1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
Desugaring list comprehensions, monad comprehensions and array comprehensions
-}
{-# LANGUAGE CPP, NamedFieldPuns #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
module DsListComp ( dsListComp, dsMonadComp ) where
#include "HsVersions.h"
import GhcPrelude
import {-# SOURCE #-} DsExpr ( dsExpr, dsLExpr, dsLExprNoLP, dsLocalBinds, dsSyntaxExpr )
import HsSyn
import TcHsSyn
import CoreSyn
import MkCore
import DsMonad -- the monadery used in the desugarer
import DsUtils
import DynFlags
import CoreUtils
import Id
import Type
import TysWiredIn
import Match
import PrelNames
import SrcLoc
import Outputable
import TcType
import ListSetOps( getNth )
import Util
{-
List comprehensions may be desugared in one of two ways: ``ordinary''
(as you would expect if you read SLPJ's book) and ``with foldr/build
turned on'' (if you read Gill {\em et al.}'s paper on the subject).
There will be at least one ``qualifier'' in the input.
-}
dsListComp :: [ExprLStmt GhcTc]
-> Type -- Type of entire list
-> DsM CoreExpr
dsListComp lquals res_ty = do
dflags <- getDynFlags
let quals = map unLoc lquals
elt_ty = case tcTyConAppArgs res_ty of
[elt_ty] -> elt_ty
_ -> pprPanic "dsListComp" (ppr res_ty $$ ppr lquals)
if not (gopt Opt_EnableRewriteRules dflags) || gopt Opt_IgnoreInterfacePragmas dflags
-- Either rules are switched off, or we are ignoring what there are;
-- Either way foldr/build won't happen, so use the more efficient
-- Wadler-style desugaring
|| isParallelComp quals
-- Foldr-style desugaring can't handle parallel list comprehensions
then deListComp quals (mkNilExpr elt_ty)
else mkBuildExpr elt_ty (\(c, _) (n, _) -> dfListComp c n quals)
-- Foldr/build should be enabled, so desugar
-- into foldrs and builds
where
-- We must test for ParStmt anywhere, not just at the head, because an extension
-- to list comprehensions would be to add brackets to specify the associativity
-- of qualifier lists. This is really easy to do by adding extra ParStmts into the
-- mix of possibly a single element in length, so we do this to leave the possibility open
isParallelComp = any isParallelStmt
isParallelStmt (ParStmt {}) = True
isParallelStmt _ = False
-- This function lets you desugar a inner list comprehension and a list of the binders
-- of that comprehension that we need in the outer comprehension into such an expression
-- and the type of the elements that it outputs (tuples of binders)
dsInnerListComp :: (ParStmtBlock GhcTc GhcTc) -> DsM (CoreExpr, Type)
dsInnerListComp (ParStmtBlock _ stmts bndrs _)
= do { let bndrs_tuple_type = mkBigCoreVarTupTy bndrs
list_ty = mkListTy bndrs_tuple_type
-- really use original bndrs below!
; expr <- dsListComp (stmts ++ [noLoc $ mkLastStmt (mkBigLHsVarTupId bndrs)]) list_ty
; return (expr, bndrs_tuple_type) }
dsInnerListComp (XParStmtBlock{}) = panic "dsInnerListComp"
-- This function factors out commonality between the desugaring strategies for GroupStmt.
-- Given such a statement it gives you back an expression representing how to compute the transformed
-- list and the tuple that you need to bind from that list in order to proceed with your desugaring
dsTransStmt :: ExprStmt GhcTc -> DsM (CoreExpr, LPat GhcTc)
dsTransStmt (TransStmt { trS_form = form, trS_stmts = stmts, trS_bndrs = binderMap
, trS_by = by, trS_using = using }) = do
let (from_bndrs, to_bndrs) = unzip binderMap
let from_bndrs_tys = map idType from_bndrs
to_bndrs_tys = map idType to_bndrs
to_bndrs_tup_ty = mkBigCoreTupTy to_bndrs_tys
-- Desugar an inner comprehension which outputs a list of tuples of the "from" binders
(expr', from_tup_ty) <- dsInnerListComp (ParStmtBlock noExt stmts
from_bndrs noSyntaxExpr)
-- Work out what arguments should be supplied to that expression: i.e. is an extraction
-- function required? If so, create that desugared function and add to arguments
usingExpr' <- dsLExpr using
usingArgs' <- case by of
Nothing -> return [expr']
Just by_e -> do { by_e' <- dsLExpr by_e
; lam' <- matchTuple from_bndrs by_e'
; return [lam', expr'] }
-- Create an unzip function for the appropriate arity and element types and find "map"
unzip_stuff' <- mkUnzipBind form from_bndrs_tys
map_id <- dsLookupGlobalId mapName
-- Generate the expressions to build the grouped list
let -- First we apply the grouping function to the inner list
inner_list_expr' = mkApps usingExpr' usingArgs'
-- Then we map our "unzip" across it to turn the lists of tuples into tuples of lists
-- We make sure we instantiate the type variable "a" to be a list of "from" tuples and
-- the "b" to be a tuple of "to" lists!
-- Then finally we bind the unzip function around that expression
bound_unzipped_inner_list_expr'
= case unzip_stuff' of
Nothing -> inner_list_expr'
Just (unzip_fn', unzip_rhs') ->
Let (Rec [(unzip_fn', unzip_rhs')]) $
mkApps (Var map_id) $
[ Type (mkListTy from_tup_ty)
, Type to_bndrs_tup_ty
, Var unzip_fn'
, inner_list_expr' ]
dsNoLevPoly (tcFunResultTyN (length usingArgs') (exprType usingExpr'))
(text "In the result of a" <+> quotes (text "using") <+> text "function:" <+> ppr using)
-- Build a pattern that ensures the consumer binds into the NEW binders,
-- which hold lists rather than single values
let pat = mkBigLHsVarPatTupId to_bndrs -- NB: no '!
return (bound_unzipped_inner_list_expr', pat)
dsTransStmt _ = panic "dsTransStmt: Not given a TransStmt"
{-
************************************************************************
* *
\subsection[DsListComp-ordinary]{Ordinary desugaring of list comprehensions}
* *
************************************************************************
Just as in Phil's chapter~7 in SLPJ, using the rules for
optimally-compiled list comprehensions. This is what Kevin followed
as well, and I quite happily do the same. The TQ translation scheme
transforms a list of qualifiers (either boolean expressions or
generators) into a single expression which implements the list
comprehension. Because we are generating 2nd-order polymorphic
lambda-calculus, calls to NIL and CONS must be applied to a type
argument, as well as their usual value arguments.
\begin{verbatim}
TE << [ e | qs ] >> = TQ << [ e | qs ] ++ Nil (typeOf e) >>
(Rule C)
TQ << [ e | ] ++ L >> = Cons (typeOf e) TE <<e>> TE <<L>>
(Rule B)
TQ << [ e | b , qs ] ++ L >> =
if TE << b >> then TQ << [ e | qs ] ++ L >> else TE << L >>
(Rule A')
TQ << [ e | p <- L1, qs ] ++ L2 >> =
letrec
h = \ u1 ->
case u1 of
[] -> TE << L2 >>
(u2 : u3) ->
(( \ TE << p >> -> ( TQ << [e | qs] ++ (h u3) >> )) u2)
[] (h u3)
in
h ( TE << L1 >> )
"h", "u1", "u2", and "u3" are new variables.
\end{verbatim}
@deListComp@ is the TQ translation scheme. Roughly speaking, @dsExpr@
is the TE translation scheme. Note that we carry around the @L@ list
already desugared. @dsListComp@ does the top TE rule mentioned above.
To the above, we add an additional rule to deal with parallel list
comprehensions. The translation goes roughly as follows:
[ e | p1 <- e11, let v1 = e12, p2 <- e13
| q1 <- e21, let v2 = e22, q2 <- e23]
=>
[ e | ((x1, .., xn), (y1, ..., ym)) <-
zip [(x1,..,xn) | p1 <- e11, let v1 = e12, p2 <- e13]
[(y1,..,ym) | q1 <- e21, let v2 = e22, q2 <- e23]]
where (x1, .., xn) are the variables bound in p1, v1, p2
(y1, .., ym) are the variables bound in q1, v2, q2
In the translation below, the ParStmt branch translates each parallel branch
into a sub-comprehension, and desugars each independently. The resulting lists
are fed to a zip function, we create a binding for all the variables bound in all
the comprehensions, and then we hand things off the desugarer for bindings.
The zip function is generated here a) because it's small, and b) because then we
don't have to deal with arbitrary limits on the number of zip functions in the
prelude, nor which library the zip function came from.
The introduced tuples are Boxed, but only because I couldn't get it to work
with the Unboxed variety.
-}
deListComp :: [ExprStmt GhcTc] -> CoreExpr -> DsM CoreExpr
deListComp [] _ = panic "deListComp"
deListComp (LastStmt _ body _ _ : quals) list
= -- Figure 7.4, SLPJ, p 135, rule C above
ASSERT( null quals )
do { core_body <- dsLExpr body
; return (mkConsExpr (exprType core_body) core_body list) }
-- Non-last: must be a guard
deListComp (BodyStmt _ guard _ _ : quals) list = do -- rule B above
core_guard <- dsLExpr guard
core_rest <- deListComp quals list
return (mkIfThenElse core_guard core_rest list)
-- [e | let B, qs] = let B in [e | qs]
deListComp (LetStmt _ binds : quals) list = do
core_rest <- deListComp quals list
dsLocalBinds binds core_rest
deListComp (stmt@(TransStmt {}) : quals) list = do
(inner_list_expr, pat) <- dsTransStmt stmt
deBindComp pat inner_list_expr quals list
deListComp (BindStmt _ pat list1 _ _ : quals) core_list2 = do -- rule A' above
core_list1 <- dsLExprNoLP list1
deBindComp pat core_list1 quals core_list2
deListComp (ParStmt _ stmtss_w_bndrs _ _ : quals) list
= do { exps_and_qual_tys <- mapM dsInnerListComp stmtss_w_bndrs
; let (exps, qual_tys) = unzip exps_and_qual_tys
; (zip_fn, zip_rhs) <- mkZipBind qual_tys
-- Deal with [e | pat <- zip l1 .. ln] in example above
; deBindComp pat (Let (Rec [(zip_fn, zip_rhs)]) (mkApps (Var zip_fn) exps))
quals list }
where
bndrs_s = [bs | ParStmtBlock _ _ bs _ <- stmtss_w_bndrs]
-- pat is the pattern ((x1,..,xn), (y1,..,ym)) in the example above
pat = mkBigLHsPatTupId pats
pats = map mkBigLHsVarPatTupId bndrs_s
deListComp (RecStmt {} : _) _ = panic "deListComp RecStmt"
deListComp (ApplicativeStmt {} : _) _ =
panic "deListComp ApplicativeStmt"
deListComp (XStmtLR {} : _) _ =
panic "deListComp XStmtLR"
deBindComp :: OutPat GhcTc
-> CoreExpr
-> [ExprStmt GhcTc]
-> CoreExpr
-> DsM (Expr Id)
deBindComp pat core_list1 quals core_list2 = do
let u3_ty@u1_ty = exprType core_list1 -- two names, same thing
-- u1_ty is a [alpha] type, and u2_ty = alpha
let u2_ty = hsLPatType pat
let res_ty = exprType core_list2
h_ty = u1_ty `mkVisFunTy` res_ty
-- no levity polymorphism here, as list comprehensions don't work
-- with RebindableSyntax. NB: These are *not* monad comps.
[h, u1, u2, u3] <- newSysLocalsDs [h_ty, u1_ty, u2_ty, u3_ty]
-- the "fail" value ...
let
core_fail = App (Var h) (Var u3)
letrec_body = App (Var h) core_list1
rest_expr <- deListComp quals core_fail
core_match <- matchSimply (Var u2) (StmtCtxt ListComp) pat rest_expr core_fail
let
rhs = Lam u1 $
Case (Var u1) u1 res_ty
[(DataAlt nilDataCon, [], core_list2),
(DataAlt consDataCon, [u2, u3], core_match)]
-- Increasing order of tag
return (Let (Rec [(h, rhs)]) letrec_body)
{-
************************************************************************
* *
\subsection[DsListComp-foldr-build]{Foldr/Build desugaring of list comprehensions}
* *
************************************************************************
@dfListComp@ are the rules used with foldr/build turned on:
\begin{verbatim}
TE[ e | ] c n = c e n
TE[ e | b , q ] c n = if b then TE[ e | q ] c n else n
TE[ e | p <- l , q ] c n = let
f = \ x b -> case x of
p -> TE[ e | q ] c b
_ -> b
in
foldr f n l
\end{verbatim}
-}
dfListComp :: Id -> Id -- 'c' and 'n'
-> [ExprStmt GhcTc] -- the rest of the qual's
-> DsM CoreExpr
dfListComp _ _ [] = panic "dfListComp"
dfListComp c_id n_id (LastStmt _ body _ _ : quals)
= ASSERT( null quals )
do { core_body <- dsLExprNoLP body
; return (mkApps (Var c_id) [core_body, Var n_id]) }
-- Non-last: must be a guard
dfListComp c_id n_id (BodyStmt _ guard _ _ : quals) = do
core_guard <- dsLExpr guard
core_rest <- dfListComp c_id n_id quals
return (mkIfThenElse core_guard core_rest (Var n_id))
dfListComp c_id n_id (LetStmt _ binds : quals) = do
-- new in 1.3, local bindings
core_rest <- dfListComp c_id n_id quals
dsLocalBinds binds core_rest
dfListComp c_id n_id (stmt@(TransStmt {}) : quals) = do
(inner_list_expr, pat) <- dsTransStmt stmt
-- Anyway, we bind the newly grouped list via the generic binding function
dfBindComp c_id n_id (pat, inner_list_expr) quals
dfListComp c_id n_id (BindStmt _ pat list1 _ _ : quals) = do
-- evaluate the two lists
core_list1 <- dsLExpr list1
-- Do the rest of the work in the generic binding builder
dfBindComp c_id n_id (pat, core_list1) quals
dfListComp _ _ (ParStmt {} : _) = panic "dfListComp ParStmt"
dfListComp _ _ (RecStmt {} : _) = panic "dfListComp RecStmt"
dfListComp _ _ (ApplicativeStmt {} : _) =
panic "dfListComp ApplicativeStmt"
dfListComp _ _ (XStmtLR {} : _) =
panic "dfListComp XStmtLR"
dfBindComp :: Id -> Id -- 'c' and 'n'
-> (LPat GhcTc, CoreExpr)
-> [ExprStmt GhcTc] -- the rest of the qual's
-> DsM CoreExpr
dfBindComp c_id n_id (pat, core_list1) quals = do
-- find the required type
let x_ty = hsLPatType pat
let b_ty = idType n_id
-- create some new local id's
b <- newSysLocalDs b_ty
x <- newSysLocalDs x_ty
-- build rest of the comprehesion
core_rest <- dfListComp c_id b quals
-- build the pattern match
core_expr <- matchSimply (Var x) (StmtCtxt ListComp)
pat core_rest (Var b)
-- now build the outermost foldr, and return
mkFoldrExpr x_ty b_ty (mkLams [x, b] core_expr) (Var n_id) core_list1
{-
************************************************************************
* *
\subsection[DsFunGeneration]{Generation of zip/unzip functions for use in desugaring}
* *
************************************************************************
-}
mkZipBind :: [Type] -> DsM (Id, CoreExpr)
-- mkZipBind [t1, t2]
-- = (zip, \as1:[t1] as2:[t2]
-- -> case as1 of
-- [] -> []
-- (a1:as'1) -> case as2 of
-- [] -> []
-- (a2:as'2) -> (a1, a2) : zip as'1 as'2)]
mkZipBind elt_tys = do
ass <- mapM newSysLocalDs elt_list_tys
as' <- mapM newSysLocalDs elt_tys
as's <- mapM newSysLocalDs elt_list_tys
zip_fn <- newSysLocalDs zip_fn_ty
let inner_rhs = mkConsExpr elt_tuple_ty
(mkBigCoreVarTup as')
(mkVarApps (Var zip_fn) as's)
zip_body = foldr mk_case inner_rhs (zip3 ass as' as's)
return (zip_fn, mkLams ass zip_body)
where
elt_list_tys = map mkListTy elt_tys
elt_tuple_ty = mkBigCoreTupTy elt_tys
elt_tuple_list_ty = mkListTy elt_tuple_ty
zip_fn_ty = mkVisFunTys elt_list_tys elt_tuple_list_ty
mk_case (as, a', as') rest
= Case (Var as) as elt_tuple_list_ty
[(DataAlt nilDataCon, [], mkNilExpr elt_tuple_ty),
(DataAlt consDataCon, [a', as'], rest)]
-- Increasing order of tag
mkUnzipBind :: TransForm -> [Type] -> DsM (Maybe (Id, CoreExpr))
-- mkUnzipBind [t1, t2]
-- = (unzip, \ys :: [(t1, t2)] -> foldr (\ax :: (t1, t2) axs :: ([t1], [t2])
-- -> case ax of
-- (x1, x2) -> case axs of
-- (xs1, xs2) -> (x1 : xs1, x2 : xs2))
-- ([], [])
-- ys)
--
-- We use foldr here in all cases, even if rules are turned off, because we may as well!
mkUnzipBind ThenForm _
= return Nothing -- No unzipping for ThenForm
mkUnzipBind _ elt_tys
= do { ax <- newSysLocalDs elt_tuple_ty
; axs <- newSysLocalDs elt_list_tuple_ty
; ys <- newSysLocalDs elt_tuple_list_ty
; xs <- mapM newSysLocalDs elt_tys
; xss <- mapM newSysLocalDs elt_list_tys
; unzip_fn <- newSysLocalDs unzip_fn_ty
; [us1, us2] <- sequence [newUniqueSupply, newUniqueSupply]
; let nil_tuple = mkBigCoreTup (map mkNilExpr elt_tys)
concat_expressions = map mkConcatExpression (zip3 elt_tys (map Var xs) (map Var xss))
tupled_concat_expression = mkBigCoreTup concat_expressions
folder_body_inner_case = mkTupleCase us1 xss tupled_concat_expression axs (Var axs)
folder_body_outer_case = mkTupleCase us2 xs folder_body_inner_case ax (Var ax)
folder_body = mkLams [ax, axs] folder_body_outer_case
; unzip_body <- mkFoldrExpr elt_tuple_ty elt_list_tuple_ty folder_body nil_tuple (Var ys)
; return (Just (unzip_fn, mkLams [ys] unzip_body)) }
where
elt_tuple_ty = mkBigCoreTupTy elt_tys
elt_tuple_list_ty = mkListTy elt_tuple_ty
elt_list_tys = map mkListTy elt_tys
elt_list_tuple_ty = mkBigCoreTupTy elt_list_tys
unzip_fn_ty = elt_tuple_list_ty `mkVisFunTy` elt_list_tuple_ty
mkConcatExpression (list_element_ty, head, tail) = mkConsExpr list_element_ty head tail
-- Translation for monad comprehensions
-- Entry point for monad comprehension desugaring
dsMonadComp :: [ExprLStmt GhcTc] -> DsM CoreExpr
dsMonadComp stmts = dsMcStmts stmts
dsMcStmts :: [ExprLStmt GhcTc] -> DsM CoreExpr
dsMcStmts [] = panic "dsMcStmts"
dsMcStmts ((dL->L loc stmt) : lstmts) = putSrcSpanDs loc (dsMcStmt stmt lstmts)
---------------
dsMcStmt :: ExprStmt GhcTc -> [ExprLStmt GhcTc] -> DsM CoreExpr
dsMcStmt (LastStmt _ body _ ret_op) stmts
= ASSERT( null stmts )
do { body' <- dsLExpr body
; dsSyntaxExpr ret_op [body'] }
-- [ .. | let binds, stmts ]
dsMcStmt (LetStmt _ binds) stmts
= do { rest <- dsMcStmts stmts
; dsLocalBinds binds rest }
-- [ .. | a <- m, stmts ]
dsMcStmt (BindStmt bind_ty pat rhs bind_op fail_op) stmts
= do { rhs' <- dsLExpr rhs
; dsMcBindStmt pat rhs' bind_op fail_op bind_ty stmts }
-- Apply `guard` to the `exp` expression
--
-- [ .. | exp, stmts ]
--
dsMcStmt (BodyStmt _ exp then_exp guard_exp) stmts
= do { exp' <- dsLExpr exp
; rest <- dsMcStmts stmts
; guard_exp' <- dsSyntaxExpr guard_exp [exp']
; dsSyntaxExpr then_exp [guard_exp', rest] }
-- Group statements desugar like this:
--
-- [| (q, then group by e using f); rest |]
-- ---> f {qt} (\qv -> e) [| q; return qv |] >>= \ n_tup ->
-- case unzip n_tup of qv' -> [| rest |]
--
-- where variables (v1:t1, ..., vk:tk) are bound by q
-- qv = (v1, ..., vk)
-- qt = (t1, ..., tk)
-- (>>=) :: m2 a -> (a -> m3 b) -> m3 b
-- f :: forall a. (a -> t) -> m1 a -> m2 (n a)
-- n_tup :: n qt
-- unzip :: n qt -> (n t1, ..., n tk) (needs Functor n)
dsMcStmt (TransStmt { trS_stmts = stmts, trS_bndrs = bndrs
, trS_by = by, trS_using = using
, trS_ret = return_op, trS_bind = bind_op
, trS_ext = n_tup_ty' -- n (a,b,c)
, trS_fmap = fmap_op, trS_form = form }) stmts_rest
= do { let (from_bndrs, to_bndrs) = unzip bndrs
; let from_bndr_tys = map idType from_bndrs -- Types ty
-- Desugar an inner comprehension which outputs a list of tuples of the "from" binders
; expr' <- dsInnerMonadComp stmts from_bndrs return_op
-- Work out what arguments should be supplied to that expression: i.e. is an extraction
-- function required? If so, create that desugared function and add to arguments
; usingExpr' <- dsLExpr using
; usingArgs' <- case by of
Nothing -> return [expr']
Just by_e -> do { by_e' <- dsLExpr by_e
; lam' <- matchTuple from_bndrs by_e'
; return [lam', expr'] }
-- Generate the expressions to build the grouped list
-- Build a pattern that ensures the consumer binds into the NEW binders,
-- which hold monads rather than single values
; let tup_n_ty' = mkBigCoreVarTupTy to_bndrs
; body <- dsMcStmts stmts_rest
; n_tup_var' <- newSysLocalDsNoLP n_tup_ty'
; tup_n_var' <- newSysLocalDs tup_n_ty'
; tup_n_expr' <- mkMcUnzipM form fmap_op n_tup_var' from_bndr_tys
; us <- newUniqueSupply
; let rhs' = mkApps usingExpr' usingArgs'
body' = mkTupleCase us to_bndrs body tup_n_var' tup_n_expr'
; dsSyntaxExpr bind_op [rhs', Lam n_tup_var' body'] }
-- Parallel statements. Use `Control.Monad.Zip.mzip` to zip parallel
-- statements, for example:
--
-- [ body | qs1 | qs2 | qs3 ]
-- -> [ body | (bndrs1, (bndrs2, bndrs3))
-- <- [bndrs1 | qs1] `mzip` ([bndrs2 | qs2] `mzip` [bndrs3 | qs3]) ]
--
-- where `mzip` has type
-- mzip :: forall a b. m a -> m b -> m (a,b)
-- NB: we need a polymorphic mzip because we call it several times
dsMcStmt (ParStmt bind_ty blocks mzip_op bind_op) stmts_rest
= do { exps_w_tys <- mapM ds_inner blocks -- Pairs (exp :: m ty, ty)
; mzip_op' <- dsExpr mzip_op
; let -- The pattern variables
pats = [ mkBigLHsVarPatTupId bs | ParStmtBlock _ _ bs _ <- blocks]
-- Pattern with tuples of variables
-- [v1,v2,v3] => (v1, (v2, v3))
pat = foldr1 (\p1 p2 -> mkLHsPatTup [p1, p2]) pats
(rhs, _) = foldr1 (\(e1,t1) (e2,t2) ->
(mkApps mzip_op' [Type t1, Type t2, e1, e2],
mkBoxedTupleTy [t1,t2]))
exps_w_tys
; dsMcBindStmt pat rhs bind_op noSyntaxExpr bind_ty stmts_rest }
where
ds_inner (ParStmtBlock _ stmts bndrs return_op)
= do { exp <- dsInnerMonadComp stmts bndrs return_op
; return (exp, mkBigCoreVarTupTy bndrs) }
ds_inner (XParStmtBlock{}) = panic "dsMcStmt"
dsMcStmt stmt _ = pprPanic "dsMcStmt: unexpected stmt" (ppr stmt)
matchTuple :: [Id] -> CoreExpr -> DsM CoreExpr
-- (matchTuple [a,b,c] body)
-- returns the Core term
-- \x. case x of (a,b,c) -> body
matchTuple ids body
= do { us <- newUniqueSupply
; tup_id <- newSysLocalDs (mkBigCoreVarTupTy ids)
; return (Lam tup_id $ mkTupleCase us ids body tup_id (Var tup_id)) }
-- general `rhs' >>= \pat -> stmts` desugaring where `rhs'` is already a
-- desugared `CoreExpr`
dsMcBindStmt :: LPat GhcTc
-> CoreExpr -- ^ the desugared rhs of the bind statement
-> SyntaxExpr GhcTc
-> SyntaxExpr GhcTc
-> Type -- ^ S in (>>=) :: Q -> (R -> S) -> T
-> [ExprLStmt GhcTc]
-> DsM CoreExpr
dsMcBindStmt pat rhs' bind_op fail_op res1_ty stmts
= do { body <- dsMcStmts stmts
; var <- selectSimpleMatchVarL pat
; match <- matchSinglePatVar var (StmtCtxt DoExpr) pat
res1_ty (cantFailMatchResult body)
; match_code <- handle_failure pat match fail_op
; dsSyntaxExpr bind_op [rhs', Lam var match_code] }
where
-- In a monad comprehension expression, pattern-match failure just calls
-- the monadic `fail` rather than throwing an exception
handle_failure pat match fail_op
| matchCanFail match
= do { dflags <- getDynFlags
; fail_msg <- mkStringExpr (mk_fail_msg dflags pat)
; fail_expr <- dsSyntaxExpr fail_op [fail_msg]
; extractMatchResult match fail_expr }
| otherwise
= extractMatchResult match (error "It can't fail")
mk_fail_msg :: HasSrcSpan e => DynFlags -> e -> String
mk_fail_msg dflags pat
= "Pattern match failure in monad comprehension at " ++
showPpr dflags (getLoc pat)
-- Desugar nested monad comprehensions, for example in `then..` constructs
-- dsInnerMonadComp quals [a,b,c] ret_op
-- returns the desugaring of
-- [ (a,b,c) | quals ]
dsInnerMonadComp :: [ExprLStmt GhcTc]
-> [Id] -- Return a tuple of these variables
-> SyntaxExpr GhcTc -- The monomorphic "return" operator
-> DsM CoreExpr
dsInnerMonadComp stmts bndrs ret_op
= dsMcStmts (stmts ++
[noLoc (LastStmt noExt (mkBigLHsVarTupId bndrs) False ret_op)])
-- The `unzip` function for `GroupStmt` in a monad comprehensions
--
-- unzip :: m (a,b,..) -> (m a,m b,..)
-- unzip m_tuple = ( liftM selN1 m_tuple
-- , liftM selN2 m_tuple
-- , .. )
--
-- mkMcUnzipM fmap ys [t1, t2]
-- = ( fmap (selN1 :: (t1, t2) -> t1) ys
-- , fmap (selN2 :: (t1, t2) -> t2) ys )
mkMcUnzipM :: TransForm
-> HsExpr GhcTcId -- fmap
-> Id -- Of type n (a,b,c)
-> [Type] -- [a,b,c] (not levity-polymorphic)
-> DsM CoreExpr -- Of type (n a, n b, n c)
mkMcUnzipM ThenForm _ ys _
= return (Var ys) -- No unzipping to do
mkMcUnzipM _ fmap_op ys elt_tys
= do { fmap_op' <- dsExpr fmap_op
; xs <- mapM newSysLocalDs elt_tys
; let tup_ty = mkBigCoreTupTy elt_tys
; tup_xs <- newSysLocalDs tup_ty
; let mk_elt i = mkApps fmap_op' -- fmap :: forall a b. (a -> b) -> n a -> n b
[ Type tup_ty, Type (getNth elt_tys i)
, mk_sel i, Var ys]
mk_sel n = Lam tup_xs $
mkTupleSelector xs (getNth xs n) tup_xs (Var tup_xs)
; return (mkBigCoreTup (map mk_elt [0..length elt_tys - 1])) }
|