1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
|
%
% (c) The University of Glasgow 2006
% (c) The AQUA Project, Glasgow University, 1998
%
Desugaring foreign declarations (see also DsCCall).
\begin{code}
module DsForeign ( dsForeigns ) where
#include "HsVersions.h"
import TcRnMonad -- temp
import TypeRep
import CoreSyn
import DsCCall
import DsMonad
import HsSyn
import DataCon
import CoreUnfold
import Id
import Literal
import Module
import Name
import Type
import TyCon
import Coercion
import TcType
import CmmExpr
import CmmUtils
import HscTypes
import ForeignCall
import TysWiredIn
import TysPrim
import PrelNames
import BasicTypes
import SrcLoc
import Outputable
import FastString
import DynFlags
import Platform
import Config
import Constants
import OrdList
import Pair
import Util
import Data.Maybe
import Data.List
\end{code}
Desugaring of @foreign@ declarations is naturally split up into
parts, an @import@ and an @export@ part. A @foreign import@
declaration
\begin{verbatim}
foreign import cc nm f :: prim_args -> IO prim_res
\end{verbatim}
is the same as
\begin{verbatim}
f :: prim_args -> IO prim_res
f a1 ... an = _ccall_ nm cc a1 ... an
\end{verbatim}
so we reuse the desugaring code in @DsCCall@ to deal with these.
\begin{code}
type Binding = (Id, CoreExpr) -- No rec/nonrec structure;
-- the occurrence analyser will sort it all out
dsForeigns :: [LForeignDecl Id]
-> DsM (ForeignStubs, OrdList Binding)
dsForeigns []
= return (NoStubs, nilOL)
dsForeigns fos = do
fives <- mapM do_ldecl fos
let
(hs, cs, idss, bindss) = unzip4 fives
fe_ids = concat idss
fe_init_code = map foreignExportInitialiser fe_ids
--
return (ForeignStubs
(vcat hs)
(vcat cs $$ vcat fe_init_code),
foldr (appOL . toOL) nilOL bindss)
where
do_ldecl (L loc decl) = putSrcSpanDs loc (do_decl decl)
do_decl (ForeignImport id _ co spec) = do
traceIf (text "fi start" <+> ppr id)
(bs, h, c) <- dsFImport (unLoc id) co spec
traceIf (text "fi end" <+> ppr id)
return (h, c, [], bs)
do_decl (ForeignExport (L _ id) _ co (CExport (CExportStatic ext_nm cconv))) = do
(h, c, _, _) <- dsFExport id co ext_nm cconv False
return (h, c, [id], [])
\end{code}
%************************************************************************
%* *
\subsection{Foreign import}
%* *
%************************************************************************
Desugaring foreign imports is just the matter of creating a binding
that on its RHS unboxes its arguments, performs the external call
(using the @CCallOp@ primop), before boxing the result up and returning it.
However, we create a worker/wrapper pair, thus:
foreign import f :: Int -> IO Int
==>
f x = IO ( \s -> case x of { I# x# ->
case fw s x# of { (# s1, y# #) ->
(# s1, I# y# #)}})
fw s x# = ccall f s x#
The strictness/CPR analyser won't do this automatically because it doesn't look
inside returned tuples; but inlining this wrapper is a Really Good Idea
because it exposes the boxing to the call site.
\begin{code}
dsFImport :: Id
-> Coercion
-> ForeignImport
-> DsM ([Binding], SDoc, SDoc)
dsFImport id co (CImport cconv safety mHeader spec) = do
(ids, h, c) <- dsCImport id co spec cconv safety mHeader
return (ids, h, c)
dsCImport :: Id
-> Coercion
-> CImportSpec
-> CCallConv
-> Safety
-> Maybe Header
-> DsM ([Binding], SDoc, SDoc)
dsCImport id co (CLabel cid) cconv _ _ = do
dflags <- getDynFlags
let ty = pFst $ coercionKind co
fod = case tyConAppTyCon_maybe (dropForAlls ty) of
Just tycon
| tyConUnique tycon == funPtrTyConKey ->
IsFunction
_ -> IsData
(resTy, foRhs) <- resultWrapper ty
ASSERT(fromJust resTy `eqType` addrPrimTy) -- typechecker ensures this
let
rhs = foRhs (Lit (MachLabel cid stdcall_info fod))
rhs' = Cast rhs co
stdcall_info = fun_type_arg_stdcall_info dflags cconv ty
in
return ([(id, rhs')], empty, empty)
dsCImport id co (CFunction target) cconv@PrimCallConv safety _
= dsPrimCall id co (CCall (CCallSpec target cconv safety))
dsCImport id co (CFunction target) cconv safety mHeader
= dsFCall id co (CCall (CCallSpec target cconv safety)) mHeader
dsCImport id co CWrapper cconv _ _
= dsFExportDynamic id co cconv
-- For stdcall labels, if the type was a FunPtr or newtype thereof,
-- then we need to calculate the size of the arguments in order to add
-- the @n suffix to the label.
fun_type_arg_stdcall_info :: DynFlags -> CCallConv -> Type -> Maybe Int
fun_type_arg_stdcall_info dflags StdCallConv ty
| Just (tc,[arg_ty]) <- splitTyConApp_maybe ty,
tyConUnique tc == funPtrTyConKey
= let
(_tvs,sans_foralls) = tcSplitForAllTys arg_ty
(fe_arg_tys, _orig_res_ty) = tcSplitFunTys sans_foralls
in Just $ sum (map (widthInBytes . typeWidth . typeCmmType dflags . getPrimTyOf) fe_arg_tys)
fun_type_arg_stdcall_info _ _other_conv _
= Nothing
\end{code}
%************************************************************************
%* *
\subsection{Foreign calls}
%* *
%************************************************************************
\begin{code}
dsFCall :: Id -> Coercion -> ForeignCall -> Maybe Header
-> DsM ([(Id, Expr TyVar)], SDoc, SDoc)
dsFCall fn_id co fcall mDeclHeader = do
let
ty = pFst $ coercionKind co
(tvs, fun_ty) = tcSplitForAllTys ty
(arg_tys, io_res_ty) = tcSplitFunTys fun_ty
-- Must use tcSplit* functions because we want to
-- see that (IO t) in the corner
args <- newSysLocalsDs arg_tys
(val_args, arg_wrappers) <- mapAndUnzipM unboxArg (map Var args)
let
work_arg_ids = [v | Var v <- val_args] -- All guaranteed to be vars
(ccall_result_ty, res_wrapper) <- boxResult io_res_ty
ccall_uniq <- newUnique
work_uniq <- newUnique
dflags <- getDynFlags
(fcall', cDoc) <-
case fcall of
CCall (CCallSpec (StaticTarget cName mPackageId isFun) CApiConv safety) ->
do fcall_uniq <- newUnique
let wrapperName = mkFastString "ghc_wrapper_" `appendFS`
mkFastString (showPpr dflags fcall_uniq) `appendFS`
mkFastString "_" `appendFS`
cName
fcall' = CCall (CCallSpec (StaticTarget wrapperName mPackageId True) CApiConv safety)
c = includes
$$ fun_proto <+> braces (cRet <> semi)
includes = vcat [ text "#include <" <> ftext h <> text ">"
| Header h <- nub headers ]
fun_proto = cResType <+> pprCconv <+> ppr wrapperName <> parens argTypes
cRet
| isVoidRes = cCall
| otherwise = text "return" <+> cCall
cCall = if isFun
then ppr cName <> parens argVals
else if null arg_tys
then ppr cName
else panic "dsFCall: Unexpected arguments to FFI value import"
raw_res_ty = case tcSplitIOType_maybe io_res_ty of
Just (_ioTyCon, res_ty) -> res_ty
Nothing -> io_res_ty
isVoidRes = raw_res_ty `eqType` unitTy
(mHeader, cResType)
| isVoidRes = (Nothing, text "void")
| otherwise = toCType raw_res_ty
pprCconv = ccallConvAttribute CApiConv
mHeadersArgTypeList
= [ (header, cType <+> char 'a' <> int n)
| (t, n) <- zip arg_tys [1..]
, let (header, cType) = toCType t ]
(mHeaders, argTypeList) = unzip mHeadersArgTypeList
argTypes = if null argTypeList
then text "void"
else hsep $ punctuate comma argTypeList
mHeaders' = mDeclHeader : mHeader : mHeaders
headers = catMaybes mHeaders'
argVals = hsep $ punctuate comma
[ char 'a' <> int n
| (_, n) <- zip arg_tys [1..] ]
return (fcall', c)
_ ->
return (fcall, empty)
let
-- Build the worker
worker_ty = mkForAllTys tvs (mkFunTys (map idType work_arg_ids) ccall_result_ty)
the_ccall_app = mkFCall dflags ccall_uniq fcall' val_args ccall_result_ty
work_rhs = mkLams tvs (mkLams work_arg_ids the_ccall_app)
work_id = mkSysLocal (fsLit "$wccall") work_uniq worker_ty
-- Build the wrapper
work_app = mkApps (mkVarApps (Var work_id) tvs) val_args
wrapper_body = foldr ($) (res_wrapper work_app) arg_wrappers
wrap_rhs = mkLams (tvs ++ args) wrapper_body
wrap_rhs' = Cast wrap_rhs co
fn_id_w_inl = fn_id `setIdUnfolding` mkInlineUnfolding (Just (length args)) wrap_rhs'
return ([(work_id, work_rhs), (fn_id_w_inl, wrap_rhs')], empty, cDoc)
\end{code}
%************************************************************************
%* *
\subsection{Primitive calls}
%* *
%************************************************************************
This is for `@foreign import prim@' declarations.
Currently, at the core level we pretend that these primitive calls are
foreign calls. It may make more sense in future to have them as a distinct
kind of Id, or perhaps to bundle them with PrimOps since semantically and
for calling convention they are really prim ops.
\begin{code}
dsPrimCall :: Id -> Coercion -> ForeignCall
-> DsM ([(Id, Expr TyVar)], SDoc, SDoc)
dsPrimCall fn_id co fcall = do
let
ty = pFst $ coercionKind co
(tvs, fun_ty) = tcSplitForAllTys ty
(arg_tys, io_res_ty) = tcSplitFunTys fun_ty
-- Must use tcSplit* functions because we want to
-- see that (IO t) in the corner
args <- newSysLocalsDs arg_tys
ccall_uniq <- newUnique
dflags <- getDynFlags
let
call_app = mkFCall dflags ccall_uniq fcall (map Var args) io_res_ty
rhs = mkLams tvs (mkLams args call_app)
rhs' = Cast rhs co
return ([(fn_id, rhs')], empty, empty)
\end{code}
%************************************************************************
%* *
\subsection{Foreign export}
%* *
%************************************************************************
The function that does most of the work for `@foreign export@' declarations.
(see below for the boilerplate code a `@foreign export@' declaration expands
into.)
For each `@foreign export foo@' in a module M we generate:
\begin{itemize}
\item a C function `@foo@', which calls
\item a Haskell stub `@M.\$ffoo@', which calls
\end{itemize}
the user-written Haskell function `@M.foo@'.
\begin{code}
dsFExport :: Id -- Either the exported Id,
-- or the foreign-export-dynamic constructor
-> Coercion -- Coercion between the Haskell type callable
-- from C, and its representation type
-> CLabelString -- The name to export to C land
-> CCallConv
-> Bool -- True => foreign export dynamic
-- so invoke IO action that's hanging off
-- the first argument's stable pointer
-> DsM ( SDoc -- contents of Module_stub.h
, SDoc -- contents of Module_stub.c
, String -- string describing type to pass to createAdj.
, Int -- size of args to stub function
)
dsFExport fn_id co ext_name cconv isDyn = do
let
ty = pSnd $ coercionKind co
(_tvs,sans_foralls) = tcSplitForAllTys ty
(fe_arg_tys', orig_res_ty) = tcSplitFunTys sans_foralls
-- We must use tcSplits here, because we want to see
-- the (IO t) in the corner of the type!
fe_arg_tys | isDyn = tail fe_arg_tys'
| otherwise = fe_arg_tys'
-- Look at the result type of the exported function, orig_res_ty
-- If it's IO t, return (t, True)
-- If it's plain t, return (t, False)
(res_ty, is_IO_res_ty) = case tcSplitIOType_maybe orig_res_ty of
-- The function already returns IO t
Just (_ioTyCon, res_ty) -> (res_ty, True)
-- The function returns t
Nothing -> (orig_res_ty, False)
dflags <- getDynFlags
return $
mkFExportCBits dflags ext_name
(if isDyn then Nothing else Just fn_id)
fe_arg_tys res_ty is_IO_res_ty cconv
\end{code}
@foreign import "wrapper"@ (previously "foreign export dynamic") lets
you dress up Haskell IO actions of some fixed type behind an
externally callable interface (i.e., as a C function pointer). Useful
for callbacks and stuff.
\begin{verbatim}
type Fun = Bool -> Int -> IO Int
foreign import "wrapper" f :: Fun -> IO (FunPtr Fun)
-- Haskell-visible constructor, which is generated from the above:
-- SUP: No check for NULL from createAdjustor anymore???
f :: Fun -> IO (FunPtr Fun)
f cback =
bindIO (newStablePtr cback)
(\StablePtr sp# -> IO (\s1# ->
case _ccall_ createAdjustor cconv sp# ``f_helper'' <arg info> s1# of
(# s2#, a# #) -> (# s2#, A# a# #)))
foreign import "&f_helper" f_helper :: FunPtr (StablePtr Fun -> Fun)
-- and the helper in C:
f_helper(StablePtr s, HsBool b, HsInt i)
{
rts_evalIO(rts_apply(rts_apply(deRefStablePtr(s),
rts_mkBool(b)), rts_mkInt(i)));
}
\end{verbatim}
\begin{code}
dsFExportDynamic :: Id
-> Coercion
-> CCallConv
-> DsM ([Binding], SDoc, SDoc)
dsFExportDynamic id co0 cconv = do
fe_id <- newSysLocalDs ty
mod <- getModuleDs
dflags <- getDynFlags
let
-- hack: need to get at the name of the C stub we're about to generate.
-- TODO: There's no real need to go via String with
-- (mkFastString . zString). In fact, is there a reason to convert
-- to FastString at all now, rather than sticking with FastZString?
fe_nm = mkFastString (zString (zEncodeFS (moduleNameFS (moduleName mod))) ++ "_" ++ toCName dflags fe_id)
cback <- newSysLocalDs arg_ty
newStablePtrId <- dsLookupGlobalId newStablePtrName
stable_ptr_tycon <- dsLookupTyCon stablePtrTyConName
let
stable_ptr_ty = mkTyConApp stable_ptr_tycon [arg_ty]
export_ty = mkFunTy stable_ptr_ty arg_ty
bindIOId <- dsLookupGlobalId bindIOName
stbl_value <- newSysLocalDs stable_ptr_ty
(h_code, c_code, typestring, args_size) <- dsFExport id (Refl export_ty) fe_nm cconv True
let
{-
The arguments to the external function which will
create a little bit of (template) code on the fly
for allowing the (stable pointed) Haskell closure
to be entered using an external calling convention
(stdcall, ccall).
-}
adj_args = [ mkIntLitInt (ccallConvToInt cconv)
, Var stbl_value
, Lit (MachLabel fe_nm mb_sz_args IsFunction)
, Lit (mkMachString typestring)
]
-- name of external entry point providing these services.
-- (probably in the RTS.)
adjustor = fsLit "createAdjustor"
-- Determine the number of bytes of arguments to the stub function,
-- so that we can attach the '@N' suffix to its label if it is a
-- stdcall on Windows.
mb_sz_args = case cconv of
StdCallConv -> Just args_size
_ -> Nothing
ccall_adj <- dsCCall adjustor adj_args PlayRisky (mkTyConApp io_tc [res_ty])
-- PlayRisky: the adjustor doesn't allocate in the Haskell heap or do a callback
let io_app = mkLams tvs $
Lam cback $
mkApps (Var bindIOId)
[ Type stable_ptr_ty
, Type res_ty
, mkApps (Var newStablePtrId) [ Type arg_ty, Var cback ]
, Lam stbl_value ccall_adj
]
fed = (id `setInlineActivation` NeverActive, Cast io_app co0)
-- Never inline the f.e.d. function, because the litlit
-- might not be in scope in other modules.
return ([fed], h_code, c_code)
where
ty = pFst (coercionKind co0)
(tvs,sans_foralls) = tcSplitForAllTys ty
([arg_ty], fn_res_ty) = tcSplitFunTys sans_foralls
Just (io_tc, res_ty) = tcSplitIOType_maybe fn_res_ty
-- Must have an IO type; hence Just
toCName :: DynFlags -> Id -> String
toCName dflags i = showSDoc dflags (pprCode CStyle (ppr (idName i)))
\end{code}
%*
%
\subsection{Generating @foreign export@ stubs}
%
%*
For each @foreign export@ function, a C stub function is generated.
The C stub constructs the application of the exported Haskell function
using the hugs/ghc rts invocation API.
\begin{code}
mkFExportCBits :: DynFlags
-> FastString
-> Maybe Id -- Just==static, Nothing==dynamic
-> [Type]
-> Type
-> Bool -- True <=> returns an IO type
-> CCallConv
-> (SDoc,
SDoc,
String, -- the argument reps
Int -- total size of arguments
)
mkFExportCBits dflags c_nm maybe_target arg_htys res_hty is_IO_res_ty cc
= (header_bits, c_bits, type_string,
sum [ widthInBytes (typeWidth rep) | (_,_,_,rep) <- aug_arg_info] -- all the args
-- NB. the calculation here isn't strictly speaking correct.
-- We have a primitive Haskell type (eg. Int#, Double#), and
-- we want to know the size, when passed on the C stack, of
-- the associated C type (eg. HsInt, HsDouble). We don't have
-- this information to hand, but we know what GHC's conventions
-- are for passing around the primitive Haskell types, so we
-- use that instead. I hope the two coincide --SDM
)
where
-- list the arguments to the C function
arg_info :: [(SDoc, -- arg name
SDoc, -- C type
Type, -- Haskell type
CmmType)] -- the CmmType
arg_info = [ let stg_type = showStgType ty in
(arg_cname n stg_type,
stg_type,
ty,
typeCmmType dflags (getPrimTyOf ty))
| (ty,n) <- zip arg_htys [1::Int ..] ]
arg_cname n stg_ty
| libffi = char '*' <> parens (stg_ty <> char '*') <>
ptext (sLit "args") <> brackets (int (n-1))
| otherwise = text ('a':show n)
-- generate a libffi-style stub if this is a "wrapper" and libffi is enabled
libffi = cLibFFI && isNothing maybe_target
type_string
-- libffi needs to know the result type too:
| libffi = primTyDescChar res_hty : arg_type_string
| otherwise = arg_type_string
arg_type_string = [primTyDescChar ty | (_,_,ty,_) <- arg_info]
-- just the real args
-- add some auxiliary args; the stable ptr in the wrapper case, and
-- a slot for the dummy return address in the wrapper + ccall case
aug_arg_info
| isNothing maybe_target = stable_ptr_arg : insertRetAddr dflags cc arg_info
| otherwise = arg_info
stable_ptr_arg =
(text "the_stableptr", text "StgStablePtr", undefined,
typeCmmType dflags (mkStablePtrPrimTy alphaTy))
-- stuff to do with the return type of the C function
res_hty_is_unit = res_hty `eqType` unitTy -- Look through any newtypes
cResType | res_hty_is_unit = text "void"
| otherwise = showStgType res_hty
-- when the return type is integral and word-sized or smaller, it
-- must be assigned as type ffi_arg (#3516). To see what type
-- libffi is expecting here, take a look in its own testsuite, e.g.
-- libffi/testsuite/libffi.call/cls_align_ulonglong.c
ffi_cResType
| is_ffi_arg_type = text "ffi_arg"
| otherwise = cResType
where
res_ty_key = getUnique (getName (typeTyCon res_hty))
is_ffi_arg_type = res_ty_key `notElem`
[floatTyConKey, doubleTyConKey,
int64TyConKey, word64TyConKey]
-- Now we can cook up the prototype for the exported function.
pprCconv = ccallConvAttribute cc
header_bits = ptext (sLit "extern") <+> fun_proto <> semi
fun_args
| null aug_arg_info = text "void"
| otherwise = hsep $ punctuate comma
$ map (\(nm,ty,_,_) -> ty <+> nm) aug_arg_info
fun_proto
| libffi
= ptext (sLit "void") <+> ftext c_nm <>
parens (ptext (sLit "void *cif STG_UNUSED, void* resp, void** args, void* the_stableptr"))
| otherwise
= cResType <+> pprCconv <+> ftext c_nm <> parens fun_args
-- the target which will form the root of what we ask rts_evalIO to run
the_cfun
= case maybe_target of
Nothing -> text "(StgClosure*)deRefStablePtr(the_stableptr)"
Just hs_fn -> char '&' <> ppr hs_fn <> text "_closure"
cap = text "cap" <> comma
-- the expression we give to rts_evalIO
expr_to_run
= foldl appArg the_cfun arg_info -- NOT aug_arg_info
where
appArg acc (arg_cname, _, arg_hty, _)
= text "rts_apply"
<> parens (cap <> acc <> comma <> mkHObj arg_hty <> parens (cap <> arg_cname))
-- various other bits for inside the fn
declareResult = text "HaskellObj ret;"
declareCResult | res_hty_is_unit = empty
| otherwise = cResType <+> text "cret;"
assignCResult | res_hty_is_unit = empty
| otherwise =
text "cret=" <> unpackHObj res_hty <> parens (text "ret") <> semi
-- an extern decl for the fn being called
extern_decl
= case maybe_target of
Nothing -> empty
Just hs_fn -> text "extern StgClosure " <> ppr hs_fn <> text "_closure" <> semi
-- finally, the whole darn thing
c_bits =
space $$
extern_decl $$
fun_proto $$
vcat
[ lbrace
, ptext (sLit "Capability *cap;")
, declareResult
, declareCResult
, text "cap = rts_lock();"
-- create the application + perform it.
, ptext (sLit "rts_evalIO") <> parens (
char '&' <> cap <>
ptext (sLit "rts_apply") <> parens (
cap <>
text "(HaskellObj)"
<> ptext (if is_IO_res_ty
then (sLit "runIO_closure")
else (sLit "runNonIO_closure"))
<> comma
<> expr_to_run
) <+> comma
<> text "&ret"
) <> semi
, ptext (sLit "rts_checkSchedStatus") <> parens (doubleQuotes (ftext c_nm)
<> comma <> text "cap") <> semi
, assignCResult
, ptext (sLit "rts_unlock(cap);")
, ppUnless res_hty_is_unit $
if libffi
then char '*' <> parens (ffi_cResType <> char '*') <>
ptext (sLit "resp = cret;")
else ptext (sLit "return cret;")
, rbrace
]
foreignExportInitialiser :: Id -> SDoc
foreignExportInitialiser hs_fn =
-- Initialise foreign exports by registering a stable pointer from an
-- __attribute__((constructor)) function.
-- The alternative is to do this from stginit functions generated in
-- codeGen/CodeGen.lhs; however, stginit functions have a negative impact
-- on binary sizes and link times because the static linker will think that
-- all modules that are imported directly or indirectly are actually used by
-- the program.
-- (this is bad for big umbrella modules like Graphics.Rendering.OpenGL)
vcat
[ text "static void stginit_export_" <> ppr hs_fn
<> text "() __attribute__((constructor));"
, text "static void stginit_export_" <> ppr hs_fn <> text "()"
, braces (text "getStablePtr"
<> parens (text "(StgPtr) &" <> ppr hs_fn <> text "_closure")
<> semi)
]
mkHObj :: Type -> SDoc
mkHObj t = text "rts_mk" <> text (showFFIType t)
unpackHObj :: Type -> SDoc
unpackHObj t = text "rts_get" <> text (showFFIType t)
showStgType :: Type -> SDoc
showStgType t = text "Hs" <> text (showFFIType t)
showFFIType :: Type -> String
showFFIType t = getOccString (getName (typeTyCon t))
toCType :: Type -> (Maybe Header, SDoc)
toCType = f False
where f voidOK t
-- First, if we have (Ptr t) of (FunPtr t), then we need to
-- convert t to a C type and put a * after it. If we don't
-- know a type for t, then "void" is fine, though.
| Just (ptr, [t']) <- splitTyConApp_maybe t
, tyConName ptr `elem` [ptrTyConName, funPtrTyConName]
= case f True t' of
(mh, cType') ->
(mh, cType' <> char '*')
-- Otherwise, if we have a type constructor application, then
-- see if there is a C type associated with that constructor.
-- Note that we aren't looking through type synonyms or
-- anything, as it may be the synonym that is annotated.
| TyConApp tycon _ <- t
, Just (CType mHeader cType) <- tyConCType_maybe tycon
= (mHeader, ftext cType)
-- If we don't know a C type for this type, then try looking
-- through one layer of type synonym etc.
| Just t' <- coreView t
= f voidOK t'
-- Otherwise we don't know the C type. If we are allowing
-- void then return that; otherwise something has gone wrong.
| voidOK = (Nothing, ptext (sLit "void"))
| otherwise
= pprPanic "toCType" (ppr t)
typeTyCon :: Type -> TyCon
typeTyCon ty
| UnaryRep rep_ty <- repType ty
, Just (tc, _) <- tcSplitTyConApp_maybe rep_ty
= tc
| otherwise
= pprPanic "DsForeign.typeTyCon" (ppr ty)
insertRetAddr :: DynFlags -> CCallConv
-> [(SDoc, SDoc, Type, CmmType)]
-> [(SDoc, SDoc, Type, CmmType)]
insertRetAddr dflags CCallConv args
= case platformArch platform of
ArchX86_64
| platformOS platform == OSMinGW32 ->
-- On other Windows x86_64 we insert the return address
-- after the 4th argument, because this is the point
-- at which we need to flush a register argument to the stack
-- (See rts/Adjustor.c for details).
let go :: Int -> [(SDoc, SDoc, Type, CmmType)]
-> [(SDoc, SDoc, Type, CmmType)]
go 4 args = ret_addr_arg dflags : args
go n (arg:args) = arg : go (n+1) args
go _ [] = []
in go 0 args
| otherwise ->
-- On other x86_64 platforms we insert the return address
-- after the 6th integer argument, because this is the point
-- at which we need to flush a register argument to the stack
-- (See rts/Adjustor.c for details).
let go :: Int -> [(SDoc, SDoc, Type, CmmType)]
-> [(SDoc, SDoc, Type, CmmType)]
go 6 args = ret_addr_arg dflags : args
go n (arg@(_,_,_,rep):args)
| cmmEqType_ignoring_ptrhood rep b64 = arg : go (n+1) args
| otherwise = arg : go n args
go _ [] = []
in go 0 args
_ ->
ret_addr_arg dflags : args
where platform = targetPlatform dflags
insertRetAddr _ _ args = args
ret_addr_arg :: DynFlags -> (SDoc, SDoc, Type, CmmType)
ret_addr_arg dflags = (text "original_return_addr", text "void*", undefined,
typeCmmType dflags addrPrimTy)
-- This function returns the primitive type associated with the boxed
-- type argument to a foreign export (eg. Int ==> Int#).
getPrimTyOf :: Type -> UnaryType
getPrimTyOf ty
| isBoolTy rep_ty = intPrimTy
-- Except for Bool, the types we are interested in have a single constructor
-- with a single primitive-typed argument (see TcType.legalFEArgTyCon).
| otherwise =
case splitProductType_maybe rep_ty of
Just (_, _, data_con, [prim_ty]) ->
ASSERT(dataConSourceArity data_con == 1)
ASSERT2(isUnLiftedType prim_ty, ppr prim_ty)
prim_ty
_other -> pprPanic "DsForeign.getPrimTyOf" (ppr ty)
where
UnaryRep rep_ty = repType ty
-- represent a primitive type as a Char, for building a string that
-- described the foreign function type. The types are size-dependent,
-- e.g. 'W' is a signed 32-bit integer.
primTyDescChar :: Type -> Char
primTyDescChar ty
| ty `eqType` unitTy = 'v'
| otherwise
= case typePrimRep (getPrimTyOf ty) of
IntRep -> signed_word
WordRep -> unsigned_word
Int64Rep -> 'L'
Word64Rep -> 'l'
AddrRep -> 'p'
FloatRep -> 'f'
DoubleRep -> 'd'
_ -> pprPanic "primTyDescChar" (ppr ty)
where
(signed_word, unsigned_word)
| wORD_SIZE == 4 = ('W','w')
| wORD_SIZE == 8 = ('L','l')
| otherwise = panic "primTyDescChar"
\end{code}
|