	  -> Safety
	  -> Bool	-- True <=> no headers in the f.i decl
	  -> DsM ([Binding], SDoc, SDoc)
dsCImport id (CLabel cid) _ _ no_hdrs
 = resultWrapper (idType id) `thenDs` \ (resTy, foRhs) ->
   ASSERT(fromJust resTy `coreEqType` addrPrimTy)    -- typechecker ensures this
    let rhs = foRhs (mkLit (MachLabel cid Nothing)) in
    returnDs ([(setImpInline no_hdrs id, rhs)], empty, empty)
dsCImport id (CFunction target) cconv safety no_hdrs
  = dsFCall id (CCall (CCallSpec target cconv safety)) no_hdrs
dsCImport id CWrapper cconv _ _
  = dsFExportDynamic id cconv

setImpInline :: Bool 	-- True <=> No #include headers 
			-- in the foreign import declaration
	     -> Id -> Id
-- If there is a #include header in the foreign import
-- we make the worker non-inlinable, because we currently
-- don't keep the #include stuff in the CCallId, and hence
-- it won't be visible in the importing module, which can be
-- fatal. 
-- (The #include stuff is just collected from the foreign import
--  decls in a module.)
-- If you want to do cross-module inlining of the c-calls themselves,
-- put the #include stuff in the package spec, not the foreign 
-- import decl.
setImpInline True  id = id
setImpInline False id = id `setInlinePragma` NeverActive
\end{code}


%************************************************************************
%*									*
\subsection{Foreign calls}
%*									*
%************************************************************************

\begin{code}
dsFCall fn_id fcall no_hdrs
  = let
	ty		     = idType fn_id
	(tvs, fun_ty)        = tcSplitForAllTys ty
	(arg_tys, io_res_ty) = tcSplitFunTys fun_ty
		-- Must use tcSplit* functions because we want to 
		-- see that (IO t) in the corner
    in
    newSysLocalsDs arg_tys  			`thenDs` \ args ->
    mapAndUnzipDs unboxArg (map Var args)	`thenDs` \ (val_args, arg_wrappers) ->

    let
	work_arg_ids  = [v | Var v <- val_args]	-- All guaranteed to be vars

	forDotnet = 
	 case fcall of
	   DNCall{} -> True
	   _        -> False

	topConDs
	  | forDotnet = 
	     dsLookupGlobalId checkDotnetResName `thenDs` \ check_id -> 
	     return (Just check_id)
          | otherwise = return Nothing
	     
	augmentResultDs
	  | forDotnet = 
	  	newSysLocalDs addrPrimTy `thenDs` \ err_res -> 
		returnDs (\ (mb_res_ty, resWrap) ->
			      case mb_res_ty of
			  	Nothing -> (Just (mkTyConApp (tupleTyCon Unboxed 1)
							     [ addrPrimTy ]),
						 resWrap)
				Just x  -> (Just (mkTyConApp (tupleTyCon Unboxed 2)
							     [ x, addrPrimTy ]),
						 resWrap))
	  | otherwise = returnDs id
    in
    augmentResultDs				     `thenDs` \ augment -> 
    topConDs					     `thenDs` \ topCon -> 
    boxResult augment topCon io_res_ty `thenDs` \ (ccall_result_ty, res_wrapper) ->

    newUnique					`thenDs` \ ccall_uniq ->
    newUnique					`thenDs` \ work_uniq ->
    let
	-- Build the worker
	worker_ty     = mkForAllTys tvs (mkFunTys (map idType work_arg_ids) ccall_result_ty)
 	the_ccall_app = mkFCall ccall_uniq fcall val_args ccall_result_ty
	work_rhs      = mkLams tvs (mkLams work_arg_ids the_ccall_app)
	work_id       = setImpInline no_hdrs $	-- See comments with setImpInline
			mkSysLocal FSLIT("$wccall") work_uniq worker_ty

	-- Build the wrapper
	work_app     = mkApps (mkVarApps (Var work_id) tvs) val_args
	wrapper_body = foldr ($) (res_wrapper work_app) arg_wrappers
        wrap_rhs     = mkInlineMe (mkLams (tvs ++ args) wrapper_body)
    in
    returnDs ([(work_id, work_rhs), (fn_id, wrap_rhs)], empty, empty)
\end{code}


%************************************************************************
%*									*
\subsection{Foreign export}
%*									*
%************************************************************************

The function that does most of the work for `@foreign export@' declarations.
(see below for the boilerplate code a `@foreign export@' declaration expands
 into.)

For each `@foreign export foo@' in a module M we generate:
\begin{itemize}
\item a C function `@foo@', which calls
\item a Haskell stub `@M.$ffoo@', which calls
\end{itemize}
the user-written Haskell function `@M.foo@'.

\begin{code}
dsFExport :: Id			-- Either the exported Id, 
				-- or the foreign-export-dynamic constructor
	  -> Type		-- The type of the thing callable from C
	  -> CLabelString	-- The name to export to C land
	  -> CCallConv
	  -> Bool		-- True => foreign export dynamic
				-- 	   so invoke IO action that's hanging off 
				-- 	   the first argument's stable pointer
	  -> DsM ( SDoc		-- contents of Module_stub.h
		 , SDoc		-- contents of Module_stub.c
		 , [MachRep]    -- primitive arguments expected by stub function
		 , Int		-- size of args to stub function
		 )

dsFExport fn_id ty ext_name cconv isDyn
   = 
     let
        (_tvs,sans_foralls)		= tcSplitForAllTys ty
        (fe_arg_tys', orig_res_ty)	= tcSplitFunTys sans_foralls
	-- We must use tcSplits here, because we want to see 
	-- the (IO t) in the corner of the type!
        fe_arg_tys | isDyn     = tail fe_arg_tys'
                   | otherwise = fe_arg_tys'
     in
	-- Look at the result type of the exported function, orig_res_ty
	-- If it's IO t, return		(t, True)
	-- If it's plain t, return	(t, False)
     (case tcSplitIOType_maybe orig_res_ty of
	Just (ioTyCon, res_ty, co) -> returnDs (res_ty, True)
		-- The function already returns IO t
		-- ToDo: what about the coercion?
	Nothing 	       -> returnDs (orig_res_ty, False)	
		-- The function returns t
     )					`thenDs` \ (res_ty,		-- t
						    is_IO_res_ty) ->	-- Bool
     returnDs $
       mkFExportCBits ext_name 
                      (if isDyn then Nothing else Just fn_id)
                      fe_arg_tys res_ty is_IO_res_ty cconv
\end{code}

@foreign import "wrapper"@ (previously "foreign export dynamic") lets
you dress up Haskell IO actions of some fixed type behind an
externally callable interface (i.e., as a C function pointer). Useful
for callbacks and stuff.

\begin{verbatim}
type Fun = Bool -> Int -> IO Int
foreign import "wrapper" f :: Fun -> IO (FunPtr Fun)

-- Haskell-visible constructor, which is generated from the above:
-- SUP: No check for NULL from createAdjustor anymore???

f :: Fun -> IO (FunPtr Fun)
f cback =
   bindIO (newStablePtr cback)
          (\StablePtr sp# -> IO (\s1# ->
              case _ccall_ createAdjustor cconv sp# ``f_helper'' <arg info> s1# of
                 (# s2#, a# #) -> (# s2#, A# a# #)))

foreign import "&f_helper" f_helper :: FunPtr (StablePtr Fun -> Fun)

-- and the helper in C:

f_helper(StablePtr s, HsBool b, HsInt i)
{
	rts_evalIO(rts_apply(rts_apply(deRefStablePtr(s), 
				       rts_mkBool(b)), rts_mkInt(i)));
}
\end{verbatim}

\begin{code}
dsFExportDynamic :: Id
		 -> CCallConv
		 -> DsM ([Binding], SDoc, SDoc)
dsFExportDynamic id cconv
  =  newSysLocalDs ty				 `thenDs` \ fe_id ->
     getModuleDs				`thenDs` \ mod -> 
     let 
        -- hack: need to get at the name of the C stub we're about to generate.
       fe_nm	   = mkFastString (unpackFS (zEncodeFS (moduleNameFS (moduleName mod))) ++ "_" ++ toCName fe_id)
     in
     newSysLocalDs arg_ty			`thenDs` \ cback ->
     dsLookupGlobalId newStablePtrName		`thenDs` \ newStablePtrId ->
     dsLookupTyCon stablePtrTyConName		`thenDs` \ stable_ptr_tycon ->
     let
	stable_ptr_ty	= mkTyConApp stable_ptr_tycon [arg_ty]
	export_ty	= mkFunTy stable_ptr_ty arg_ty
     in
     dsLookupGlobalId bindIOName		`thenDs` \ bindIOId ->
     newSysLocalDs stable_ptr_ty		`thenDs` \ stbl_value ->
     dsFExport id export_ty fe_nm cconv True  	
		`thenDs` \ (h_code, c_code, arg_reps, args_size) ->
     let
       {-
        The arguments to the external function which will
	create a little bit of (template) code on the fly
	for allowing the (stable pointed) Haskell closure
	to be entered using an external calling convention
	(stdcall, ccall).
       -}
      adj_args      = [ mkIntLitInt (ccallConvToInt cconv)
		      , Var stbl_value
		      , mkLit (MachLabel fe_nm mb_sz_args)
                      , mkLit (mkStringLit arg_type_info)
		      ]
        -- name of external entry point providing these services.
	-- (probably in the RTS.) 
      adjustor	 = FSLIT("createAdjustor")
      
      arg_type_info = map repCharCode arg_reps
      repCharCode F32 = 'f'
      repCharCode F64 = 'd'
      repCharCode I64 = 'l'
      repCharCode _   = 'i'

	-- Determine the number of bytes of arguments to the stub function,
	-- so that we can attach the '@N' suffix to its label if it is a
	-- stdcall on Windows.
      mb_sz_args = case cconv of
		      StdCallConv -> Just args_size
		      _ 	  -> Nothing

     in
     dsCCall adjustor adj_args PlayRisky (mkTyConApp io_tc [res_ty])  `thenDs` \ ccall_adj ->
	-- PlayRisky: the adjustor doesn't allocate in the Haskell heap or do a callback

     let io_app = mkLams tvs	 	    $
		  Lam cback	 	    $          
		  mkCoerceI (mkSymCoI co)   $
		  mkApps (Var bindIOId)
			 [ Type stable_ptr_ty
			 , Type res_ty       
			 , mkApps (Var newStablePtrId) [ Type arg_ty, Var cback ]
			 , Lam stbl_value ccall_adj
			 ]

	 fed = (id `setInlinePragma` NeverActive, io_app)
		-- Never inline the f.e.d. function, because the litlit
		-- might not be in scope in other modules.
     in
     returnDs ([fed], h_code, c_code)

 where
  ty			   = idType id
  (tvs,sans_foralls)	   = tcSplitForAllTys ty
  ([arg_ty], fn_res_ty)	   = tcSplitFunTys sans_foralls
  Just (io_tc, res_ty, co) = tcSplitIOType_maybe fn_res_ty
	-- Must have an IO type; hence Just
	-- co : fn_res_ty ~ IO res_ty

toCName :: Id -> String
toCName i = showSDoc (pprCode CStyle (ppr (idName i)))
\end{code}

%*
%
\subsection{Generating @foreign export@ stubs}
%
%*

For each @foreign export@ function, a C stub function is generated.
The C stub constructs the application of the exported Haskell function 
using the hugs/ghc rts invocation API.

\begin{code}
mkFExportCBits :: FastString
	       -> Maybe Id 	-- Just==static, Nothing==dynamic
	       -> [Type] 
	       -> Type 
               -> Bool		-- True <=> returns an IO type
	       -> CCallConv 
	       -> (SDoc, 
		   SDoc,
		   [MachRep], 	-- the argument reps
		   Int		-- total size of arguments
		  )
mkFExportCBits c_nm maybe_target arg_htys res_hty is_IO_res_ty cc 
 = (header_bits, c_bits, 
    [rep | (_,_,_,rep) <- arg_info],  -- just the real args
    sum [ machRepByteWidth rep | (_,_,_,rep) <- aug_arg_info] -- all the args
    )
 where
  -- list the arguments to the C function
  arg_info :: [(SDoc, 		-- arg name
		SDoc,		-- C type
	        Type,		-- Haskell type
		MachRep)]	-- the MachRep
  arg_info  = [ (text ('a':show n), showStgType ty, ty, 
		 typeMachRep (getPrimTyOf ty))
	      | (ty,n) <- zip arg_htys [1::Int ..] ]

  -- add some auxiliary args; the stable ptr in the wrapper case, and
  -- a slot for the dummy return address in the wrapper + ccall case
  aug_arg_info
    | isNothing maybe_target = stable_ptr_arg : insertRetAddr cc arg_info
    | otherwise              = arg_info

  stable_ptr_arg = 
	(text "the_stableptr", text "StgStablePtr", undefined,
	 typeMachRep (mkStablePtrPrimTy alphaTy))

  -- stuff to do with the return type of the C function
  res_hty_is_unit = res_hty `coreEqType` unitTy	-- Look through any newtypes

  cResType | res_hty_is_unit = text "void"
	   | otherwise	     = showStgType res_hty

  -- Now we can cook up the prototype for the exported function.
  pprCconv = case cc of
		CCallConv   -> empty
		StdCallConv -> text (ccallConvAttribute cc)

  header_bits = ptext SLIT("extern") <+> fun_proto <> semi

  fun_proto = cResType <+> pprCconv <+> ftext c_nm <>
	      parens (hsep (punctuate comma (map (\(nm,ty,_,_) -> ty <+> nm) 
                                                 aug_arg_info)))

  -- the target which will form the root of what we ask rts_evalIO to run
  the_cfun
     = case maybe_target of
          Nothing    -> text "(StgClosure*)deRefStablePtr(the_stableptr)"
          Just hs_fn -> char '&' <> ppr hs_fn <> text "_closure"

  cap = text "cap" <> comma

  -- the expression we give to rts_evalIO
  expr_to_run
     = foldl appArg the_cfun arg_info -- NOT aug_arg_info
       where
          appArg acc (arg_cname, _, arg_hty, _) 
             = text "rts_apply" 
               <> parens (cap <> acc <> comma <> mkHObj arg_hty <> parens (cap <> arg_cname))

  -- various other bits for inside the fn
  declareResult = text "HaskellObj ret;"
  declareCResult | res_hty_is_unit = empty
                 | otherwise       = cResType <+> text "cret;"

  assignCResult | res_hty_is_unit = empty
	        | otherwise       =
	        	text "cret=" <> unpackHObj res_hty <> parens (text "ret") <> semi

  -- an extern decl for the fn being called
  extern_decl
     = case maybe_target of
          Nothing -> empty
          Just hs_fn -> text "extern StgClosure " <> ppr hs_fn <> text "_closure" <> semi

   
  -- finally, the whole darn thing
  c_bits =
    space $$
    extern_decl $$
    fun_proto  $$
    vcat 
     [ lbrace
     ,   text "Capability *cap;"
     ,   declareResult
     ,   declareCResult
     ,   text "cap = rts_lock();"
	  -- create the application + perform it.
     ,   text "cap=rts_evalIO" <> parens (
		cap <>
		text "rts_apply" <> parens (
		    cap <>
		    text "(HaskellObj)"
	         <> text (if is_IO_res_ty 
				then "runIO_closure" 
				else "runNonIO_closure")
		 <> comma
        	 <> expr_to_run
		) <+> comma
	       <> text "&ret"
	     ) <> semi
     ,   text "rts_checkSchedStatus" <> parens (doubleQuotes (ftext c_nm)
						<> comma <> text "cap") <> semi
     ,   assignCResult
     ,   text "rts_unlock(cap);"
     ,   if res_hty_is_unit then empty
            else text "return cret;"
     , rbrace
     ]


foreignExportInitialiser :: Id -> SDoc
foreignExportInitialiser hs_fn =
   -- Initialise foreign exports by registering a stable pointer from an
   -- __attribute__((constructor)) function.
   -- The alternative is to do this from stginit functions generated in
   -- codeGen/CodeGen.lhs; however, stginit functions have a negative impact
   -- on binary sizes and link times because the static linker will think that
   -- all modules that are imported directly or indirectly are actually used by
   -- the program.
   -- (this is bad for big umbrella modules like Graphics.Rendering.OpenGL)
   vcat
    [ text "static void stginit_export_" <> ppr hs_fn
         <> text "() __attribute__((constructor));"
    , text "static void stginit_export_" <> ppr hs_fn <> text "()"
    , braces (text "getStablePtr"
       <> parens (text "(StgPtr) &" <> ppr hs_fn <> text "_closure")
       <> semi)
    ]


-- NB. the calculation here isn't strictly speaking correct.
-- We have a primitive Haskell type (eg. Int#, Double#), and
-- we want to know the size, when passed on the C stack, of
-- the associated C type (eg. HsInt, HsDouble).  We don't have
-- this information to hand, but we know what GHC's conventions
-- are for passing around the primitive Haskell types, so we
-- use that instead.  I hope the two coincide --SDM
typeMachRep ty = argMachRep (typeCgRep ty)

mkHObj :: Type -> SDoc
mkHObj t = text "rts_mk" <> text (showFFIType t)

unpackHObj :: Type -> SDoc
unpackHObj t = text "rts_get" <> text (showFFIType t)

showStgType :: Type -> SDoc
showStgType t = text "Hs" <> text (showFFIType t)

showFFIType :: Type -> String
showFFIType t = getOccString (getName tc)
 where
  tc = case tcSplitTyConApp_maybe (repType t) of
	    Just (tc,_) -> tc
	    Nothing	-> pprPanic "showFFIType" (ppr t)

#if !defined(x86_64_TARGET_ARCH)
insertRetAddr CCallConv args = ret_addr_arg : args
insertRetAddr _ args = args
#else
-- On x86_64 we insert the return address after the 6th
-- integer argument, because this is the point at which we
-- need to flush a register argument to the stack (See rts/Adjustor.c for
-- details).
insertRetAddr CCallConv args = go 0 args
  where  go 6 args = ret_addr_arg : args
	 go n (arg@(_,_,_,rep):args)
	  | I64 <- rep = arg : go (n+1) args
	  | otherwise  = arg : go n     args
	 go n [] = []
insertRetAddr _ args = args
#endif

ret_addr_arg = (text "original_return_addr", text "void*", undefined, 
		typeMachRep addrPrimTy)

-- This function returns the primitive type associated with the boxed
-- type argument to a foreign export (eg. Int ==> Int#).
getPrimTyOf :: Type -> Type
getPrimTyOf ty
  | isBoolTy rep_ty = intPrimTy
  -- Except for Bool, the types we are interested in have a single constructor
  -- with a single primitive-typed argument (see TcType.legalFEArgTyCon).
  | otherwise =
  case splitProductType_maybe rep_ty of
     Just (_, _, data_con, [prim_ty]) ->
	ASSERT(dataConSourceArity data_con == 1)
	ASSERT2(isUnLiftedType prim_ty, ppr prim_ty)
	prim_ty
     _other -> pprPanic "DsForeign.getPrimTyOf" (ppr ty)
  where
	rep_ty = repType ty
\end{code}