1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
|
{-# LANGUAGE CPP #-}
-----------------------------------------------------------------------------
--
-- (c) The University of Glasgow 2006
--
-- The purpose of this module is to transform an HsExpr into a CoreExpr which
-- when evaluated, returns a (Meta.Q Meta.Exp) computation analogous to the
-- input HsExpr. We do this in the DsM monad, which supplies access to
-- CoreExpr's of the "smart constructors" of the Meta.Exp datatype.
--
-- It also defines a bunch of knownKeyNames, in the same way as is done
-- in prelude/PrelNames. It's much more convenient to do it here, because
-- otherwise we have to recompile PrelNames whenever we add a Name, which is
-- a Royal Pain (triggers other recompilation).
-----------------------------------------------------------------------------
module DsMeta( dsBracket ) where
#include "HsVersions.h"
import {-# SOURCE #-} DsExpr ( dsExpr )
import MatchLit
import DsMonad
import qualified Language.Haskell.TH as TH
import HsSyn
import Class
import PrelNames
-- To avoid clashes with DsMeta.varName we must make a local alias for
-- OccName.varName we do this by removing varName from the import of
-- OccName above, making a qualified instance of OccName and using
-- OccNameAlias.varName where varName ws previously used in this file.
import qualified OccName( isDataOcc, isVarOcc, isTcOcc )
import Module
import Id
import Name hiding( isVarOcc, isTcOcc, varName, tcName )
import THNames
import NameEnv
import TcType
import TyCon
import TysWiredIn
import TysPrim ( liftedTypeKindTyConName, constraintKindTyConName )
import CoreSyn
import MkCore
import CoreUtils
import SrcLoc
import Unique
import BasicTypes
import Outputable
import Bag
import DynFlags
import FastString
import ForeignCall
import Util
import MonadUtils
import Data.ByteString ( unpack )
import Data.Maybe
import Control.Monad
import Data.List
-----------------------------------------------------------------------------
dsBracket :: HsBracket Name -> [PendingTcSplice] -> DsM CoreExpr
-- Returns a CoreExpr of type TH.ExpQ
-- The quoted thing is parameterised over Name, even though it has
-- been type checked. We don't want all those type decorations!
dsBracket brack splices
= dsExtendMetaEnv new_bit (do_brack brack)
where
new_bit = mkNameEnv [(n, DsSplice (unLoc e)) | PendingTcSplice n e <- splices]
do_brack (VarBr _ n) = do { MkC e1 <- lookupOcc n ; return e1 }
do_brack (ExpBr e) = do { MkC e1 <- repLE e ; return e1 }
do_brack (PatBr p) = do { MkC p1 <- repTopP p ; return p1 }
do_brack (TypBr t) = do { MkC t1 <- repLTy t ; return t1 }
do_brack (DecBrG gp) = do { MkC ds1 <- repTopDs gp ; return ds1 }
do_brack (DecBrL _) = panic "dsBracket: unexpected DecBrL"
do_brack (TExpBr e) = do { MkC e1 <- repLE e ; return e1 }
{- -------------- Examples --------------------
[| \x -> x |]
====>
gensym (unpackString "x"#) `bindQ` \ x1::String ->
lam (pvar x1) (var x1)
[| \x -> $(f [| x |]) |]
====>
gensym (unpackString "x"#) `bindQ` \ x1::String ->
lam (pvar x1) (f (var x1))
-}
-------------------------------------------------------
-- Declarations
-------------------------------------------------------
repTopP :: LPat Name -> DsM (Core TH.PatQ)
repTopP pat = do { ss <- mkGenSyms (collectPatBinders pat)
; pat' <- addBinds ss (repLP pat)
; wrapGenSyms ss pat' }
repTopDs :: HsGroup Name -> DsM (Core (TH.Q [TH.Dec]))
repTopDs group@(HsGroup { hs_valds = valds
, hs_splcds = splcds
, hs_tyclds = tyclds
, hs_instds = instds
, hs_derivds = derivds
, hs_fixds = fixds
, hs_defds = defds
, hs_fords = fords
, hs_warnds = warnds
, hs_annds = annds
, hs_ruleds = ruleds
, hs_vects = vects
, hs_docs = docs })
= do { let { tv_bndrs = hsSigTvBinders valds
; bndrs = tv_bndrs ++ hsGroupBinders group } ;
ss <- mkGenSyms bndrs ;
-- Bind all the names mainly to avoid repeated use of explicit strings.
-- Thus we get
-- do { t :: String <- genSym "T" ;
-- return (Data t [] ...more t's... }
-- The other important reason is that the output must mention
-- only "T", not "Foo:T" where Foo is the current module
decls <- addBinds ss (
do { val_ds <- rep_val_binds valds
; _ <- mapM no_splice splcds
; tycl_ds <- mapM repTyClD (tyClGroupConcat tyclds)
; role_ds <- mapM repRoleD (concatMap group_roles tyclds)
; inst_ds <- mapM repInstD instds
; deriv_ds <- mapM repStandaloneDerivD derivds
; fix_ds <- mapM repFixD fixds
; _ <- mapM no_default_decl defds
; for_ds <- mapM repForD fords
; _ <- mapM no_warn (concatMap (wd_warnings . unLoc)
warnds)
; ann_ds <- mapM repAnnD annds
; rule_ds <- mapM repRuleD (concatMap (rds_rules . unLoc)
ruleds)
; _ <- mapM no_vect vects
; _ <- mapM no_doc docs
-- more needed
; return (de_loc $ sort_by_loc $
val_ds ++ catMaybes tycl_ds ++ role_ds
++ (concat fix_ds)
++ inst_ds ++ rule_ds ++ for_ds
++ ann_ds ++ deriv_ds) }) ;
decl_ty <- lookupType decQTyConName ;
let { core_list = coreList' decl_ty decls } ;
dec_ty <- lookupType decTyConName ;
q_decs <- repSequenceQ dec_ty core_list ;
wrapGenSyms ss q_decs
}
where
no_splice (L loc _)
= notHandledL loc "Splices within declaration brackets" empty
no_default_decl (L loc decl)
= notHandledL loc "Default declarations" (ppr decl)
no_warn (L loc (Warning thing _))
= notHandledL loc "WARNING and DEPRECATION pragmas" $
text "Pragma for declaration of" <+> ppr thing
no_vect (L loc decl)
= notHandledL loc "Vectorisation pragmas" (ppr decl)
no_doc (L loc _)
= notHandledL loc "Haddock documentation" empty
hsSigTvBinders :: HsValBinds Name -> [Name]
-- See Note [Scoped type variables in bindings]
hsSigTvBinders binds
= [hsLTyVarName tv | L _ (TypeSig _ (L _ (HsForAllTy Explicit _ qtvs _ _)) _) <- sigs
, tv <- hsQTvBndrs qtvs]
where
sigs = case binds of
ValBindsIn _ sigs -> sigs
ValBindsOut _ sigs -> sigs
{- Notes
Note [Scoped type variables in bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
f :: forall a. a -> a
f x = x::a
Here the 'forall a' brings 'a' into scope over the binding group.
To achieve this we
a) Gensym a binding for 'a' at the same time as we do one for 'f'
collecting the relevant binders with hsSigTvBinders
b) When processing the 'forall', don't gensym
The relevant places are signposted with references to this Note
Note [Binders and occurrences]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we desugar [d| data T = MkT |]
we want to get
Data "T" [] [Con "MkT" []] []
and *not*
Data "Foo:T" [] [Con "Foo:MkT" []] []
That is, the new data decl should fit into whatever new module it is
asked to fit in. We do *not* clone, though; no need for this:
Data "T79" ....
But if we see this:
data T = MkT
foo = reifyDecl T
then we must desugar to
foo = Data "Foo:T" [] [Con "Foo:MkT" []] []
So in repTopDs we bring the binders into scope with mkGenSyms and addBinds.
And we use lookupOcc, rather than lookupBinder
in repTyClD and repC.
-}
-- represent associated family instances
--
repTyClD :: LTyClDecl Name -> DsM (Maybe (SrcSpan, Core TH.DecQ))
repTyClD (L loc (FamDecl { tcdFam = fam })) = liftM Just $ repFamilyDecl (L loc fam)
repTyClD (L loc (SynDecl { tcdLName = tc, tcdTyVars = tvs, tcdRhs = rhs }))
= do { tc1 <- lookupLOcc tc -- See note [Binders and occurrences]
; dec <- addTyClTyVarBinds tvs $ \bndrs ->
repSynDecl tc1 bndrs rhs
; return (Just (loc, dec)) }
repTyClD (L loc (DataDecl { tcdLName = tc, tcdTyVars = tvs, tcdDataDefn = defn }))
= do { tc1 <- lookupLOcc tc -- See note [Binders and occurrences]
; tc_tvs <- mk_extra_tvs tc tvs defn
; dec <- addTyClTyVarBinds tc_tvs $ \bndrs ->
repDataDefn tc1 bndrs Nothing (hsLTyVarNames tc_tvs) defn
; return (Just (loc, dec)) }
repTyClD (L loc (ClassDecl { tcdCtxt = cxt, tcdLName = cls,
tcdTyVars = tvs, tcdFDs = fds,
tcdSigs = sigs, tcdMeths = meth_binds,
tcdATs = ats, tcdATDefs = [] }))
= do { cls1 <- lookupLOcc cls -- See note [Binders and occurrences]
; dec <- addTyVarBinds tvs $ \bndrs ->
do { cxt1 <- repLContext cxt
; sigs1 <- rep_sigs sigs
; binds1 <- rep_binds meth_binds
; fds1 <- repLFunDeps fds
; ats1 <- repFamilyDecls ats
; decls1 <- coreList decQTyConName (ats1 ++ sigs1 ++ binds1)
; repClass cxt1 cls1 bndrs fds1 decls1
}
; return $ Just (loc, dec)
}
-- Un-handled cases
repTyClD (L loc d) = putSrcSpanDs loc $
do { warnDs (hang ds_msg 4 (ppr d))
; return Nothing }
-------------------------
repRoleD :: LRoleAnnotDecl Name -> DsM (SrcSpan, Core TH.DecQ)
repRoleD (L loc (RoleAnnotDecl tycon roles))
= do { tycon1 <- lookupLOcc tycon
; roles1 <- mapM repRole roles
; roles2 <- coreList roleTyConName roles1
; dec <- repRoleAnnotD tycon1 roles2
; return (loc, dec) }
-------------------------
repDataDefn :: Core TH.Name -> Core [TH.TyVarBndr]
-> Maybe (Core [TH.TypeQ])
-> [Name] -> HsDataDefn Name
-> DsM (Core TH.DecQ)
repDataDefn tc bndrs opt_tys tv_names
(HsDataDefn { dd_ND = new_or_data, dd_ctxt = cxt
, dd_cons = cons, dd_derivs = mb_derivs })
= do { cxt1 <- repLContext cxt
; derivs1 <- repDerivs mb_derivs
; case new_or_data of
NewType -> do { con1 <- repC tv_names (head cons)
; case con1 of
[c] -> repNewtype cxt1 tc bndrs opt_tys c derivs1
_cs -> failWithDs (ptext
(sLit "Multiple constructors for newtype:")
<+> pprQuotedList
(con_names $ unLoc $ head cons))
}
DataType -> do { consL <- concatMapM (repC tv_names) cons
; cons1 <- coreList conQTyConName consL
; repData cxt1 tc bndrs opt_tys cons1 derivs1 } }
repSynDecl :: Core TH.Name -> Core [TH.TyVarBndr]
-> LHsType Name
-> DsM (Core TH.DecQ)
repSynDecl tc bndrs ty
= do { ty1 <- repLTy ty
; repTySyn tc bndrs ty1 }
repFamilyDecl :: LFamilyDecl Name -> DsM (SrcSpan, Core TH.DecQ)
repFamilyDecl decl@(L loc (FamilyDecl { fdInfo = info,
fdLName = tc,
fdTyVars = tvs,
fdResultSig = L _ resultSig,
fdInjectivityAnn = injectivity }))
= do { tc1 <- lookupLOcc tc -- See note [Binders and occurrences]
; let mkHsQTvs tvs = HsQTvs { hsq_kvs = [], hsq_tvs = tvs }
resTyVar = case resultSig of
TyVarSig bndr -> mkHsQTvs [bndr]
_ -> mkHsQTvs []
; dec <- addTyClTyVarBinds tvs $ \bndrs ->
addTyClTyVarBinds resTyVar $ \_ ->
case info of
ClosedTypeFamily Nothing ->
notHandled "abstract closed type family" (ppr decl)
ClosedTypeFamily (Just eqns) ->
do { eqns1 <- mapM repTyFamEqn eqns
; eqns2 <- coreList tySynEqnQTyConName eqns1
; result <- repFamilyResultSig resultSig
; inj <- repInjectivityAnn injectivity
; repClosedFamilyD tc1 bndrs result inj eqns2 }
OpenTypeFamily ->
do { result <- repFamilyResultSig resultSig
; inj <- repInjectivityAnn injectivity
; repOpenFamilyD tc1 bndrs result inj }
DataFamily ->
do { kind <- repFamilyResultSigToMaybeKind resultSig
; repDataFamilyD tc1 bndrs kind }
; return (loc, dec)
}
-- | Represent result signature of a type family
repFamilyResultSig :: FamilyResultSig Name -> DsM (Core TH.FamilyResultSig)
repFamilyResultSig NoSig = repNoSig
repFamilyResultSig (KindSig ki) = do { ki' <- repLKind ki
; repKindSig ki' }
repFamilyResultSig (TyVarSig bndr) = do { bndr' <- repTyVarBndr bndr
; repTyVarSig bndr' }
-- | Represent result signature using a Maybe Kind. Used with data families,
-- where the result signature can be either missing or a kind but never a named
-- result variable.
repFamilyResultSigToMaybeKind :: FamilyResultSig Name
-> DsM (Core (Maybe TH.Kind))
repFamilyResultSigToMaybeKind NoSig =
do { coreNothing kindTyConName }
repFamilyResultSigToMaybeKind (KindSig ki) =
do { ki' <- repLKind ki
; coreJust kindTyConName ki' }
repFamilyResultSigToMaybeKind _ = panic "repFamilyResultSigToMaybeKind"
-- | Represent injectivity annotation of a type family
repInjectivityAnn :: Maybe (LInjectivityAnn Name)
-> DsM (Core (Maybe TH.InjectivityAnn))
repInjectivityAnn Nothing =
do { coreNothing injAnnTyConName }
repInjectivityAnn (Just (L _ (InjectivityAnn lhs rhs))) =
do { lhs' <- lookupBinder (unLoc lhs)
; rhs1 <- mapM (lookupBinder . unLoc) rhs
; rhs2 <- coreList nameTyConName rhs1
; injAnn <- rep2 injectivityAnnName [unC lhs', unC rhs2]
; coreJust injAnnTyConName injAnn }
repFamilyDecls :: [LFamilyDecl Name] -> DsM [Core TH.DecQ]
repFamilyDecls fds = liftM de_loc (mapM repFamilyDecl fds)
-------------------------
mk_extra_tvs :: Located Name -> LHsTyVarBndrs Name
-> HsDataDefn Name -> DsM (LHsTyVarBndrs Name)
-- If there is a kind signature it must be of form
-- k1 -> .. -> kn -> *
-- Return type variables [tv1:k1, tv2:k2, .., tvn:kn]
mk_extra_tvs tc tvs defn
| HsDataDefn { dd_kindSig = Just hs_kind } <- defn
= do { extra_tvs <- go hs_kind
; return (tvs { hsq_tvs = hsq_tvs tvs ++ extra_tvs }) }
| otherwise
= return tvs
where
go :: LHsKind Name -> DsM [LHsTyVarBndr Name]
go (L loc (HsFunTy kind rest))
= do { uniq <- newUnique
; let { occ = mkTyVarOccFS (fsLit "t")
; nm = mkInternalName uniq occ loc
; hs_tv = L loc (KindedTyVar (noLoc nm) kind) }
; hs_tvs <- go rest
; return (hs_tv : hs_tvs) }
go (L _ (HsTyVar n))
| n == liftedTypeKindTyConName
= return []
go _ = failWithDs (ptext (sLit "Malformed kind signature for") <+> ppr tc)
-------------------------
-- represent fundeps
--
repLFunDeps :: [Located (FunDep (Located Name))] -> DsM (Core [TH.FunDep])
repLFunDeps fds = repList funDepTyConName repLFunDep fds
repLFunDep :: Located (FunDep (Located Name)) -> DsM (Core TH.FunDep)
repLFunDep (L _ (xs, ys))
= do xs' <- repList nameTyConName (lookupBinder . unLoc) xs
ys' <- repList nameTyConName (lookupBinder . unLoc) ys
repFunDep xs' ys'
-- Represent instance declarations
--
repInstD :: LInstDecl Name -> DsM (SrcSpan, Core TH.DecQ)
repInstD (L loc (TyFamInstD { tfid_inst = fi_decl }))
= do { dec <- repTyFamInstD fi_decl
; return (loc, dec) }
repInstD (L loc (DataFamInstD { dfid_inst = fi_decl }))
= do { dec <- repDataFamInstD fi_decl
; return (loc, dec) }
repInstD (L loc (ClsInstD { cid_inst = cls_decl }))
= do { dec <- repClsInstD cls_decl
; return (loc, dec) }
repClsInstD :: ClsInstDecl Name -> DsM (Core TH.DecQ)
repClsInstD (ClsInstDecl { cid_poly_ty = ty, cid_binds = binds
, cid_sigs = prags, cid_tyfam_insts = ats
, cid_datafam_insts = adts })
= addTyVarBinds tvs $ \_ ->
-- We must bring the type variables into scope, so their
-- occurrences don't fail, even though the binders don't
-- appear in the resulting data structure
--
-- But we do NOT bring the binders of 'binds' into scope
-- because they are properly regarded as occurrences
-- For example, the method names should be bound to
-- the selector Ids, not to fresh names (Trac #5410)
--
do { cxt1 <- repContext cxt
; cls_tcon <- repTy (HsTyVar (unLoc cls))
; cls_tys <- repLTys tys
; inst_ty1 <- repTapps cls_tcon cls_tys
; binds1 <- rep_binds binds
; prags1 <- rep_sigs prags
; ats1 <- mapM (repTyFamInstD . unLoc) ats
; adts1 <- mapM (repDataFamInstD . unLoc) adts
; decls <- coreList decQTyConName (ats1 ++ adts1 ++ binds1 ++ prags1)
; repInst cxt1 inst_ty1 decls }
where
Just (tvs, cxt, cls, tys) = splitLHsInstDeclTy_maybe ty
repStandaloneDerivD :: LDerivDecl Name -> DsM (SrcSpan, Core TH.DecQ)
repStandaloneDerivD (L loc (DerivDecl { deriv_type = ty }))
= do { dec <- addTyVarBinds tvs $ \_ ->
do { cxt' <- repContext cxt
; cls_tcon <- repTy (HsTyVar (unLoc cls))
; cls_tys <- repLTys tys
; inst_ty <- repTapps cls_tcon cls_tys
; repDeriv cxt' inst_ty }
; return (loc, dec) }
where
Just (tvs, cxt, cls, tys) = splitLHsInstDeclTy_maybe ty
repTyFamInstD :: TyFamInstDecl Name -> DsM (Core TH.DecQ)
repTyFamInstD decl@(TyFamInstDecl { tfid_eqn = eqn })
= do { let tc_name = tyFamInstDeclLName decl
; tc <- lookupLOcc tc_name -- See note [Binders and occurrences]
; eqn1 <- repTyFamEqn eqn
; repTySynInst tc eqn1 }
repTyFamEqn :: LTyFamInstEqn Name -> DsM (Core TH.TySynEqnQ)
repTyFamEqn (L loc (TyFamEqn { tfe_pats = HsWB { hswb_cts = tys
, hswb_kvs = kv_names
, hswb_tvs = tv_names }
, tfe_rhs = rhs }))
= do { let hs_tvs = HsQTvs { hsq_kvs = kv_names
, hsq_tvs = userHsTyVarBndrs loc tv_names } -- Yuk
; addTyClTyVarBinds hs_tvs $ \ _ ->
do { tys1 <- repLTys tys
; tys2 <- coreList typeQTyConName tys1
; rhs1 <- repLTy rhs
; repTySynEqn tys2 rhs1 } }
repDataFamInstD :: DataFamInstDecl Name -> DsM (Core TH.DecQ)
repDataFamInstD (DataFamInstDecl { dfid_tycon = tc_name
, dfid_pats = HsWB { hswb_cts = tys, hswb_kvs = kv_names, hswb_tvs = tv_names }
, dfid_defn = defn })
= do { tc <- lookupLOcc tc_name -- See note [Binders and occurrences]
; let loc = getLoc tc_name
hs_tvs = HsQTvs { hsq_kvs = kv_names, hsq_tvs = userHsTyVarBndrs loc tv_names } -- Yuk
; addTyClTyVarBinds hs_tvs $ \ bndrs ->
do { tys1 <- repList typeQTyConName repLTy tys
; repDataDefn tc bndrs (Just tys1) tv_names defn } }
repForD :: Located (ForeignDecl Name) -> DsM (SrcSpan, Core TH.DecQ)
repForD (L loc (ForeignImport name typ _ (CImport (L _ cc) (L _ s) mch cis _)))
= do MkC name' <- lookupLOcc name
MkC typ' <- repLTy typ
MkC cc' <- repCCallConv cc
MkC s' <- repSafety s
cis' <- conv_cimportspec cis
MkC str <- coreStringLit (static ++ chStr ++ cis')
dec <- rep2 forImpDName [cc', s', str, name', typ']
return (loc, dec)
where
conv_cimportspec (CLabel cls) = notHandled "Foreign label" (doubleQuotes (ppr cls))
conv_cimportspec (CFunction DynamicTarget) = return "dynamic"
conv_cimportspec (CFunction (StaticTarget _ fs _ True))
= return (unpackFS fs)
conv_cimportspec (CFunction (StaticTarget _ _ _ False))
= panic "conv_cimportspec: values not supported yet"
conv_cimportspec CWrapper = return "wrapper"
-- these calling conventions do not support headers and the static keyword
raw_cconv = cc == PrimCallConv || cc == JavaScriptCallConv
static = case cis of
CFunction (StaticTarget _ _ _ _) | not raw_cconv -> "static "
_ -> ""
chStr = case mch of
Just (Header _ h) | not raw_cconv -> unpackFS h ++ " "
_ -> ""
repForD decl = notHandled "Foreign declaration" (ppr decl)
repCCallConv :: CCallConv -> DsM (Core TH.Callconv)
repCCallConv CCallConv = rep2 cCallName []
repCCallConv StdCallConv = rep2 stdCallName []
repCCallConv CApiConv = rep2 cApiCallName []
repCCallConv PrimCallConv = rep2 primCallName []
repCCallConv JavaScriptCallConv = rep2 javaScriptCallName []
repSafety :: Safety -> DsM (Core TH.Safety)
repSafety PlayRisky = rep2 unsafeName []
repSafety PlayInterruptible = rep2 interruptibleName []
repSafety PlaySafe = rep2 safeName []
repFixD :: LFixitySig Name -> DsM [(SrcSpan, Core TH.DecQ)]
repFixD (L loc (FixitySig names (Fixity prec dir)))
= do { MkC prec' <- coreIntLit prec
; let rep_fn = case dir of
InfixL -> infixLDName
InfixR -> infixRDName
InfixN -> infixNDName
; let do_one name
= do { MkC name' <- lookupLOcc name
; dec <- rep2 rep_fn [prec', name']
; return (loc,dec) }
; mapM do_one names }
repRuleD :: LRuleDecl Name -> DsM (SrcSpan, Core TH.DecQ)
repRuleD (L loc (HsRule n act bndrs lhs _ rhs _))
= do { let bndr_names = concatMap ruleBndrNames bndrs
; ss <- mkGenSyms bndr_names
; rule1 <- addBinds ss $
do { bndrs' <- repList ruleBndrQTyConName repRuleBndr bndrs
; n' <- coreStringLit $ unpackFS $ snd $ unLoc n
; act' <- repPhases act
; lhs' <- repLE lhs
; rhs' <- repLE rhs
; repPragRule n' bndrs' lhs' rhs' act' }
; rule2 <- wrapGenSyms ss rule1
; return (loc, rule2) }
ruleBndrNames :: LRuleBndr Name -> [Name]
ruleBndrNames (L _ (RuleBndr n)) = [unLoc n]
ruleBndrNames (L _ (RuleBndrSig n (HsWB { hswb_kvs = kvs, hswb_tvs = tvs })))
= unLoc n : kvs ++ tvs
repRuleBndr :: LRuleBndr Name -> DsM (Core TH.RuleBndrQ)
repRuleBndr (L _ (RuleBndr n))
= do { MkC n' <- lookupLBinder n
; rep2 ruleVarName [n'] }
repRuleBndr (L _ (RuleBndrSig n (HsWB { hswb_cts = ty })))
= do { MkC n' <- lookupLBinder n
; MkC ty' <- repLTy ty
; rep2 typedRuleVarName [n', ty'] }
repAnnD :: LAnnDecl Name -> DsM (SrcSpan, Core TH.DecQ)
repAnnD (L loc (HsAnnotation _ ann_prov (L _ exp)))
= do { target <- repAnnProv ann_prov
; exp' <- repE exp
; dec <- repPragAnn target exp'
; return (loc, dec) }
repAnnProv :: AnnProvenance Name -> DsM (Core TH.AnnTarget)
repAnnProv (ValueAnnProvenance (L _ n))
= do { MkC n' <- globalVar n -- ANNs are allowed only at top-level
; rep2 valueAnnotationName [ n' ] }
repAnnProv (TypeAnnProvenance (L _ n))
= do { MkC n' <- globalVar n
; rep2 typeAnnotationName [ n' ] }
repAnnProv ModuleAnnProvenance
= rep2 moduleAnnotationName []
ds_msg :: SDoc
ds_msg = ptext (sLit "Cannot desugar this Template Haskell declaration:")
-------------------------------------------------------
-- Constructors
-------------------------------------------------------
repC :: [Name] -> LConDecl Name -> DsM [Core TH.ConQ]
repC _ (L _ (ConDecl { con_names = con, con_qvars = con_tvs, con_cxt = L _ []
, con_details = details, con_res = ResTyH98 }))
| null (hsQTvBndrs con_tvs)
= do { con1 <- mapM lookupLOcc con -- See Note [Binders and occurrences]
; mapM (\c -> repConstr c details) con1 }
repC tvs (L _ (ConDecl { con_names = cons
, con_qvars = con_tvs, con_cxt = L _ ctxt
, con_details = details
, con_res = res_ty }))
= do { (eq_ctxt, con_tv_subst) <- mkGadtCtxt tvs res_ty
; let ex_tvs = HsQTvs { hsq_kvs = filterOut (in_subst con_tv_subst) (hsq_kvs con_tvs)
, hsq_tvs = filterOut (in_subst con_tv_subst . hsLTyVarName) (hsq_tvs con_tvs) }
; binds <- mapM dupBinder con_tv_subst
; b <- dsExtendMetaEnv (mkNameEnv binds) $ -- Binds some of the con_tvs
addTyVarBinds ex_tvs $ \ ex_bndrs -> -- Binds the remaining con_tvs
do { cons1 <- mapM lookupLOcc cons -- See Note [Binders and occurrences]
; c' <- mapM (\c -> repConstr c details) cons1
; ctxt' <- repContext (eq_ctxt ++ ctxt)
; rep2 forallCName ([unC ex_bndrs, unC ctxt'] ++ (map unC c')) }
; return [b]
}
in_subst :: [(Name,Name)] -> Name -> Bool
in_subst [] _ = False
in_subst ((n',_):ns) n = n==n' || in_subst ns n
mkGadtCtxt :: [Name] -- Tyvars of the data type
-> ResType (LHsType Name)
-> DsM (HsContext Name, [(Name,Name)])
-- Given a data type in GADT syntax, figure out the equality
-- context, so that we can represent it with an explicit
-- equality context, because that is the only way to express
-- the GADT in TH syntax
--
-- Example:
-- data T a b c where { MkT :: forall d e. d -> e -> T d [e] e
-- mkGadtCtxt [a,b,c] [d,e] (T d [e] e)
-- returns
-- (b~[e], c~e), [d->a]
--
-- This function is fiddly, but not really hard
mkGadtCtxt _ ResTyH98
= return ([], [])
mkGadtCtxt data_tvs (ResTyGADT _ res_ty)
| Just (_, tys) <- hsTyGetAppHead_maybe res_ty
, data_tvs `equalLength` tys
= return (go [] [] (data_tvs `zip` tys))
| otherwise
= failWithDs (ptext (sLit "Malformed constructor result type:") <+> ppr res_ty)
where
go cxt subst [] = (cxt, subst)
go cxt subst ((data_tv, ty) : rest)
| Just con_tv <- is_hs_tyvar ty
, isTyVarName con_tv
, not (in_subst subst con_tv)
= go cxt ((con_tv, data_tv) : subst) rest
| otherwise
= go (eq_pred : cxt) subst rest
where
loc = getLoc ty
eq_pred = L loc (HsEqTy (L loc (HsTyVar data_tv)) ty)
is_hs_tyvar (L _ (HsTyVar n)) = Just n -- Type variables *and* tycons
is_hs_tyvar (L _ (HsParTy ty)) = is_hs_tyvar ty
is_hs_tyvar _ = Nothing
repBangTy :: LBangType Name -> DsM (Core (TH.StrictTypeQ))
repBangTy ty = do
MkC s <- rep2 str []
MkC t <- repLTy ty'
rep2 strictTypeName [s, t]
where
(str, ty') = case ty of
L _ (HsBangTy (HsSrcBang _ SrcUnpack SrcStrict) ty)
-> (unpackedName, ty)
L _ (HsBangTy (HsSrcBang _ _ SrcStrict) ty)
-> (isStrictName, ty)
_ -> (notStrictName, ty)
-------------------------------------------------------
-- Deriving clause
-------------------------------------------------------
repDerivs :: Maybe (Located [LHsType Name]) -> DsM (Core [TH.Name])
repDerivs Nothing = coreList nameTyConName []
repDerivs (Just (L _ ctxt))
= repList nameTyConName rep_deriv ctxt
where
rep_deriv :: LHsType Name -> DsM (Core TH.Name)
-- Deriving clauses must have the simple H98 form
rep_deriv ty
| Just (cls, []) <- splitHsClassTy_maybe (unLoc ty)
= lookupOcc cls
| otherwise
= notHandled "Non-H98 deriving clause" (ppr ty)
-------------------------------------------------------
-- Signatures in a class decl, or a group of bindings
-------------------------------------------------------
rep_sigs :: [LSig Name] -> DsM [Core TH.DecQ]
rep_sigs sigs = do locs_cores <- rep_sigs' sigs
return $ de_loc $ sort_by_loc locs_cores
rep_sigs' :: [LSig Name] -> DsM [(SrcSpan, Core TH.DecQ)]
-- We silently ignore ones we don't recognise
rep_sigs' sigs = do { sigs1 <- mapM rep_sig sigs ;
return (concat sigs1) }
rep_sig :: LSig Name -> DsM [(SrcSpan, Core TH.DecQ)]
rep_sig (L loc (TypeSig nms ty _)) = mapM (rep_ty_sig sigDName loc ty) nms
rep_sig (L _ (PatSynSig {})) = notHandled "Pattern type signatures" empty
rep_sig (L loc (GenericSig nms ty)) = mapM (rep_ty_sig defaultSigDName loc ty) nms
rep_sig d@(L _ (IdSig {})) = pprPanic "rep_sig IdSig" (ppr d)
rep_sig (L _ (FixSig {})) = return [] -- fixity sigs at top level
rep_sig (L loc (InlineSig nm ispec)) = rep_inline nm ispec loc
rep_sig (L loc (SpecSig nm tys ispec))
= concatMapM (\t -> rep_specialise nm t ispec loc) tys
rep_sig (L loc (SpecInstSig _ ty)) = rep_specialiseInst ty loc
rep_sig (L _ (MinimalSig {})) = notHandled "MINIMAL pragmas" empty
rep_ty_sig :: Name -> SrcSpan -> LHsType Name -> Located Name
-> DsM (SrcSpan, Core TH.DecQ)
rep_ty_sig mk_sig loc (L _ ty) nm
= do { nm1 <- lookupLOcc nm
; ty1 <- rep_ty ty
; sig <- repProto mk_sig nm1 ty1
; return (loc, sig) }
where
-- We must special-case the top-level explicit for-all of a TypeSig
-- See Note [Scoped type variables in bindings]
rep_ty (HsForAllTy Explicit _ tvs ctxt ty)
= do { let rep_in_scope_tv tv = do { name <- lookupBinder (hsLTyVarName tv)
; repTyVarBndrWithKind tv name }
; bndrs1 <- repList tyVarBndrTyConName rep_in_scope_tv (hsQTvBndrs tvs)
; ctxt1 <- repLContext ctxt
; ty1 <- repLTy ty
; repTForall bndrs1 ctxt1 ty1 }
rep_ty ty = repTy ty
rep_inline :: Located Name
-> InlinePragma -- Never defaultInlinePragma
-> SrcSpan
-> DsM [(SrcSpan, Core TH.DecQ)]
rep_inline nm ispec loc
= do { nm1 <- lookupLOcc nm
; inline <- repInline $ inl_inline ispec
; rm <- repRuleMatch $ inl_rule ispec
; phases <- repPhases $ inl_act ispec
; pragma <- repPragInl nm1 inline rm phases
; return [(loc, pragma)]
}
rep_specialise :: Located Name -> LHsType Name -> InlinePragma -> SrcSpan
-> DsM [(SrcSpan, Core TH.DecQ)]
rep_specialise nm ty ispec loc
= do { nm1 <- lookupLOcc nm
; ty1 <- repLTy ty
; phases <- repPhases $ inl_act ispec
; let inline = inl_inline ispec
; pragma <- if isEmptyInlineSpec inline
then -- SPECIALISE
repPragSpec nm1 ty1 phases
else -- SPECIALISE INLINE
do { inline1 <- repInline inline
; repPragSpecInl nm1 ty1 inline1 phases }
; return [(loc, pragma)]
}
rep_specialiseInst :: LHsType Name -> SrcSpan -> DsM [(SrcSpan, Core TH.DecQ)]
rep_specialiseInst ty loc
= do { ty1 <- repLTy ty
; pragma <- repPragSpecInst ty1
; return [(loc, pragma)] }
repInline :: InlineSpec -> DsM (Core TH.Inline)
repInline NoInline = dataCon noInlineDataConName
repInline Inline = dataCon inlineDataConName
repInline Inlinable = dataCon inlinableDataConName
repInline spec = notHandled "repInline" (ppr spec)
repRuleMatch :: RuleMatchInfo -> DsM (Core TH.RuleMatch)
repRuleMatch ConLike = dataCon conLikeDataConName
repRuleMatch FunLike = dataCon funLikeDataConName
repPhases :: Activation -> DsM (Core TH.Phases)
repPhases (ActiveBefore i) = do { MkC arg <- coreIntLit i
; dataCon' beforePhaseDataConName [arg] }
repPhases (ActiveAfter i) = do { MkC arg <- coreIntLit i
; dataCon' fromPhaseDataConName [arg] }
repPhases _ = dataCon allPhasesDataConName
-------------------------------------------------------
-- Types
-------------------------------------------------------
addTyVarBinds :: LHsTyVarBndrs Name -- the binders to be added
-> (Core [TH.TyVarBndr] -> DsM (Core (TH.Q a))) -- action in the ext env
-> DsM (Core (TH.Q a))
-- gensym a list of type variables and enter them into the meta environment;
-- the computations passed as the second argument is executed in that extended
-- meta environment and gets the *new* names on Core-level as an argument
addTyVarBinds (HsQTvs { hsq_kvs = kvs, hsq_tvs = tvs }) m
= do { fresh_kv_names <- mkGenSyms kvs
; fresh_tv_names <- mkGenSyms (map hsLTyVarName tvs)
; let fresh_names = fresh_kv_names ++ fresh_tv_names
; term <- addBinds fresh_names $
do { kbs <- repList tyVarBndrTyConName mk_tv_bndr (tvs `zip` fresh_tv_names)
; m kbs }
; wrapGenSyms fresh_names term }
where
mk_tv_bndr (tv, (_,v)) = repTyVarBndrWithKind tv (coreVar v)
addTyClTyVarBinds :: LHsTyVarBndrs Name
-> (Core [TH.TyVarBndr] -> DsM (Core (TH.Q a)))
-> DsM (Core (TH.Q a))
-- Used for data/newtype declarations, and family instances,
-- so that the nested type variables work right
-- instance C (T a) where
-- type W (T a) = blah
-- The 'a' in the type instance is the one bound by the instance decl
addTyClTyVarBinds tvs m
= do { let tv_names = hsLKiTyVarNames tvs
; env <- dsGetMetaEnv
; freshNames <- mkGenSyms (filterOut (`elemNameEnv` env) tv_names)
-- Make fresh names for the ones that are not already in scope
-- This makes things work for family declarations
; term <- addBinds freshNames $
do { kbs <- repList tyVarBndrTyConName mk_tv_bndr (hsQTvBndrs tvs)
; m kbs }
; wrapGenSyms freshNames term }
where
mk_tv_bndr tv = do { v <- lookupBinder (hsLTyVarName tv)
; repTyVarBndrWithKind tv v }
-- Produce kinded binder constructors from the Haskell tyvar binders
--
repTyVarBndrWithKind :: LHsTyVarBndr Name
-> Core TH.Name -> DsM (Core TH.TyVarBndr)
repTyVarBndrWithKind (L _ (UserTyVar _)) nm
= repPlainTV nm
repTyVarBndrWithKind (L _ (KindedTyVar _ ki)) nm
= repLKind ki >>= repKindedTV nm
-- | Represent a type variable binder
repTyVarBndr :: LHsTyVarBndr Name -> DsM (Core TH.TyVarBndr)
repTyVarBndr (L _ (UserTyVar nm)) = do { nm' <- lookupBinder nm
; repPlainTV nm' }
repTyVarBndr (L _ (KindedTyVar (L _ nm) ki)) = do { nm' <- lookupBinder nm
; ki' <- repLKind ki
; repKindedTV nm' ki' }
-- represent a type context
--
repLContext :: LHsContext Name -> DsM (Core TH.CxtQ)
repLContext (L _ ctxt) = repContext ctxt
repContext :: HsContext Name -> DsM (Core TH.CxtQ)
repContext ctxt = do preds <- repList typeQTyConName repLTy ctxt
repCtxt preds
-- yield the representation of a list of types
--
repLTys :: [LHsType Name] -> DsM [Core TH.TypeQ]
repLTys tys = mapM repLTy tys
-- represent a type
--
repLTy :: LHsType Name -> DsM (Core TH.TypeQ)
repLTy (L _ ty) = repTy ty
repTy :: HsType Name -> DsM (Core TH.TypeQ)
repTy (HsForAllTy _ extra tvs ctxt ty) =
addTyVarBinds tvs $ \bndrs -> do
ctxt1 <- repLContext ctxt'
ty1 <- repLTy ty
repTForall bndrs ctxt1 ty1
where
-- If extra is not Nothing, an extra-constraints wild card was removed
-- (just) before renaming. It must be put back now, otherwise the
-- represented type won't include this extra-constraints wild card.
ctxt'
| Just loc <- extra
= let uniq = panic "addExtraCtsWC"
-- This unique will be discarded by repLContext, but is required
-- to make a Name
name = mkInternalName uniq (mkTyVarOcc "_") loc
in (++ [L loc (HsWildCardTy (AnonWildCard name))]) `fmap` ctxt
| otherwise
= ctxt
repTy (HsTyVar n)
| isTvOcc occ = do tv1 <- lookupOcc n
repTvar tv1
| isDataOcc occ = do tc1 <- lookupOcc n
repPromotedTyCon tc1
| otherwise = do tc1 <- lookupOcc n
repNamedTyCon tc1
where
occ = nameOccName n
repTy (HsAppTy f a) = do
f1 <- repLTy f
a1 <- repLTy a
repTapp f1 a1
repTy (HsFunTy f a) = do
f1 <- repLTy f
a1 <- repLTy a
tcon <- repArrowTyCon
repTapps tcon [f1, a1]
repTy (HsListTy t) = do
t1 <- repLTy t
tcon <- repListTyCon
repTapp tcon t1
repTy (HsPArrTy t) = do
t1 <- repLTy t
tcon <- repTy (HsTyVar (tyConName parrTyCon))
repTapp tcon t1
repTy (HsTupleTy HsUnboxedTuple tys) = do
tys1 <- repLTys tys
tcon <- repUnboxedTupleTyCon (length tys)
repTapps tcon tys1
repTy (HsTupleTy _ tys) = do tys1 <- repLTys tys
tcon <- repTupleTyCon (length tys)
repTapps tcon tys1
repTy (HsOpTy ty1 (_, n) ty2) = repLTy ((nlHsTyVar (unLoc n) `nlHsAppTy` ty1)
`nlHsAppTy` ty2)
repTy (HsParTy t) = repLTy t
repTy (HsEqTy t1 t2) = do
t1' <- repLTy t1
t2' <- repLTy t2
eq <- repTequality
repTapps eq [t1', t2']
repTy (HsKindSig t k) = do
t1 <- repLTy t
k1 <- repLKind k
repTSig t1 k1
repTy (HsSpliceTy splice _) = repSplice splice
repTy (HsExplicitListTy _ tys) = do
tys1 <- repLTys tys
repTPromotedList tys1
repTy (HsExplicitTupleTy _ tys) = do
tys1 <- repLTys tys
tcon <- repPromotedTupleTyCon (length tys)
repTapps tcon tys1
repTy (HsTyLit lit) = do
lit' <- repTyLit lit
repTLit lit'
repTy (HsWildCardTy (AnonWildCard _)) = repTWildCard
repTy (HsWildCardTy (NamedWildCard n)) = do
nwc <- lookupOcc n
repTNamedWildCard nwc
repTy ty = notHandled "Exotic form of type" (ppr ty)
repTyLit :: HsTyLit -> DsM (Core TH.TyLitQ)
repTyLit (HsNumTy _ i) = do iExpr <- mkIntegerExpr i
rep2 numTyLitName [iExpr]
repTyLit (HsStrTy _ s) = do { s' <- mkStringExprFS s
; rep2 strTyLitName [s']
}
-- represent a kind
--
repLKind :: LHsKind Name -> DsM (Core TH.Kind)
repLKind ki
= do { let (kis, ki') = splitHsFunType ki
; kis_rep <- mapM repLKind kis
; ki'_rep <- repNonArrowLKind ki'
; kcon <- repKArrow
; let f k1 k2 = repKApp kcon k1 >>= flip repKApp k2
; foldrM f ki'_rep kis_rep
}
repNonArrowLKind :: LHsKind Name -> DsM (Core TH.Kind)
repNonArrowLKind (L _ ki) = repNonArrowKind ki
repNonArrowKind :: HsKind Name -> DsM (Core TH.Kind)
repNonArrowKind (HsTyVar name)
| name == liftedTypeKindTyConName = repKStar
| name == constraintKindTyConName = repKConstraint
| isTvOcc (nameOccName name) = lookupOcc name >>= repKVar
| otherwise = lookupOcc name >>= repKCon
repNonArrowKind (HsAppTy f a) = do { f' <- repLKind f
; a' <- repLKind a
; repKApp f' a'
}
repNonArrowKind (HsListTy k) = do { k' <- repLKind k
; kcon <- repKList
; repKApp kcon k'
}
repNonArrowKind (HsTupleTy _ ks) = do { ks' <- mapM repLKind ks
; kcon <- repKTuple (length ks)
; repKApps kcon ks'
}
repNonArrowKind k = notHandled "Exotic form of kind" (ppr k)
repRole :: Located (Maybe Role) -> DsM (Core TH.Role)
repRole (L _ (Just Nominal)) = rep2 nominalRName []
repRole (L _ (Just Representational)) = rep2 representationalRName []
repRole (L _ (Just Phantom)) = rep2 phantomRName []
repRole (L _ Nothing) = rep2 inferRName []
-----------------------------------------------------------------------------
-- Splices
-----------------------------------------------------------------------------
repSplice :: HsSplice Name -> DsM (Core a)
-- See Note [How brackets and nested splices are handled] in TcSplice
-- We return a CoreExpr of any old type; the context should know
repSplice (HsTypedSplice n _) = rep_splice n
repSplice (HsUntypedSplice n _) = rep_splice n
repSplice (HsQuasiQuote n _ _ _) = rep_splice n
rep_splice :: Name -> DsM (Core a)
rep_splice splice_name
= do { mb_val <- dsLookupMetaEnv splice_name
; case mb_val of
Just (DsSplice e) -> do { e' <- dsExpr e
; return (MkC e') }
_ -> pprPanic "HsSplice" (ppr splice_name) }
-- Should not happen; statically checked
-----------------------------------------------------------------------------
-- Expressions
-----------------------------------------------------------------------------
repLEs :: [LHsExpr Name] -> DsM (Core [TH.ExpQ])
repLEs es = repList expQTyConName repLE es
-- FIXME: some of these panics should be converted into proper error messages
-- unless we can make sure that constructs, which are plainly not
-- supported in TH already lead to error messages at an earlier stage
repLE :: LHsExpr Name -> DsM (Core TH.ExpQ)
repLE (L loc e) = putSrcSpanDs loc (repE e)
repE :: HsExpr Name -> DsM (Core TH.ExpQ)
repE (HsVar x) =
do { mb_val <- dsLookupMetaEnv x
; case mb_val of
Nothing -> do { str <- globalVar x
; repVarOrCon x str }
Just (DsBound y) -> repVarOrCon x (coreVar y)
Just (DsSplice e) -> do { e' <- dsExpr e
; return (MkC e') } }
repE e@(HsIPVar _) = notHandled "Implicit parameters" (ppr e)
-- Remember, we're desugaring renamer output here, so
-- HsOverlit can definitely occur
repE (HsOverLit l) = do { a <- repOverloadedLiteral l; repLit a }
repE (HsLit l) = do { a <- repLiteral l; repLit a }
repE (HsLam (MG { mg_alts = [m] })) = repLambda m
repE (HsLamCase _ (MG { mg_alts = ms }))
= do { ms' <- mapM repMatchTup ms
; core_ms <- coreList matchQTyConName ms'
; repLamCase core_ms }
repE (HsApp x y) = do {a <- repLE x; b <- repLE y; repApp a b}
repE (OpApp e1 op _ e2) =
do { arg1 <- repLE e1;
arg2 <- repLE e2;
the_op <- repLE op ;
repInfixApp arg1 the_op arg2 }
repE (NegApp x _) = do
a <- repLE x
negateVar <- lookupOcc negateName >>= repVar
negateVar `repApp` a
repE (HsPar x) = repLE x
repE (SectionL x y) = do { a <- repLE x; b <- repLE y; repSectionL a b }
repE (SectionR x y) = do { a <- repLE x; b <- repLE y; repSectionR a b }
repE (HsCase e (MG { mg_alts = ms }))
= do { arg <- repLE e
; ms2 <- mapM repMatchTup ms
; core_ms2 <- coreList matchQTyConName ms2
; repCaseE arg core_ms2 }
repE (HsIf _ x y z) = do
a <- repLE x
b <- repLE y
c <- repLE z
repCond a b c
repE (HsMultiIf _ alts)
= do { (binds, alts') <- liftM unzip $ mapM repLGRHS alts
; expr' <- repMultiIf (nonEmptyCoreList alts')
; wrapGenSyms (concat binds) expr' }
repE (HsLet bs e) = do { (ss,ds) <- repBinds bs
; e2 <- addBinds ss (repLE e)
; z <- repLetE ds e2
; wrapGenSyms ss z }
-- FIXME: I haven't got the types here right yet
repE e@(HsDo ctxt sts _)
| case ctxt of { DoExpr -> True; GhciStmtCtxt -> True; _ -> False }
= do { (ss,zs) <- repLSts sts;
e' <- repDoE (nonEmptyCoreList zs);
wrapGenSyms ss e' }
| ListComp <- ctxt
= do { (ss,zs) <- repLSts sts;
e' <- repComp (nonEmptyCoreList zs);
wrapGenSyms ss e' }
| otherwise
= notHandled "mdo, monad comprehension and [: :]" (ppr e)
repE (ExplicitList _ _ es) = do { xs <- repLEs es; repListExp xs }
repE e@(ExplicitPArr _ _) = notHandled "Parallel arrays" (ppr e)
repE e@(ExplicitTuple es boxed)
| not (all tupArgPresent es) = notHandled "Tuple sections" (ppr e)
| isBoxed boxed = do { xs <- repLEs [e | L _ (Present e) <- es]; repTup xs }
| otherwise = do { xs <- repLEs [e | L _ (Present e) <- es]
; repUnboxedTup xs }
repE (RecordCon c _ flds)
= do { x <- lookupLOcc c;
fs <- repFields flds;
repRecCon x fs }
repE (RecordUpd e flds _ _ _)
= do { x <- repLE e;
fs <- repFields flds;
repRecUpd x fs }
repE (ExprWithTySig e ty _) = do { e1 <- repLE e; t1 <- repLTy ty; repSigExp e1 t1 }
repE (ArithSeq _ _ aseq) =
case aseq of
From e -> do { ds1 <- repLE e; repFrom ds1 }
FromThen e1 e2 -> do
ds1 <- repLE e1
ds2 <- repLE e2
repFromThen ds1 ds2
FromTo e1 e2 -> do
ds1 <- repLE e1
ds2 <- repLE e2
repFromTo ds1 ds2
FromThenTo e1 e2 e3 -> do
ds1 <- repLE e1
ds2 <- repLE e2
ds3 <- repLE e3
repFromThenTo ds1 ds2 ds3
repE (HsSpliceE splice) = repSplice splice
repE (HsStatic e) = repLE e >>= rep2 staticEName . (:[]) . unC
repE e@(PArrSeq {}) = notHandled "Parallel arrays" (ppr e)
repE e@(HsCoreAnn {}) = notHandled "Core annotations" (ppr e)
repE e@(HsSCC {}) = notHandled "Cost centres" (ppr e)
repE e@(HsTickPragma {}) = notHandled "Tick Pragma" (ppr e)
repE e@(HsTcBracketOut {}) = notHandled "TH brackets" (ppr e)
repE e = notHandled "Expression form" (ppr e)
-----------------------------------------------------------------------------
-- Building representations of auxillary structures like Match, Clause, Stmt,
repMatchTup :: LMatch Name (LHsExpr Name) -> DsM (Core TH.MatchQ)
repMatchTup (L _ (Match _ [p] _ (GRHSs guards wheres))) =
do { ss1 <- mkGenSyms (collectPatBinders p)
; addBinds ss1 $ do {
; p1 <- repLP p
; (ss2,ds) <- repBinds wheres
; addBinds ss2 $ do {
; gs <- repGuards guards
; match <- repMatch p1 gs ds
; wrapGenSyms (ss1++ss2) match }}}
repMatchTup _ = panic "repMatchTup: case alt with more than one arg"
repClauseTup :: LMatch Name (LHsExpr Name) -> DsM (Core TH.ClauseQ)
repClauseTup (L _ (Match _ ps _ (GRHSs guards wheres))) =
do { ss1 <- mkGenSyms (collectPatsBinders ps)
; addBinds ss1 $ do {
ps1 <- repLPs ps
; (ss2,ds) <- repBinds wheres
; addBinds ss2 $ do {
gs <- repGuards guards
; clause <- repClause ps1 gs ds
; wrapGenSyms (ss1++ss2) clause }}}
repGuards :: [LGRHS Name (LHsExpr Name)] -> DsM (Core TH.BodyQ)
repGuards [L _ (GRHS [] e)]
= do {a <- repLE e; repNormal a }
repGuards other
= do { zs <- mapM repLGRHS other
; let (xs, ys) = unzip zs
; gd <- repGuarded (nonEmptyCoreList ys)
; wrapGenSyms (concat xs) gd }
repLGRHS :: LGRHS Name (LHsExpr Name) -> DsM ([GenSymBind], (Core (TH.Q (TH.Guard, TH.Exp))))
repLGRHS (L _ (GRHS [L _ (BodyStmt e1 _ _ _)] e2))
= do { guarded <- repLNormalGE e1 e2
; return ([], guarded) }
repLGRHS (L _ (GRHS ss rhs))
= do { (gs, ss') <- repLSts ss
; rhs' <- addBinds gs $ repLE rhs
; guarded <- repPatGE (nonEmptyCoreList ss') rhs'
; return (gs, guarded) }
repFields :: HsRecordBinds Name -> DsM (Core [TH.Q TH.FieldExp])
repFields (HsRecFields { rec_flds = flds })
= repList fieldExpQTyConName rep_fld flds
where
rep_fld (L _ fld) = do { fn <- lookupLOcc (hsRecFieldId fld)
; e <- repLE (hsRecFieldArg fld)
; repFieldExp fn e }
-----------------------------------------------------------------------------
-- Representing Stmt's is tricky, especially if bound variables
-- shadow each other. Consider: [| do { x <- f 1; x <- f x; g x } |]
-- First gensym new names for every variable in any of the patterns.
-- both static (x'1 and x'2), and dynamic ((gensym "x") and (gensym "y"))
-- if variables didn't shaddow, the static gensym wouldn't be necessary
-- and we could reuse the original names (x and x).
--
-- do { x'1 <- gensym "x"
-- ; x'2 <- gensym "x"
-- ; doE [ BindSt (pvar x'1) [| f 1 |]
-- , BindSt (pvar x'2) [| f x |]
-- , NoBindSt [| g x |]
-- ]
-- }
-- The strategy is to translate a whole list of do-bindings by building a
-- bigger environment, and a bigger set of meta bindings
-- (like: x'1 <- gensym "x" ) and then combining these with the translations
-- of the expressions within the Do
-----------------------------------------------------------------------------
-- The helper function repSts computes the translation of each sub expression
-- and a bunch of prefix bindings denoting the dynamic renaming.
repLSts :: [LStmt Name (LHsExpr Name)] -> DsM ([GenSymBind], [Core TH.StmtQ])
repLSts stmts = repSts (map unLoc stmts)
repSts :: [Stmt Name (LHsExpr Name)] -> DsM ([GenSymBind], [Core TH.StmtQ])
repSts (BindStmt p e _ _ : ss) =
do { e2 <- repLE e
; ss1 <- mkGenSyms (collectPatBinders p)
; addBinds ss1 $ do {
; p1 <- repLP p;
; (ss2,zs) <- repSts ss
; z <- repBindSt p1 e2
; return (ss1++ss2, z : zs) }}
repSts (LetStmt bs : ss) =
do { (ss1,ds) <- repBinds bs
; z <- repLetSt ds
; (ss2,zs) <- addBinds ss1 (repSts ss)
; return (ss1++ss2, z : zs) }
repSts (BodyStmt e _ _ _ : ss) =
do { e2 <- repLE e
; z <- repNoBindSt e2
; (ss2,zs) <- repSts ss
; return (ss2, z : zs) }
repSts (ParStmt stmt_blocks _ _ : ss) =
do { (ss_s, stmt_blocks1) <- mapAndUnzipM rep_stmt_block stmt_blocks
; let stmt_blocks2 = nonEmptyCoreList stmt_blocks1
ss1 = concat ss_s
; z <- repParSt stmt_blocks2
; (ss2, zs) <- addBinds ss1 (repSts ss)
; return (ss1++ss2, z : zs) }
where
rep_stmt_block :: ParStmtBlock Name Name -> DsM ([GenSymBind], Core [TH.StmtQ])
rep_stmt_block (ParStmtBlock stmts _ _) =
do { (ss1, zs) <- repSts (map unLoc stmts)
; zs1 <- coreList stmtQTyConName zs
; return (ss1, zs1) }
repSts [LastStmt e _ _]
= do { e2 <- repLE e
; z <- repNoBindSt e2
; return ([], [z]) }
repSts [] = return ([],[])
repSts other = notHandled "Exotic statement" (ppr other)
-----------------------------------------------------------
-- Bindings
-----------------------------------------------------------
repBinds :: HsLocalBinds Name -> DsM ([GenSymBind], Core [TH.DecQ])
repBinds EmptyLocalBinds
= do { core_list <- coreList decQTyConName []
; return ([], core_list) }
repBinds b@(HsIPBinds _) = notHandled "Implicit parameters" (ppr b)
repBinds (HsValBinds decs)
= do { let { bndrs = hsSigTvBinders decs ++ collectHsValBinders decs }
-- No need to worrry about detailed scopes within
-- the binding group, because we are talking Names
-- here, so we can safely treat it as a mutually
-- recursive group
-- For hsSigTvBinders see Note [Scoped type variables in bindings]
; ss <- mkGenSyms bndrs
; prs <- addBinds ss (rep_val_binds decs)
; core_list <- coreList decQTyConName
(de_loc (sort_by_loc prs))
; return (ss, core_list) }
rep_val_binds :: HsValBinds Name -> DsM [(SrcSpan, Core TH.DecQ)]
-- Assumes: all the binders of the binding are alrady in the meta-env
rep_val_binds (ValBindsOut binds sigs)
= do { core1 <- rep_binds' (unionManyBags (map snd binds))
; core2 <- rep_sigs' sigs
; return (core1 ++ core2) }
rep_val_binds (ValBindsIn _ _)
= panic "rep_val_binds: ValBindsIn"
rep_binds :: LHsBinds Name -> DsM [Core TH.DecQ]
rep_binds binds = do { binds_w_locs <- rep_binds' binds
; return (de_loc (sort_by_loc binds_w_locs)) }
rep_binds' :: LHsBinds Name -> DsM [(SrcSpan, Core TH.DecQ)]
rep_binds' = mapM rep_bind . bagToList
rep_bind :: LHsBind Name -> DsM (SrcSpan, Core TH.DecQ)
-- Assumes: all the binders of the binding are alrady in the meta-env
-- Note GHC treats declarations of a variable (not a pattern)
-- e.g. x = g 5 as a Fun MonoBinds. This is indicated by a single match
-- with an empty list of patterns
rep_bind (L loc (FunBind
{ fun_id = fn,
fun_matches = MG { mg_alts = [L _ (Match _ [] _
(GRHSs guards wheres))] } }))
= do { (ss,wherecore) <- repBinds wheres
; guardcore <- addBinds ss (repGuards guards)
; fn' <- lookupLBinder fn
; p <- repPvar fn'
; ans <- repVal p guardcore wherecore
; ans' <- wrapGenSyms ss ans
; return (loc, ans') }
rep_bind (L loc (FunBind { fun_id = fn, fun_matches = MG { mg_alts = ms } }))
= do { ms1 <- mapM repClauseTup ms
; fn' <- lookupLBinder fn
; ans <- repFun fn' (nonEmptyCoreList ms1)
; return (loc, ans) }
rep_bind (L loc (PatBind { pat_lhs = pat, pat_rhs = GRHSs guards wheres }))
= do { patcore <- repLP pat
; (ss,wherecore) <- repBinds wheres
; guardcore <- addBinds ss (repGuards guards)
; ans <- repVal patcore guardcore wherecore
; ans' <- wrapGenSyms ss ans
; return (loc, ans') }
rep_bind (L _ (VarBind { var_id = v, var_rhs = e}))
= do { v' <- lookupBinder v
; e2 <- repLE e
; x <- repNormal e2
; patcore <- repPvar v'
; empty_decls <- coreList decQTyConName []
; ans <- repVal patcore x empty_decls
; return (srcLocSpan (getSrcLoc v), ans) }
rep_bind (L _ (AbsBinds {})) = panic "rep_bind: AbsBinds"
rep_bind (L _ dec@(PatSynBind {})) = notHandled "pattern synonyms" (ppr dec)
-----------------------------------------------------------------------------
-- Since everything in a Bind is mutually recursive we need rename all
-- all the variables simultaneously. For example:
-- [| AndMonoBinds (f x = x + g 2) (g x = f 1 + 2) |] would translate to
-- do { f'1 <- gensym "f"
-- ; g'2 <- gensym "g"
-- ; [ do { x'3 <- gensym "x"; fun f'1 [pvar x'3] [| x + g2 |]},
-- do { x'4 <- gensym "x"; fun g'2 [pvar x'4] [| f 1 + 2 |]}
-- ]}
-- This requires collecting the bindings (f'1 <- gensym "f"), and the
-- environment ( f |-> f'1 ) from each binding, and then unioning them
-- together. As we do this we collect GenSymBinds's which represent the renamed
-- variables bound by the Bindings. In order not to lose track of these
-- representations we build a shadow datatype MB with the same structure as
-- MonoBinds, but which has slots for the representations
-----------------------------------------------------------------------------
-- GHC allows a more general form of lambda abstraction than specified
-- by Haskell 98. In particular it allows guarded lambda's like :
-- (\ x | even x -> 0 | odd x -> 1) at the moment we can't represent this in
-- Haskell Template's Meta.Exp type so we punt if it isn't a simple thing like
-- (\ p1 .. pn -> exp) by causing an error.
repLambda :: LMatch Name (LHsExpr Name) -> DsM (Core TH.ExpQ)
repLambda (L _ (Match _ ps _ (GRHSs [L _ (GRHS [] e)] EmptyLocalBinds)))
= do { let bndrs = collectPatsBinders ps ;
; ss <- mkGenSyms bndrs
; lam <- addBinds ss (
do { xs <- repLPs ps; body <- repLE e; repLam xs body })
; wrapGenSyms ss lam }
repLambda (L _ m) = notHandled "Guarded labmdas" (pprMatch (LambdaExpr :: HsMatchContext Name) m)
-----------------------------------------------------------------------------
-- Patterns
-- repP deals with patterns. It assumes that we have already
-- walked over the pattern(s) once to collect the binders, and
-- have extended the environment. So every pattern-bound
-- variable should already appear in the environment.
-- Process a list of patterns
repLPs :: [LPat Name] -> DsM (Core [TH.PatQ])
repLPs ps = repList patQTyConName repLP ps
repLP :: LPat Name -> DsM (Core TH.PatQ)
repLP (L _ p) = repP p
repP :: Pat Name -> DsM (Core TH.PatQ)
repP (WildPat _) = repPwild
repP (LitPat l) = do { l2 <- repLiteral l; repPlit l2 }
repP (VarPat x) = do { x' <- lookupBinder x; repPvar x' }
repP (LazyPat p) = do { p1 <- repLP p; repPtilde p1 }
repP (BangPat p) = do { p1 <- repLP p; repPbang p1 }
repP (AsPat x p) = do { x' <- lookupLBinder x; p1 <- repLP p; repPaspat x' p1 }
repP (ParPat p) = repLP p
repP (ListPat ps _ Nothing) = do { qs <- repLPs ps; repPlist qs }
repP (ListPat ps ty1 (Just (_,e))) = do { p <- repP (ListPat ps ty1 Nothing); e' <- repE e; repPview e' p}
repP (TuplePat ps boxed _)
| isBoxed boxed = do { qs <- repLPs ps; repPtup qs }
| otherwise = do { qs <- repLPs ps; repPunboxedTup qs }
repP (ConPatIn dc details)
= do { con_str <- lookupLOcc dc
; case details of
PrefixCon ps -> do { qs <- repLPs ps; repPcon con_str qs }
RecCon rec -> do { fps <- repList fieldPatQTyConName rep_fld (rec_flds rec)
; repPrec con_str fps }
InfixCon p1 p2 -> do { p1' <- repLP p1;
p2' <- repLP p2;
repPinfix p1' con_str p2' }
}
where
rep_fld (L _ fld) = do { MkC v <- lookupLOcc (hsRecFieldId fld)
; MkC p <- repLP (hsRecFieldArg fld)
; rep2 fieldPatName [v,p] }
repP (NPat (L _ l) Nothing _) = do { a <- repOverloadedLiteral l; repPlit a }
repP (ViewPat e p _) = do { e' <- repLE e; p' <- repLP p; repPview e' p' }
repP p@(NPat _ (Just _) _) = notHandled "Negative overloaded patterns" (ppr p)
repP p@(SigPatIn {}) = notHandled "Type signatures in patterns" (ppr p)
-- The problem is to do with scoped type variables.
-- To implement them, we have to implement the scoping rules
-- here in DsMeta, and I don't want to do that today!
-- do { p' <- repLP p; t' <- repLTy t; repPsig p' t' }
-- repPsig :: Core TH.PatQ -> Core TH.TypeQ -> DsM (Core TH.PatQ)
-- repPsig (MkC p) (MkC t) = rep2 sigPName [p, t]
repP (SplicePat splice) = repSplice splice
repP other = notHandled "Exotic pattern" (ppr other)
----------------------------------------------------------
-- Declaration ordering helpers
sort_by_loc :: [(SrcSpan, a)] -> [(SrcSpan, a)]
sort_by_loc xs = sortBy comp xs
where comp x y = compare (fst x) (fst y)
de_loc :: [(a, b)] -> [b]
de_loc = map snd
----------------------------------------------------------
-- The meta-environment
-- A name/identifier association for fresh names of locally bound entities
type GenSymBind = (Name, Id) -- Gensym the string and bind it to the Id
-- I.e. (x, x_id) means
-- let x_id = gensym "x" in ...
-- Generate a fresh name for a locally bound entity
mkGenSyms :: [Name] -> DsM [GenSymBind]
-- We can use the existing name. For example:
-- [| \x_77 -> x_77 + x_77 |]
-- desugars to
-- do { x_77 <- genSym "x"; .... }
-- We use the same x_77 in the desugared program, but with the type Bndr
-- instead of Int
--
-- We do make it an Internal name, though (hence localiseName)
--
-- Nevertheless, it's monadic because we have to generate nameTy
mkGenSyms ns = do { var_ty <- lookupType nameTyConName
; return [(nm, mkLocalId (localiseName nm) var_ty) | nm <- ns] }
addBinds :: [GenSymBind] -> DsM a -> DsM a
-- Add a list of fresh names for locally bound entities to the
-- meta environment (which is part of the state carried around
-- by the desugarer monad)
addBinds bs m = dsExtendMetaEnv (mkNameEnv [(n,DsBound id) | (n,id) <- bs]) m
dupBinder :: (Name, Name) -> DsM (Name, DsMetaVal)
dupBinder (new, old)
= do { mb_val <- dsLookupMetaEnv old
; case mb_val of
Just val -> return (new, val)
Nothing -> pprPanic "dupBinder" (ppr old) }
-- Look up a locally bound name
--
lookupLBinder :: Located Name -> DsM (Core TH.Name)
lookupLBinder (L _ n) = lookupBinder n
lookupBinder :: Name -> DsM (Core TH.Name)
lookupBinder = lookupOcc
-- Binders are brought into scope before the pattern or what-not is
-- desugared. Moreover, in instance declaration the binder of a method
-- will be the selector Id and hence a global; so we need the
-- globalVar case of lookupOcc
-- Look up a name that is either locally bound or a global name
--
-- * If it is a global name, generate the "original name" representation (ie,
-- the <module>:<name> form) for the associated entity
--
lookupLOcc :: Located Name -> DsM (Core TH.Name)
-- Lookup an occurrence; it can't be a splice.
-- Use the in-scope bindings if they exist
lookupLOcc (L _ n) = lookupOcc n
lookupOcc :: Name -> DsM (Core TH.Name)
lookupOcc n
= do { mb_val <- dsLookupMetaEnv n ;
case mb_val of
Nothing -> globalVar n
Just (DsBound x) -> return (coreVar x)
Just (DsSplice _) -> pprPanic "repE:lookupOcc" (ppr n)
}
globalVar :: Name -> DsM (Core TH.Name)
-- Not bound by the meta-env
-- Could be top-level; or could be local
-- f x = $(g [| x |])
-- Here the x will be local
globalVar name
| isExternalName name
= do { MkC mod <- coreStringLit name_mod
; MkC pkg <- coreStringLit name_pkg
; MkC occ <- occNameLit name
; rep2 mk_varg [pkg,mod,occ] }
| otherwise
= do { MkC occ <- occNameLit name
; MkC uni <- coreIntLit (getKey (getUnique name))
; rep2 mkNameLName [occ,uni] }
where
mod = ASSERT( isExternalName name) nameModule name
name_mod = moduleNameString (moduleName mod)
name_pkg = packageKeyString (modulePackageKey mod)
name_occ = nameOccName name
mk_varg | OccName.isDataOcc name_occ = mkNameG_dName
| OccName.isVarOcc name_occ = mkNameG_vName
| OccName.isTcOcc name_occ = mkNameG_tcName
| otherwise = pprPanic "DsMeta.globalVar" (ppr name)
lookupType :: Name -- Name of type constructor (e.g. TH.ExpQ)
-> DsM Type -- The type
lookupType tc_name = do { tc <- dsLookupTyCon tc_name ;
return (mkTyConApp tc []) }
wrapGenSyms :: [GenSymBind]
-> Core (TH.Q a) -> DsM (Core (TH.Q a))
-- wrapGenSyms [(nm1,id1), (nm2,id2)] y
-- --> bindQ (gensym nm1) (\ id1 ->
-- bindQ (gensym nm2 (\ id2 ->
-- y))
wrapGenSyms binds body@(MkC b)
= do { var_ty <- lookupType nameTyConName
; go var_ty binds }
where
[elt_ty] = tcTyConAppArgs (exprType b)
-- b :: Q a, so we can get the type 'a' by looking at the
-- argument type. NB: this relies on Q being a data/newtype,
-- not a type synonym
go _ [] = return body
go var_ty ((name,id) : binds)
= do { MkC body' <- go var_ty binds
; lit_str <- occNameLit name
; gensym_app <- repGensym lit_str
; repBindQ var_ty elt_ty
gensym_app (MkC (Lam id body')) }
occNameLit :: Name -> DsM (Core String)
occNameLit n = coreStringLit (occNameString (nameOccName n))
-- %*********************************************************************
-- %* *
-- Constructing code
-- %* *
-- %*********************************************************************
-----------------------------------------------------------------------------
-- PHANTOM TYPES for consistency. In order to make sure we do this correct
-- we invent a new datatype which uses phantom types.
newtype Core a = MkC CoreExpr
unC :: Core a -> CoreExpr
unC (MkC x) = x
rep2 :: Name -> [ CoreExpr ] -> DsM (Core a)
rep2 n xs = do { id <- dsLookupGlobalId n
; return (MkC (foldl App (Var id) xs)) }
dataCon' :: Name -> [CoreExpr] -> DsM (Core a)
dataCon' n args = do { id <- dsLookupDataCon n
; return $ MkC $ mkCoreConApps id args }
dataCon :: Name -> DsM (Core a)
dataCon n = dataCon' n []
-- Then we make "repConstructors" which use the phantom types for each of the
-- smart constructors of the Meta.Meta datatypes.
-- %*********************************************************************
-- %* *
-- The 'smart constructors'
-- %* *
-- %*********************************************************************
--------------- Patterns -----------------
repPlit :: Core TH.Lit -> DsM (Core TH.PatQ)
repPlit (MkC l) = rep2 litPName [l]
repPvar :: Core TH.Name -> DsM (Core TH.PatQ)
repPvar (MkC s) = rep2 varPName [s]
repPtup :: Core [TH.PatQ] -> DsM (Core TH.PatQ)
repPtup (MkC ps) = rep2 tupPName [ps]
repPunboxedTup :: Core [TH.PatQ] -> DsM (Core TH.PatQ)
repPunboxedTup (MkC ps) = rep2 unboxedTupPName [ps]
repPcon :: Core TH.Name -> Core [TH.PatQ] -> DsM (Core TH.PatQ)
repPcon (MkC s) (MkC ps) = rep2 conPName [s, ps]
repPrec :: Core TH.Name -> Core [(TH.Name,TH.PatQ)] -> DsM (Core TH.PatQ)
repPrec (MkC c) (MkC rps) = rep2 recPName [c,rps]
repPinfix :: Core TH.PatQ -> Core TH.Name -> Core TH.PatQ -> DsM (Core TH.PatQ)
repPinfix (MkC p1) (MkC n) (MkC p2) = rep2 infixPName [p1, n, p2]
repPtilde :: Core TH.PatQ -> DsM (Core TH.PatQ)
repPtilde (MkC p) = rep2 tildePName [p]
repPbang :: Core TH.PatQ -> DsM (Core TH.PatQ)
repPbang (MkC p) = rep2 bangPName [p]
repPaspat :: Core TH.Name -> Core TH.PatQ -> DsM (Core TH.PatQ)
repPaspat (MkC s) (MkC p) = rep2 asPName [s, p]
repPwild :: DsM (Core TH.PatQ)
repPwild = rep2 wildPName []
repPlist :: Core [TH.PatQ] -> DsM (Core TH.PatQ)
repPlist (MkC ps) = rep2 listPName [ps]
repPview :: Core TH.ExpQ -> Core TH.PatQ -> DsM (Core TH.PatQ)
repPview (MkC e) (MkC p) = rep2 viewPName [e,p]
--------------- Expressions -----------------
repVarOrCon :: Name -> Core TH.Name -> DsM (Core TH.ExpQ)
repVarOrCon vc str | isDataOcc (nameOccName vc) = repCon str
| otherwise = repVar str
repVar :: Core TH.Name -> DsM (Core TH.ExpQ)
repVar (MkC s) = rep2 varEName [s]
repCon :: Core TH.Name -> DsM (Core TH.ExpQ)
repCon (MkC s) = rep2 conEName [s]
repLit :: Core TH.Lit -> DsM (Core TH.ExpQ)
repLit (MkC c) = rep2 litEName [c]
repApp :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repApp (MkC x) (MkC y) = rep2 appEName [x,y]
repLam :: Core [TH.PatQ] -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repLam (MkC ps) (MkC e) = rep2 lamEName [ps, e]
repLamCase :: Core [TH.MatchQ] -> DsM (Core TH.ExpQ)
repLamCase (MkC ms) = rep2 lamCaseEName [ms]
repTup :: Core [TH.ExpQ] -> DsM (Core TH.ExpQ)
repTup (MkC es) = rep2 tupEName [es]
repUnboxedTup :: Core [TH.ExpQ] -> DsM (Core TH.ExpQ)
repUnboxedTup (MkC es) = rep2 unboxedTupEName [es]
repCond :: Core TH.ExpQ -> Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repCond (MkC x) (MkC y) (MkC z) = rep2 condEName [x,y,z]
repMultiIf :: Core [TH.Q (TH.Guard, TH.Exp)] -> DsM (Core TH.ExpQ)
repMultiIf (MkC alts) = rep2 multiIfEName [alts]
repLetE :: Core [TH.DecQ] -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repLetE (MkC ds) (MkC e) = rep2 letEName [ds, e]
repCaseE :: Core TH.ExpQ -> Core [TH.MatchQ] -> DsM( Core TH.ExpQ)
repCaseE (MkC e) (MkC ms) = rep2 caseEName [e, ms]
repDoE :: Core [TH.StmtQ] -> DsM (Core TH.ExpQ)
repDoE (MkC ss) = rep2 doEName [ss]
repComp :: Core [TH.StmtQ] -> DsM (Core TH.ExpQ)
repComp (MkC ss) = rep2 compEName [ss]
repListExp :: Core [TH.ExpQ] -> DsM (Core TH.ExpQ)
repListExp (MkC es) = rep2 listEName [es]
repSigExp :: Core TH.ExpQ -> Core TH.TypeQ -> DsM (Core TH.ExpQ)
repSigExp (MkC e) (MkC t) = rep2 sigEName [e,t]
repRecCon :: Core TH.Name -> Core [TH.Q TH.FieldExp]-> DsM (Core TH.ExpQ)
repRecCon (MkC c) (MkC fs) = rep2 recConEName [c,fs]
repRecUpd :: Core TH.ExpQ -> Core [TH.Q TH.FieldExp] -> DsM (Core TH.ExpQ)
repRecUpd (MkC e) (MkC fs) = rep2 recUpdEName [e,fs]
repFieldExp :: Core TH.Name -> Core TH.ExpQ -> DsM (Core (TH.Q TH.FieldExp))
repFieldExp (MkC n) (MkC x) = rep2 fieldExpName [n,x]
repInfixApp :: Core TH.ExpQ -> Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repInfixApp (MkC x) (MkC y) (MkC z) = rep2 infixAppName [x,y,z]
repSectionL :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repSectionL (MkC x) (MkC y) = rep2 sectionLName [x,y]
repSectionR :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repSectionR (MkC x) (MkC y) = rep2 sectionRName [x,y]
------------ Right hand sides (guarded expressions) ----
repGuarded :: Core [TH.Q (TH.Guard, TH.Exp)] -> DsM (Core TH.BodyQ)
repGuarded (MkC pairs) = rep2 guardedBName [pairs]
repNormal :: Core TH.ExpQ -> DsM (Core TH.BodyQ)
repNormal (MkC e) = rep2 normalBName [e]
------------ Guards ----
repLNormalGE :: LHsExpr Name -> LHsExpr Name -> DsM (Core (TH.Q (TH.Guard, TH.Exp)))
repLNormalGE g e = do g' <- repLE g
e' <- repLE e
repNormalGE g' e'
repNormalGE :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core (TH.Q (TH.Guard, TH.Exp)))
repNormalGE (MkC g) (MkC e) = rep2 normalGEName [g, e]
repPatGE :: Core [TH.StmtQ] -> Core TH.ExpQ -> DsM (Core (TH.Q (TH.Guard, TH.Exp)))
repPatGE (MkC ss) (MkC e) = rep2 patGEName [ss, e]
------------- Stmts -------------------
repBindSt :: Core TH.PatQ -> Core TH.ExpQ -> DsM (Core TH.StmtQ)
repBindSt (MkC p) (MkC e) = rep2 bindSName [p,e]
repLetSt :: Core [TH.DecQ] -> DsM (Core TH.StmtQ)
repLetSt (MkC ds) = rep2 letSName [ds]
repNoBindSt :: Core TH.ExpQ -> DsM (Core TH.StmtQ)
repNoBindSt (MkC e) = rep2 noBindSName [e]
repParSt :: Core [[TH.StmtQ]] -> DsM (Core TH.StmtQ)
repParSt (MkC sss) = rep2 parSName [sss]
-------------- Range (Arithmetic sequences) -----------
repFrom :: Core TH.ExpQ -> DsM (Core TH.ExpQ)
repFrom (MkC x) = rep2 fromEName [x]
repFromThen :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repFromThen (MkC x) (MkC y) = rep2 fromThenEName [x,y]
repFromTo :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repFromTo (MkC x) (MkC y) = rep2 fromToEName [x,y]
repFromThenTo :: Core TH.ExpQ -> Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repFromThenTo (MkC x) (MkC y) (MkC z) = rep2 fromThenToEName [x,y,z]
------------ Match and Clause Tuples -----------
repMatch :: Core TH.PatQ -> Core TH.BodyQ -> Core [TH.DecQ] -> DsM (Core TH.MatchQ)
repMatch (MkC p) (MkC bod) (MkC ds) = rep2 matchName [p, bod, ds]
repClause :: Core [TH.PatQ] -> Core TH.BodyQ -> Core [TH.DecQ] -> DsM (Core TH.ClauseQ)
repClause (MkC ps) (MkC bod) (MkC ds) = rep2 clauseName [ps, bod, ds]
-------------- Dec -----------------------------
repVal :: Core TH.PatQ -> Core TH.BodyQ -> Core [TH.DecQ] -> DsM (Core TH.DecQ)
repVal (MkC p) (MkC b) (MkC ds) = rep2 valDName [p, b, ds]
repFun :: Core TH.Name -> Core [TH.ClauseQ] -> DsM (Core TH.DecQ)
repFun (MkC nm) (MkC b) = rep2 funDName [nm, b]
repData :: Core TH.CxtQ -> Core TH.Name -> Core [TH.TyVarBndr]
-> Maybe (Core [TH.TypeQ])
-> Core [TH.ConQ] -> Core [TH.Name] -> DsM (Core TH.DecQ)
repData (MkC cxt) (MkC nm) (MkC tvs) Nothing (MkC cons) (MkC derivs)
= rep2 dataDName [cxt, nm, tvs, cons, derivs]
repData (MkC cxt) (MkC nm) (MkC _) (Just (MkC tys)) (MkC cons) (MkC derivs)
= rep2 dataInstDName [cxt, nm, tys, cons, derivs]
repNewtype :: Core TH.CxtQ -> Core TH.Name -> Core [TH.TyVarBndr]
-> Maybe (Core [TH.TypeQ])
-> Core TH.ConQ -> Core [TH.Name] -> DsM (Core TH.DecQ)
repNewtype (MkC cxt) (MkC nm) (MkC tvs) Nothing (MkC con) (MkC derivs)
= rep2 newtypeDName [cxt, nm, tvs, con, derivs]
repNewtype (MkC cxt) (MkC nm) (MkC _) (Just (MkC tys)) (MkC con) (MkC derivs)
= rep2 newtypeInstDName [cxt, nm, tys, con, derivs]
repTySyn :: Core TH.Name -> Core [TH.TyVarBndr]
-> Core TH.TypeQ -> DsM (Core TH.DecQ)
repTySyn (MkC nm) (MkC tvs) (MkC rhs)
= rep2 tySynDName [nm, tvs, rhs]
repInst :: Core TH.CxtQ -> Core TH.TypeQ -> Core [TH.DecQ] -> DsM (Core TH.DecQ)
repInst (MkC cxt) (MkC ty) (MkC ds) = rep2 instanceDName [cxt, ty, ds]
repClass :: Core TH.CxtQ -> Core TH.Name -> Core [TH.TyVarBndr]
-> Core [TH.FunDep] -> Core [TH.DecQ]
-> DsM (Core TH.DecQ)
repClass (MkC cxt) (MkC cls) (MkC tvs) (MkC fds) (MkC ds)
= rep2 classDName [cxt, cls, tvs, fds, ds]
repDeriv :: Core TH.CxtQ -> Core TH.TypeQ -> DsM (Core TH.DecQ)
repDeriv (MkC cxt) (MkC ty) = rep2 standaloneDerivDName [cxt, ty]
repPragInl :: Core TH.Name -> Core TH.Inline -> Core TH.RuleMatch
-> Core TH.Phases -> DsM (Core TH.DecQ)
repPragInl (MkC nm) (MkC inline) (MkC rm) (MkC phases)
= rep2 pragInlDName [nm, inline, rm, phases]
repPragSpec :: Core TH.Name -> Core TH.TypeQ -> Core TH.Phases
-> DsM (Core TH.DecQ)
repPragSpec (MkC nm) (MkC ty) (MkC phases)
= rep2 pragSpecDName [nm, ty, phases]
repPragSpecInl :: Core TH.Name -> Core TH.TypeQ -> Core TH.Inline
-> Core TH.Phases -> DsM (Core TH.DecQ)
repPragSpecInl (MkC nm) (MkC ty) (MkC inline) (MkC phases)
= rep2 pragSpecInlDName [nm, ty, inline, phases]
repPragSpecInst :: Core TH.TypeQ -> DsM (Core TH.DecQ)
repPragSpecInst (MkC ty) = rep2 pragSpecInstDName [ty]
repPragRule :: Core String -> Core [TH.RuleBndrQ] -> Core TH.ExpQ
-> Core TH.ExpQ -> Core TH.Phases -> DsM (Core TH.DecQ)
repPragRule (MkC nm) (MkC bndrs) (MkC lhs) (MkC rhs) (MkC phases)
= rep2 pragRuleDName [nm, bndrs, lhs, rhs, phases]
repPragAnn :: Core TH.AnnTarget -> Core TH.ExpQ -> DsM (Core TH.DecQ)
repPragAnn (MkC targ) (MkC e) = rep2 pragAnnDName [targ, e]
repTySynInst :: Core TH.Name -> Core TH.TySynEqnQ -> DsM (Core TH.DecQ)
repTySynInst (MkC nm) (MkC eqn)
= rep2 tySynInstDName [nm, eqn]
repDataFamilyD :: Core TH.Name -> Core [TH.TyVarBndr]
-> Core (Maybe TH.Kind) -> DsM (Core TH.DecQ)
repDataFamilyD (MkC nm) (MkC tvs) (MkC kind)
= rep2 dataFamilyDName [nm, tvs, kind]
repOpenFamilyD :: Core TH.Name
-> Core [TH.TyVarBndr]
-> Core TH.FamilyResultSig
-> Core (Maybe TH.InjectivityAnn)
-> DsM (Core TH.DecQ)
repOpenFamilyD (MkC nm) (MkC tvs) (MkC result) (MkC inj)
= rep2 openTypeFamilyDName [nm, tvs, result, inj]
repClosedFamilyD :: Core TH.Name
-> Core [TH.TyVarBndr]
-> Core TH.FamilyResultSig
-> Core (Maybe TH.InjectivityAnn)
-> Core [TH.TySynEqnQ]
-> DsM (Core TH.DecQ)
repClosedFamilyD (MkC nm) (MkC tvs) (MkC res) (MkC inj) (MkC eqns)
= rep2 closedTypeFamilyDName [nm, tvs, res, inj, eqns]
repTySynEqn :: Core [TH.TypeQ] -> Core TH.TypeQ -> DsM (Core TH.TySynEqnQ)
repTySynEqn (MkC lhs) (MkC rhs)
= rep2 tySynEqnName [lhs, rhs]
repRoleAnnotD :: Core TH.Name -> Core [TH.Role] -> DsM (Core TH.DecQ)
repRoleAnnotD (MkC n) (MkC roles) = rep2 roleAnnotDName [n, roles]
repFunDep :: Core [TH.Name] -> Core [TH.Name] -> DsM (Core TH.FunDep)
repFunDep (MkC xs) (MkC ys) = rep2 funDepName [xs, ys]
repProto :: Name -> Core TH.Name -> Core TH.TypeQ -> DsM (Core TH.DecQ)
repProto mk_sig (MkC s) (MkC ty) = rep2 mk_sig [s, ty]
repCtxt :: Core [TH.PredQ] -> DsM (Core TH.CxtQ)
repCtxt (MkC tys) = rep2 cxtName [tys]
repConstr :: Core TH.Name -> HsConDeclDetails Name
-> DsM (Core TH.ConQ)
repConstr con (PrefixCon ps)
= do arg_tys <- repList strictTypeQTyConName repBangTy ps
rep2 normalCName [unC con, unC arg_tys]
repConstr con (RecCon (L _ ips))
= do { args <- concatMapM rep_ip ips
; arg_vtys <- coreList varStrictTypeQTyConName args
; rep2 recCName [unC con, unC arg_vtys] }
where
rep_ip (L _ ip) = mapM (rep_one_ip (cd_fld_type ip)) (cd_fld_names ip)
rep_one_ip t n = do { MkC v <- lookupLOcc n
; MkC ty <- repBangTy t
; rep2 varStrictTypeName [v,ty] }
repConstr con (InfixCon st1 st2)
= do arg1 <- repBangTy st1
arg2 <- repBangTy st2
rep2 infixCName [unC arg1, unC con, unC arg2]
------------ Types -------------------
repTForall :: Core [TH.TyVarBndr] -> Core TH.CxtQ -> Core TH.TypeQ
-> DsM (Core TH.TypeQ)
repTForall (MkC tvars) (MkC ctxt) (MkC ty)
= rep2 forallTName [tvars, ctxt, ty]
repTvar :: Core TH.Name -> DsM (Core TH.TypeQ)
repTvar (MkC s) = rep2 varTName [s]
repTapp :: Core TH.TypeQ -> Core TH.TypeQ -> DsM (Core TH.TypeQ)
repTapp (MkC t1) (MkC t2) = rep2 appTName [t1, t2]
repTapps :: Core TH.TypeQ -> [Core TH.TypeQ] -> DsM (Core TH.TypeQ)
repTapps f [] = return f
repTapps f (t:ts) = do { f1 <- repTapp f t; repTapps f1 ts }
repTSig :: Core TH.TypeQ -> Core TH.Kind -> DsM (Core TH.TypeQ)
repTSig (MkC ty) (MkC ki) = rep2 sigTName [ty, ki]
repTequality :: DsM (Core TH.TypeQ)
repTequality = rep2 equalityTName []
repTPromotedList :: [Core TH.TypeQ] -> DsM (Core TH.TypeQ)
repTPromotedList [] = repPromotedNilTyCon
repTPromotedList (t:ts) = do { tcon <- repPromotedConsTyCon
; f <- repTapp tcon t
; t' <- repTPromotedList ts
; repTapp f t'
}
repTLit :: Core TH.TyLitQ -> DsM (Core TH.TypeQ)
repTLit (MkC lit) = rep2 litTName [lit]
repTWildCard :: DsM (Core TH.TypeQ)
repTWildCard = rep2 wildCardTName []
repTNamedWildCard :: Core TH.Name -> DsM (Core TH.TypeQ)
repTNamedWildCard (MkC s) = rep2 namedWildCardTName [s]
--------- Type constructors --------------
repNamedTyCon :: Core TH.Name -> DsM (Core TH.TypeQ)
repNamedTyCon (MkC s) = rep2 conTName [s]
repTupleTyCon :: Int -> DsM (Core TH.TypeQ)
-- Note: not Core Int; it's easier to be direct here
repTupleTyCon i = do dflags <- getDynFlags
rep2 tupleTName [mkIntExprInt dflags i]
repUnboxedTupleTyCon :: Int -> DsM (Core TH.TypeQ)
-- Note: not Core Int; it's easier to be direct here
repUnboxedTupleTyCon i = do dflags <- getDynFlags
rep2 unboxedTupleTName [mkIntExprInt dflags i]
repArrowTyCon :: DsM (Core TH.TypeQ)
repArrowTyCon = rep2 arrowTName []
repListTyCon :: DsM (Core TH.TypeQ)
repListTyCon = rep2 listTName []
repPromotedTyCon :: Core TH.Name -> DsM (Core TH.TypeQ)
repPromotedTyCon (MkC s) = rep2 promotedTName [s]
repPromotedTupleTyCon :: Int -> DsM (Core TH.TypeQ)
repPromotedTupleTyCon i = do dflags <- getDynFlags
rep2 promotedTupleTName [mkIntExprInt dflags i]
repPromotedNilTyCon :: DsM (Core TH.TypeQ)
repPromotedNilTyCon = rep2 promotedNilTName []
repPromotedConsTyCon :: DsM (Core TH.TypeQ)
repPromotedConsTyCon = rep2 promotedConsTName []
------------ Kinds -------------------
repPlainTV :: Core TH.Name -> DsM (Core TH.TyVarBndr)
repPlainTV (MkC nm) = rep2 plainTVName [nm]
repKindedTV :: Core TH.Name -> Core TH.Kind -> DsM (Core TH.TyVarBndr)
repKindedTV (MkC nm) (MkC ki) = rep2 kindedTVName [nm, ki]
repKVar :: Core TH.Name -> DsM (Core TH.Kind)
repKVar (MkC s) = rep2 varKName [s]
repKCon :: Core TH.Name -> DsM (Core TH.Kind)
repKCon (MkC s) = rep2 conKName [s]
repKTuple :: Int -> DsM (Core TH.Kind)
repKTuple i = do dflags <- getDynFlags
rep2 tupleKName [mkIntExprInt dflags i]
repKArrow :: DsM (Core TH.Kind)
repKArrow = rep2 arrowKName []
repKList :: DsM (Core TH.Kind)
repKList = rep2 listKName []
repKApp :: Core TH.Kind -> Core TH.Kind -> DsM (Core TH.Kind)
repKApp (MkC k1) (MkC k2) = rep2 appKName [k1, k2]
repKApps :: Core TH.Kind -> [Core TH.Kind] -> DsM (Core TH.Kind)
repKApps f [] = return f
repKApps f (k:ks) = do { f' <- repKApp f k; repKApps f' ks }
repKStar :: DsM (Core TH.Kind)
repKStar = rep2 starKName []
repKConstraint :: DsM (Core TH.Kind)
repKConstraint = rep2 constraintKName []
----------------------------------------------------------
-- Type family result signature
repNoSig :: DsM (Core TH.FamilyResultSig)
repNoSig = rep2 noSigName []
repKindSig :: Core TH.Kind -> DsM (Core TH.FamilyResultSig)
repKindSig (MkC ki) = rep2 kindSigName [ki]
repTyVarSig :: Core TH.TyVarBndr -> DsM (Core TH.FamilyResultSig)
repTyVarSig (MkC bndr) = rep2 tyVarSigName [bndr]
----------------------------------------------------------
-- Literals
repLiteral :: HsLit -> DsM (Core TH.Lit)
repLiteral (HsStringPrim _ bs)
= do dflags <- getDynFlags
word8_ty <- lookupType word8TyConName
let w8s = unpack bs
w8s_expr = map (\w8 -> mkCoreConApps word8DataCon
[mkWordLit dflags (toInteger w8)]) w8s
rep2 stringPrimLName [mkListExpr word8_ty w8s_expr]
repLiteral lit
= do lit' <- case lit of
HsIntPrim _ i -> mk_integer i
HsWordPrim _ w -> mk_integer w
HsInt _ i -> mk_integer i
HsFloatPrim r -> mk_rational r
HsDoublePrim r -> mk_rational r
HsCharPrim _ c -> mk_char c
_ -> return lit
lit_expr <- dsLit lit'
case mb_lit_name of
Just lit_name -> rep2 lit_name [lit_expr]
Nothing -> notHandled "Exotic literal" (ppr lit)
where
mb_lit_name = case lit of
HsInteger _ _ _ -> Just integerLName
HsInt _ _ -> Just integerLName
HsIntPrim _ _ -> Just intPrimLName
HsWordPrim _ _ -> Just wordPrimLName
HsFloatPrim _ -> Just floatPrimLName
HsDoublePrim _ -> Just doublePrimLName
HsChar _ _ -> Just charLName
HsCharPrim _ _ -> Just charPrimLName
HsString _ _ -> Just stringLName
HsRat _ _ -> Just rationalLName
_ -> Nothing
mk_integer :: Integer -> DsM HsLit
mk_integer i = do integer_ty <- lookupType integerTyConName
return $ HsInteger "" i integer_ty
mk_rational :: FractionalLit -> DsM HsLit
mk_rational r = do rat_ty <- lookupType rationalTyConName
return $ HsRat r rat_ty
mk_string :: FastString -> DsM HsLit
mk_string s = return $ HsString "" s
mk_char :: Char -> DsM HsLit
mk_char c = return $ HsChar "" c
repOverloadedLiteral :: HsOverLit Name -> DsM (Core TH.Lit)
repOverloadedLiteral (OverLit { ol_val = val})
= do { lit <- mk_lit val; repLiteral lit }
-- The type Rational will be in the environment, because
-- the smart constructor 'TH.Syntax.rationalL' uses it in its type,
-- and rationalL is sucked in when any TH stuff is used
mk_lit :: OverLitVal -> DsM HsLit
mk_lit (HsIntegral _ i) = mk_integer i
mk_lit (HsFractional f) = mk_rational f
mk_lit (HsIsString _ s) = mk_string s
--------------- Miscellaneous -------------------
repGensym :: Core String -> DsM (Core (TH.Q TH.Name))
repGensym (MkC lit_str) = rep2 newNameName [lit_str]
repBindQ :: Type -> Type -- a and b
-> Core (TH.Q a) -> Core (a -> TH.Q b) -> DsM (Core (TH.Q b))
repBindQ ty_a ty_b (MkC x) (MkC y)
= rep2 bindQName [Type ty_a, Type ty_b, x, y]
repSequenceQ :: Type -> Core [TH.Q a] -> DsM (Core (TH.Q [a]))
repSequenceQ ty_a (MkC list)
= rep2 sequenceQName [Type ty_a, list]
------------ Lists -------------------
-- turn a list of patterns into a single pattern matching a list
repList :: Name -> (a -> DsM (Core b))
-> [a] -> DsM (Core [b])
repList tc_name f args
= do { args1 <- mapM f args
; coreList tc_name args1 }
coreList :: Name -- Of the TyCon of the element type
-> [Core a] -> DsM (Core [a])
coreList tc_name es
= do { elt_ty <- lookupType tc_name; return (coreList' elt_ty es) }
coreList' :: Type -- The element type
-> [Core a] -> Core [a]
coreList' elt_ty es = MkC (mkListExpr elt_ty (map unC es ))
nonEmptyCoreList :: [Core a] -> Core [a]
-- The list must be non-empty so we can get the element type
-- Otherwise use coreList
nonEmptyCoreList [] = panic "coreList: empty argument"
nonEmptyCoreList xs@(MkC x:_) = MkC (mkListExpr (exprType x) (map unC xs))
coreStringLit :: String -> DsM (Core String)
coreStringLit s = do { z <- mkStringExpr s; return(MkC z) }
------------------- Maybe ------------------
-- | Construct Core expression for Nothing of a given type name
coreNothing :: Name -- ^ Name of the TyCon of the element type
-> DsM (Core (Maybe a))
coreNothing tc_name =
do { elt_ty <- lookupType tc_name; return (coreNothing' elt_ty) }
-- | Construct Core expression for Nothing of a given type
coreNothing' :: Type -- ^ The element type
-> Core (Maybe a)
coreNothing' elt_ty = MkC (mkNothingExpr elt_ty)
-- | Store given Core expression in a Just of a given type name
coreJust :: Name -- ^ Name of the TyCon of the element type
-> Core a -> DsM (Core (Maybe a))
coreJust tc_name es
= do { elt_ty <- lookupType tc_name; return (coreJust' elt_ty es) }
-- | Store given Core expression in a Just of a given type
coreJust' :: Type -- ^ The element type
-> Core a -> Core (Maybe a)
coreJust' elt_ty es = MkC (mkJustExpr elt_ty (unC es))
------------ Literals & Variables -------------------
coreIntLit :: Int -> DsM (Core Int)
coreIntLit i = do dflags <- getDynFlags
return (MkC (mkIntExprInt dflags i))
coreVar :: Id -> Core TH.Name -- The Id has type Name
coreVar id = MkC (Var id)
----------------- Failure -----------------------
notHandledL :: SrcSpan -> String -> SDoc -> DsM a
notHandledL loc what doc
| isGoodSrcSpan loc
= putSrcSpanDs loc $ notHandled what doc
| otherwise
= notHandled what doc
notHandled :: String -> SDoc -> DsM a
notHandled what doc = failWithDs msg
where
msg = hang (text what <+> ptext (sLit "not (yet) handled by Template Haskell"))
2 doc
|