summaryrefslogtreecommitdiff
path: root/compiler/deSugar/DsUtils.lhs
blob: 455db042f927bbe19b04b922ef8b196a2059ab87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%

Utilities for desugaring

This module exports some utility functions of no great interest.

\begin{code}
module DsUtils (
	EquationInfo(..), 
	firstPat, shiftEqns,
	
	mkDsLet, mkDsLets, mkDsApp, mkDsApps,

	MatchResult(..), CanItFail(..), 
	cantFailMatchResult, alwaysFailMatchResult,
	extractMatchResult, combineMatchResults, 
	adjustMatchResult,  adjustMatchResultDs,
	mkCoLetMatchResult, mkGuardedMatchResult, 
	matchCanFail, mkEvalMatchResult,
	mkCoPrimCaseMatchResult, mkCoAlgCaseMatchResult,
	wrapBind, wrapBinds,

	mkErrorAppDs, mkNilExpr, mkConsExpr, mkListExpr,
	mkIntExpr, mkCharExpr,
	mkStringExpr, mkStringExprFS, mkIntegerExpr, 

	mkSelectorBinds, mkTupleExpr, mkTupleSelector, 
	mkTupleType, mkTupleCase, mkBigCoreTup,
	mkCoreTup, mkCoreTupTy, seqVar,
	
	dsSyntaxTable, lookupEvidence,

	selectSimpleMatchVarL, selectMatchVars, selectMatchVar,
	mkTickBox, mkOptTickBox, mkBinaryTickBox
    ) where

#include "HsVersions.h"

import {-# SOURCE #-}	Match ( matchSimply )
import {-# SOURCE #-}	DsExpr( dsExpr )

import HsSyn
import TcHsSyn
import CoreSyn
import Constants
import DsMonad

import CoreUtils
import MkId
import Id
import Var
import Name
import Literal
import TyCon
import DataCon
import Type
import Coercion
import TysPrim
import TysWiredIn
import BasicTypes
import UniqSet
import UniqSupply
import PrelNames
import Outputable
import SrcLoc
import Util
import ListSetOps
import FastString
import Data.Char

infixl 4 `mkDsApp`, `mkDsApps`
\end{code}



%************************************************************************
%*									*
		Rebindable syntax
%*									*
%************************************************************************

\begin{code}
dsSyntaxTable :: SyntaxTable Id 
	       -> DsM ([CoreBind], 	-- Auxiliary bindings
		       [(Name,Id)])	-- Maps the standard name to its value

dsSyntaxTable rebound_ids
  = mapAndUnzipDs mk_bind rebound_ids	`thenDs` \ (binds_s, prs) ->
    return (concat binds_s, prs)
  where
	-- The cheapo special case can happen when we 
	-- make an intermediate HsDo when desugaring a RecStmt
    mk_bind (std_name, HsVar id) = return ([], (std_name, id))
    mk_bind (std_name, expr)
 	 = dsExpr expr				`thenDs` \ rhs ->
     	   newSysLocalDs (exprType rhs)		`thenDs` \ id ->
     	   return ([NonRec id rhs], (std_name, id))

lookupEvidence :: [(Name, Id)] -> Name -> Id
lookupEvidence prs std_name
  = assocDefault (mk_panic std_name) prs std_name
  where
    mk_panic std_name = pprPanic "dsSyntaxTable" (ptext SLIT("Not found:") <+> ppr std_name)
\end{code}


%************************************************************************
%*									*
\subsection{Building lets}
%*									*
%************************************************************************

Use case, not let for unlifted types.  The simplifier will turn some
back again.

\begin{code}
mkDsLet :: CoreBind -> CoreExpr -> CoreExpr
mkDsLet (NonRec bndr rhs) body	-- See Note [CoreSyn let/app invariant]
  | isUnLiftedType (idType bndr) && not (exprOkForSpeculation rhs)
  = Case rhs bndr (exprType body) [(DEFAULT,[],body)]
mkDsLet bind body
  = Let bind body

mkDsLets :: [CoreBind] -> CoreExpr -> CoreExpr
mkDsLets binds body = foldr mkDsLet body binds

-----------
mkDsApp :: CoreExpr -> CoreExpr -> CoreExpr
-- Check the invariant that the arg of an App is ok-for-speculation if unlifted
-- See CoreSyn Note [CoreSyn let/app invariant]
mkDsApp fun (Type ty) = App fun (Type ty)
mkDsApp fun arg       = mk_val_app fun arg arg_ty res_ty
		      where
			(arg_ty, res_ty) = splitFunTy (exprType fun)

-----------
mkDsApps :: CoreExpr -> [CoreExpr] -> CoreExpr
-- Slightly more efficient version of (foldl mkDsApp)
mkDsApps fun args
  = go fun (exprType fun) args
  where
    go fun fun_ty []               = fun
    go fun fun_ty (Type ty : args) = go (App fun (Type ty)) (applyTy fun_ty ty) args
    go fun fun_ty (arg     : args) = go (mk_val_app fun arg arg_ty res_ty) res_ty args
				   where
				     (arg_ty, res_ty) = splitFunTy fun_ty
-----------
mk_val_app fun arg arg_ty res_ty	-- See Note [CoreSyn let/app invariant]
  | not (isUnLiftedType arg_ty) || exprOkForSpeculation arg
  = App fun arg		-- The vastly common case

mk_val_app (Var f `App` Type ty1 `App` Type ty2 `App` arg1) arg2 _ res_ty
  | f == seqId		-- Note [Desugaring seq]
  = Case arg1 (mkWildId ty1) res_ty [(DEFAULT,[],arg2)]

mk_val_app fun arg arg_ty res_ty
  = Case arg (mkWildId arg_ty) res_ty [(DEFAULT,[],App fun (Var arg_id))]
  where
    arg_id = mkWildId arg_ty	-- Lots of shadowing, but it doesn't matter,
				-- because 'fun ' should not have a free wild-id
\end{code}

Note [Desugaring seq]  cf Trac #1031
~~~~~~~~~~~~~~~~~~~~~
   f x y = x `seq` (y `seq` (# x,y #))

The [CoreSyn let/app invariant] means that, other things being equal, because 
the argument to the outer 'seq' has an unlifted type, we'll use call-by-value thus:

   f x y = case (y `seq` (# x,y #)) of v -> x `seq` v

But that is bad for two reasons: 
  (a) we now evaluate y before x, and 
  (b) we can't bind v to an unboxed pair

Seq is very, very special!  So we recognise it right here, and desugar to
	case x of _ -> case y of _ -> (# x,y #)

The special case would be valid for all calls to 'seq', but it's only *necessary*
for ones whose second argument has an unlifted type. So we only catch the latter
case here, to avoid unnecessary tests.


%************************************************************************
%*									*
\subsection{ Selecting match variables}
%*									*
%************************************************************************

We're about to match against some patterns.  We want to make some
@Ids@ to use as match variables.  If a pattern has an @Id@ readily at
hand, which should indeed be bound to the pattern as a whole, then use it;
otherwise, make one up.

\begin{code}
selectSimpleMatchVarL :: LPat Id -> DsM Id
selectSimpleMatchVarL pat = selectMatchVar (unLoc pat)

-- (selectMatchVars ps tys) chooses variables of type tys
-- to use for matching ps against.  If the pattern is a variable,
-- we try to use that, to save inventing lots of fresh variables.
--
-- OLD, but interesting note:
--    But even if it is a variable, its type might not match.  Consider
--	data T a where
--	  T1 :: Int -> T Int
--	  T2 :: a   -> T a
--
--	f :: T a -> a -> Int
--	f (T1 i) (x::Int) = x
--	f (T2 i) (y::a)   = 0
--    Then we must not choose (x::Int) as the matching variable!
-- And nowadays we won't, because the (x::Int) will be wrapped in a CoPat

selectMatchVars :: [Pat Id] -> DsM [Id]
selectMatchVars ps = mapM selectMatchVar ps

selectMatchVar (BangPat pat)   = selectMatchVar (unLoc pat)
selectMatchVar (LazyPat pat)   = selectMatchVar (unLoc pat)
selectMatchVar (ParPat pat)    = selectMatchVar (unLoc pat)
selectMatchVar (VarPat var)    = return var
selectMatchVar (AsPat var pat) = return (unLoc var)
selectMatchVar other_pat       = newSysLocalDs (hsPatType other_pat)
				  -- OK, better make up one...
\end{code}


%************************************************************************
%*									*
%* type synonym EquationInfo and access functions for its pieces	*
%*									*
%************************************************************************
\subsection[EquationInfo-synonym]{@EquationInfo@: a useful synonym}

The ``equation info'' used by @match@ is relatively complicated and
worthy of a type synonym and a few handy functions.

\begin{code}
firstPat :: EquationInfo -> Pat Id
firstPat eqn = head (eqn_pats eqn)

shiftEqns :: [EquationInfo] -> [EquationInfo]
-- Drop the first pattern in each equation
shiftEqns eqns = [ eqn { eqn_pats = tail (eqn_pats eqn) } | eqn <- eqns ]
\end{code}

Functions on MatchResults

\begin{code}
matchCanFail :: MatchResult -> Bool
matchCanFail (MatchResult CanFail _)  = True
matchCanFail (MatchResult CantFail _) = False

alwaysFailMatchResult :: MatchResult
alwaysFailMatchResult = MatchResult CanFail (\fail -> returnDs fail)

cantFailMatchResult :: CoreExpr -> MatchResult
cantFailMatchResult expr = MatchResult CantFail (\ ignore -> returnDs expr)

extractMatchResult :: MatchResult -> CoreExpr -> DsM CoreExpr
extractMatchResult (MatchResult CantFail match_fn) fail_expr
  = match_fn (error "It can't fail!")

extractMatchResult (MatchResult CanFail match_fn) fail_expr
  = mkFailurePair fail_expr	 	`thenDs` \ (fail_bind, if_it_fails) ->
    match_fn if_it_fails		`thenDs` \ body ->
    returnDs (mkDsLet fail_bind body)


combineMatchResults :: MatchResult -> MatchResult -> MatchResult
combineMatchResults (MatchResult CanFail      body_fn1)
		    (MatchResult can_it_fail2 body_fn2)
  = MatchResult can_it_fail2 body_fn
  where
    body_fn fail = body_fn2 fail			`thenDs` \ body2 ->
		   mkFailurePair body2	 		`thenDs` \ (fail_bind, duplicatable_expr) ->
		   body_fn1 duplicatable_expr		`thenDs` \ body1 ->
		   returnDs (Let fail_bind body1)

combineMatchResults match_result1@(MatchResult CantFail body_fn1) match_result2
  = match_result1

adjustMatchResult :: DsWrapper -> MatchResult -> MatchResult
adjustMatchResult encl_fn (MatchResult can_it_fail body_fn)
  = MatchResult can_it_fail (\fail -> body_fn fail	`thenDs` \ body ->
				      returnDs (encl_fn body))

adjustMatchResultDs :: (CoreExpr -> DsM CoreExpr) -> MatchResult -> MatchResult
adjustMatchResultDs encl_fn (MatchResult can_it_fail body_fn)
  = MatchResult can_it_fail (\fail -> body_fn fail	`thenDs` \ body ->
				      encl_fn body)

wrapBinds :: [(Var,Var)] -> CoreExpr -> CoreExpr
wrapBinds [] e = e
wrapBinds ((new,old):prs) e = wrapBind new old (wrapBinds prs e)

wrapBind :: Var -> Var -> CoreExpr -> CoreExpr
wrapBind new old body
  | new==old    = body
  | isTyVar new = App (Lam new body) (Type (mkTyVarTy old))
  | otherwise   = Let (NonRec new (Var old)) body

seqVar :: Var -> CoreExpr -> CoreExpr
seqVar var body = Case (Var var) var (exprType body)
			[(DEFAULT, [], body)]

mkCoLetMatchResult :: CoreBind -> MatchResult -> MatchResult
mkCoLetMatchResult bind = adjustMatchResult (mkDsLet bind)

mkEvalMatchResult :: Id -> Type -> MatchResult -> MatchResult
mkEvalMatchResult var ty
  = adjustMatchResult (\e -> Case (Var var) var ty [(DEFAULT, [], e)]) 

mkGuardedMatchResult :: CoreExpr -> MatchResult -> MatchResult
mkGuardedMatchResult pred_expr (MatchResult can_it_fail body_fn)
  = MatchResult CanFail (\fail -> body_fn fail	`thenDs` \ body ->
				  returnDs (mkIfThenElse pred_expr body fail))

mkCoPrimCaseMatchResult :: Id				-- Scrutinee
                    -> Type                             -- Type of the case
		    -> [(Literal, MatchResult)]		-- Alternatives
		    -> MatchResult
mkCoPrimCaseMatchResult var ty match_alts
  = MatchResult CanFail mk_case
  where
    mk_case fail
      = mappM (mk_alt fail) sorted_alts		`thenDs` \ alts ->
	returnDs (Case (Var var) var ty ((DEFAULT, [], fail) : alts))

    sorted_alts = sortWith fst match_alts	-- Right order for a Case
    mk_alt fail (lit, MatchResult _ body_fn) = body_fn fail	`thenDs` \ body ->
					       returnDs (LitAlt lit, [], body)


mkCoAlgCaseMatchResult :: Id					-- Scrutinee
                    -> Type                                     -- Type of exp
		    -> [(DataCon, [CoreBndr], MatchResult)]	-- Alternatives
		    -> MatchResult
mkCoAlgCaseMatchResult var ty match_alts 
  | isNewTyCon tycon		-- Newtype case; use a let
  = ASSERT( null (tail match_alts) && null (tail arg_ids1) )
    mkCoLetMatchResult (NonRec arg_id1 newtype_rhs) match_result1

  | isPArrFakeAlts match_alts	-- Sugared parallel array; use a literal case 
  = MatchResult CanFail mk_parrCase

  | otherwise			-- Datatype case; use a case
  = MatchResult fail_flag mk_case
  where
    tycon = dataConTyCon con1
	-- [Interesting: becuase of GADTs, we can't rely on the type of 
	--  the scrutinised Id to be sufficiently refined to have a TyCon in it]

	-- Stuff for newtype
    (con1, arg_ids1, match_result1) = head match_alts
    arg_id1 	= head arg_ids1
    var_ty      = idType var
    (tc, ty_args) = splitNewTyConApp var_ty
    newtype_rhs = unwrapNewTypeBody tc ty_args (Var var)
		
	-- Stuff for data types
    data_cons      = tyConDataCons tycon
    match_results  = [match_result | (_,_,match_result) <- match_alts]

    fail_flag | exhaustive_case
	      = foldr1 orFail [can_it_fail | MatchResult can_it_fail _ <- match_results]
	      | otherwise
	      = CanFail

    wild_var = mkWildId (idType var)
    sorted_alts  = sortWith get_tag match_alts
    get_tag (con, _, _) = dataConTag con
    mk_case fail = mappM (mk_alt fail) sorted_alts	`thenDs` \ alts ->
		   returnDs (Case (Var var) wild_var ty (mk_default fail ++ alts))

    mk_alt fail (con, args, MatchResult _ body_fn)
	= body_fn fail				`thenDs` \ body ->
	  newUniqueSupply			`thenDs` \ us ->
	  returnDs (mkReboxingAlt (uniqsFromSupply us) con args body)

    mk_default fail | exhaustive_case = []
		    | otherwise       = [(DEFAULT, [], fail)]

    un_mentioned_constructors
        = mkUniqSet data_cons `minusUniqSet` mkUniqSet [ con | (con, _, _) <- match_alts]
    exhaustive_case = isEmptyUniqSet un_mentioned_constructors

	-- Stuff for parallel arrays
	-- 
	--  * the following is to desugar cases over fake constructors for
	--   parallel arrays, which are introduced by `tidy1' in the `PArrPat'
	--   case
	--
	-- Concerning `isPArrFakeAlts':
	--
	--  * it is *not* sufficient to just check the type of the type
	--   constructor, as we have to be careful not to confuse the real
	--   representation of parallel arrays with the fake constructors;
	--   moreover, a list of alternatives must not mix fake and real
	--   constructors (this is checked earlier on)
	--
	-- FIXME: We actually go through the whole list and make sure that
	--	  either all or none of the constructors are fake parallel
	--	  array constructors.  This is to spot equations that mix fake
	--	  constructors with the real representation defined in
	--	  `PrelPArr'.  It would be nicer to spot this situation
	--	  earlier and raise a proper error message, but it can really
	--	  only happen in `PrelPArr' anyway.
	--
    isPArrFakeAlts [(dcon, _, _)]      = isPArrFakeCon dcon
    isPArrFakeAlts ((dcon, _, _):alts) = 
      case (isPArrFakeCon dcon, isPArrFakeAlts alts) of
        (True , True ) -> True
        (False, False) -> False
	_	       -> 
	  panic "DsUtils: You may not mix `[:...:]' with `PArr' patterns"
    --
    mk_parrCase fail = 		   
      dsLookupGlobalId lengthPName			`thenDs` \lengthP  ->
      unboxAlt						`thenDs` \alt      ->
      returnDs (Case (len lengthP) (mkWildId intTy) ty [alt])
      where
	elemTy      = case splitTyConApp (idType var) of
		        (_, [elemTy]) -> elemTy
		        _	        -> panic panicMsg
        panicMsg    = "DsUtils.mkCoAlgCaseMatchResult: not a parallel array?"
	len lengthP = mkApps (Var lengthP) [Type elemTy, Var var]
	--
	unboxAlt = 
	  newSysLocalDs intPrimTy			`thenDs` \l	   ->
	  dsLookupGlobalId indexPName			`thenDs` \indexP   ->
	  mappM (mkAlt indexP) sorted_alts              `thenDs` \alts     ->
	  returnDs (DataAlt intDataCon, [l], (Case (Var l) wild ty (dft : alts)))
          where
	    wild = mkWildId intPrimTy
	    dft  = (DEFAULT, [], fail)
	--
	-- each alternative matches one array length (corresponding to one
	-- fake array constructor), so the match is on a literal; each
	-- alternative's body is extended by a local binding for each
	-- constructor argument, which are bound to array elements starting
	-- with the first
	--
	mkAlt indexP (con, args, MatchResult _ bodyFun) = 
	  bodyFun fail					`thenDs` \body     ->
	  returnDs (LitAlt lit, [], mkDsLets binds body)
	  where
	    lit   = MachInt $ toInteger (dataConSourceArity con)
	    binds = [NonRec arg (indexExpr i) | (i, arg) <- zip [1..] args]
	    --
	    indexExpr i = mkApps (Var indexP) [Type elemTy, Var var, mkIntExpr i]
\end{code}


%************************************************************************
%*									*
\subsection{Desugarer's versions of some Core functions}
%*									*
%************************************************************************

\begin{code}
mkErrorAppDs :: Id 		-- The error function
	     -> Type		-- Type to which it should be applied
	     -> String		-- The error message string to pass
	     -> DsM CoreExpr

mkErrorAppDs err_id ty msg
  = getSrcSpanDs		`thenDs` \ src_loc ->
    let
	full_msg = showSDoc (hcat [ppr src_loc, text "|", text msg])
	core_msg = Lit (mkStringLit full_msg)
	-- mkStringLit returns a result of type String#
    in
    returnDs (mkApps (Var err_id) [Type ty, core_msg])
\end{code}


*************************************************************
%*									*
\subsection{Making literals}
%*									*
%************************************************************************

\begin{code}
mkCharExpr     :: Char	     -> CoreExpr      -- Returns	C# c :: Int
mkIntExpr      :: Integer    -> CoreExpr      -- Returns	I# i :: Int
mkIntegerExpr  :: Integer    -> DsM CoreExpr  -- Result :: Integer
mkStringExpr   :: String     -> DsM CoreExpr  -- Result :: String
mkStringExprFS :: FastString -> DsM CoreExpr  -- Result :: String

mkIntExpr  i = mkConApp intDataCon  [mkIntLit i]
mkCharExpr c = mkConApp charDataCon [mkLit (MachChar c)]

mkIntegerExpr i
  | inIntRange i  	-- Small enough, so start from an Int
  = dsLookupDataCon  smallIntegerDataConName	`thenDs` \ integer_dc ->
    returnDs (mkSmallIntegerLit integer_dc i)

-- Special case for integral literals with a large magnitude:
-- They are transformed into an expression involving only smaller
-- integral literals. This improves constant folding.

  | otherwise 		-- Big, so start from a string
  = dsLookupGlobalId plusIntegerName		`thenDs` \ plus_id ->
    dsLookupGlobalId timesIntegerName		`thenDs` \ times_id ->
    dsLookupDataCon  smallIntegerDataConName	`thenDs` \ integer_dc ->
    let 
	lit i = mkSmallIntegerLit integer_dc i
        plus a b  = Var plus_id  `App` a `App` b
        times a b = Var times_id `App` a `App` b

	-- Transform i into (x1 + (x2 + (x3 + (...) * b) * b) * b) with abs xi <= b
	horner :: Integer -> Integer -> CoreExpr
	horner b i | abs q <= 1 = if r == 0 || r == i 
				  then lit i 
				  else lit r `plus` lit (i-r)
	           | r == 0     =               horner b q `times` lit b
	           | otherwise  = lit r `plus` (horner b q `times` lit b)
  		   where
		     (q,r) = i `quotRem` b

    in
    returnDs (horner tARGET_MAX_INT i)

mkSmallIntegerLit small_integer_data_con i = mkConApp small_integer_data_con [mkIntLit i]

mkStringExpr str = mkStringExprFS (mkFastString str)

mkStringExprFS str
  | nullFS str
  = returnDs (mkNilExpr charTy)

  | lengthFS str == 1
  = let
	the_char = mkCharExpr (headFS str)
    in
    returnDs (mkConsExpr charTy the_char (mkNilExpr charTy))

  | all safeChar chars
  = dsLookupGlobalId unpackCStringName	`thenDs` \ unpack_id ->
    returnDs (App (Var unpack_id) (Lit (MachStr str)))

  | otherwise
  = dsLookupGlobalId unpackCStringUtf8Name	`thenDs` \ unpack_id ->
    returnDs (App (Var unpack_id) (Lit (MachStr str)))

  where
    chars = unpackFS str
    safeChar c = ord c >= 1 && ord c <= 0x7F
\end{code}


%************************************************************************
%*									*
\subsection[mkSelectorBind]{Make a selector bind}
%*									*
%************************************************************************

This is used in various places to do with lazy patterns.
For each binder $b$ in the pattern, we create a binding:
\begin{verbatim}
    b = case v of pat' -> b'
\end{verbatim}
where @pat'@ is @pat@ with each binder @b@ cloned into @b'@.

ToDo: making these bindings should really depend on whether there's
much work to be done per binding.  If the pattern is complex, it
should be de-mangled once, into a tuple (and then selected from).
Otherwise the demangling can be in-line in the bindings (as here).

Boring!  Boring!  One error message per binder.  The above ToDo is
even more helpful.  Something very similar happens for pattern-bound
expressions.

\begin{code}
mkSelectorBinds :: LPat Id	-- The pattern
		-> CoreExpr	-- Expression to which the pattern is bound
		-> DsM [(Id,CoreExpr)]

mkSelectorBinds (L _ (VarPat v)) val_expr
  = returnDs [(v, val_expr)]

mkSelectorBinds pat val_expr
  | isSingleton binders || is_simple_lpat pat
  = 	-- Given   p = e, where p binds x,y
	-- we are going to make
	--	v = p	(where v is fresh)
	--	x = case v of p -> x
	--	y = case v of p -> x

	-- Make up 'v'
	-- NB: give it the type of *pattern* p, not the type of the *rhs* e.
	-- This does not matter after desugaring, but there's a subtle 
	-- issue with implicit parameters. Consider
	--	(x,y) = ?i
	-- Then, ?i is given type {?i :: Int}, a PredType, which is opaque
	-- to the desugarer.  (Why opaque?  Because newtypes have to be.  Why
	-- does it get that type?  So that when we abstract over it we get the
	-- right top-level type  (?i::Int) => ...)
	--
	-- So to get the type of 'v', use the pattern not the rhs.  Often more
	-- efficient too.
    newSysLocalDs (hsLPatType pat)	`thenDs` \ val_var ->

	-- For the error message we make one error-app, to avoid duplication.
	-- But we need it at different types... so we use coerce for that
    mkErrorAppDs iRREFUT_PAT_ERROR_ID 
		 unitTy (showSDoc (ppr pat))	`thenDs` \ err_expr ->
    newSysLocalDs unitTy			`thenDs` \ err_var ->
    mappM (mk_bind val_var err_var) binders	`thenDs` \ binds ->
    returnDs ( (val_var, val_expr) : 
	       (err_var, err_expr) :
	       binds )


  | otherwise
  = mkErrorAppDs iRREFUT_PAT_ERROR_ID 
		 tuple_ty (showSDoc (ppr pat))			`thenDs` \ error_expr ->
    matchSimply val_expr PatBindRhs pat local_tuple error_expr	`thenDs` \ tuple_expr ->
    newSysLocalDs tuple_ty					`thenDs` \ tuple_var ->
    let
	mk_tup_bind binder
	  = (binder, mkTupleSelector binders binder tuple_var (Var tuple_var))
    in
    returnDs ( (tuple_var, tuple_expr) : map mk_tup_bind binders )
  where
    binders	= collectPatBinders pat
    local_tuple = mkTupleExpr binders
    tuple_ty    = exprType local_tuple

    mk_bind scrut_var err_var bndr_var
    -- (mk_bind sv err_var) generates
    --		bv = case sv of { pat -> bv; other -> coerce (type-of-bv) err_var }
    -- Remember, pat binds bv
      = matchSimply (Var scrut_var) PatBindRhs pat
		    (Var bndr_var) error_expr			`thenDs` \ rhs_expr ->
        returnDs (bndr_var, rhs_expr)
      where
        error_expr = mkCoerce co (Var err_var)
        co         = mkUnsafeCoercion (exprType (Var err_var)) (idType bndr_var)

    is_simple_lpat p = is_simple_pat (unLoc p)

    is_simple_pat (TuplePat ps Boxed _)        = all is_triv_lpat ps
    is_simple_pat (ConPatOut{ pat_args = ps }) = all is_triv_lpat (hsConArgs ps)
    is_simple_pat (VarPat _)	       	       = True
    is_simple_pat (ParPat p)		       = is_simple_lpat p
    is_simple_pat other		       	       = False

    is_triv_lpat p = is_triv_pat (unLoc p)

    is_triv_pat (VarPat v)  = True
    is_triv_pat (WildPat _) = True
    is_triv_pat (ParPat p)  = is_triv_lpat p
    is_triv_pat other       = False
\end{code}


%************************************************************************
%*									*
		Tuples
%*									*
%************************************************************************

@mkTupleExpr@ builds a tuple; the inverse to @mkTupleSelector@.  

* If it has only one element, it is the identity function.

* If there are more elements than a big tuple can have, it nests 
  the tuples.  

Nesting policy.  Better a 2-tuple of 10-tuples (3 objects) than
a 10-tuple of 2-tuples (11 objects).  So we want the leaves to be big.

\begin{code}
mkTupleExpr :: [Id] -> CoreExpr
mkTupleExpr ids = mkBigCoreTup (map Var ids)

-- corresponding type
mkTupleType :: [Id] -> Type
mkTupleType ids = mkBigTuple mkCoreTupTy (map idType ids)

mkBigCoreTup :: [CoreExpr] -> CoreExpr
mkBigCoreTup = mkBigTuple mkCoreTup

mkBigTuple :: ([a] -> a) -> [a] -> a
mkBigTuple small_tuple as = mk_big_tuple (chunkify as)
  where
	-- Each sub-list is short enough to fit in a tuple
    mk_big_tuple [as] = small_tuple as
    mk_big_tuple as_s = mk_big_tuple (chunkify (map small_tuple as_s))

chunkify :: [a] -> [[a]]
-- The sub-lists of the result all have length <= mAX_TUPLE_SIZE
-- But there may be more than mAX_TUPLE_SIZE sub-lists
chunkify xs
  | n_xs <= mAX_TUPLE_SIZE = {- pprTrace "Small" (ppr n_xs) -} [xs] 
  | otherwise		   = {- pprTrace "Big"   (ppr n_xs) -} (split xs)
  where
    n_xs     = length xs
    split [] = []
    split xs = take mAX_TUPLE_SIZE xs : split (drop mAX_TUPLE_SIZE xs)
\end{code}


@mkTupleSelector@ builds a selector which scrutises the given
expression and extracts the one name from the list given.
If you want the no-shadowing rule to apply, the caller
is responsible for making sure that none of these names
are in scope.

If there is just one id in the ``tuple'', then the selector is
just the identity.

If it's big, it does nesting
	mkTupleSelector [a,b,c,d] b v e
	  = case e of v { 
		(p,q) -> case p of p {
			   (a,b) -> b }}
We use 'tpl' vars for the p,q, since shadowing does not matter.

In fact, it's more convenient to generate it innermost first, getting

	case (case e of v 
		(p,q) -> p) of p
	  (a,b) -> b

\begin{code}
mkTupleSelector :: [Id]		-- The tuple args
		-> Id		-- The selected one
		-> Id		-- A variable of the same type as the scrutinee
		-> CoreExpr	-- Scrutinee
		-> CoreExpr

mkTupleSelector vars the_var scrut_var scrut
  = mk_tup_sel (chunkify vars) the_var
  where
    mk_tup_sel [vars] the_var = mkCoreSel vars the_var scrut_var scrut
    mk_tup_sel vars_s the_var = mkCoreSel group the_var tpl_v $
				mk_tup_sel (chunkify tpl_vs) tpl_v
	where
	  tpl_tys = [mkCoreTupTy (map idType gp) | gp <- vars_s]
	  tpl_vs  = mkTemplateLocals tpl_tys
	  [(tpl_v, group)] = [(tpl,gp) | (tpl,gp) <- zipEqual "mkTupleSelector" tpl_vs vars_s,
					 the_var `elem` gp ]
\end{code}

A generalization of @mkTupleSelector@, allowing the body
of the case to be an arbitrary expression.

If the tuple is big, it is nested:

	mkTupleCase uniqs [a,b,c,d] body v e
	  = case e of v { (p,q) ->
	    case p of p { (a,b) ->
	    case q of q { (c,d) ->
	    body }}}

To avoid shadowing, we use uniqs to invent new variables p,q.

ToDo: eliminate cases where none of the variables are needed.

\begin{code}
mkTupleCase
	:: UniqSupply	-- for inventing names of intermediate variables
	-> [Id]		-- the tuple args
	-> CoreExpr	-- body of the case
	-> Id		-- a variable of the same type as the scrutinee
	-> CoreExpr	-- scrutinee
	-> CoreExpr

mkTupleCase uniqs vars body scrut_var scrut
  = mk_tuple_case uniqs (chunkify vars) body
  where
    mk_tuple_case us [vars] body
      = mkSmallTupleCase vars body scrut_var scrut
    mk_tuple_case us vars_s body
      = let
	    (us', vars', body') = foldr one_tuple_case (us, [], body) vars_s
	in
	mk_tuple_case us' (chunkify vars') body'
    one_tuple_case chunk_vars (us, vs, body)
      = let
	    (us1, us2) = splitUniqSupply us
	    scrut_var = mkSysLocal FSLIT("ds") (uniqFromSupply us1)
			(mkCoreTupTy (map idType chunk_vars))
	    body' = mkSmallTupleCase chunk_vars body scrut_var (Var scrut_var)
	in (us2, scrut_var:vs, body')
\end{code}

The same, but with a tuple small enough not to need nesting.

\begin{code}
mkSmallTupleCase
	:: [Id]		-- the tuple args
	-> CoreExpr	-- body of the case
	-> Id		-- a variable of the same type as the scrutinee
	-> CoreExpr	-- scrutinee
	-> CoreExpr

mkSmallTupleCase [var] body _scrut_var scrut
  = bindNonRec var scrut body
mkSmallTupleCase vars body scrut_var scrut
-- One branch no refinement?
  = Case scrut scrut_var (exprType body) [(DataAlt (tupleCon Boxed (length vars)), vars, body)]
\end{code}

%************************************************************************
%*									*
\subsection[mkFailurePair]{Code for pattern-matching and other failures}
%*									*
%************************************************************************

Call the constructor Ids when building explicit lists, so that they
interact well with rules.

\begin{code}
mkNilExpr :: Type -> CoreExpr
mkNilExpr ty = mkConApp nilDataCon [Type ty]

mkConsExpr :: Type -> CoreExpr -> CoreExpr -> CoreExpr
mkConsExpr ty hd tl = mkConApp consDataCon [Type ty, hd, tl]

mkListExpr :: Type -> [CoreExpr] -> CoreExpr
mkListExpr ty xs = foldr (mkConsExpr ty) (mkNilExpr ty) xs
			    

-- The next three functions make tuple types, constructors and selectors,
-- with the rule that a 1-tuple is represented by the thing itselg
mkCoreTupTy :: [Type] -> Type
mkCoreTupTy [ty] = ty
mkCoreTupTy tys  = mkTupleTy Boxed (length tys) tys

mkCoreTup :: [CoreExpr] -> CoreExpr			    
-- Builds exactly the specified tuple.
-- No fancy business for big tuples
mkCoreTup []  = Var unitDataConId
mkCoreTup [c] = c
mkCoreTup cs  = mkConApp (tupleCon Boxed (length cs))
			 (map (Type . exprType) cs ++ cs)

mkCoreSel :: [Id]	-- The tuple args
	  -> Id		-- The selected one
	  -> Id		-- A variable of the same type as the scrutinee
	  -> CoreExpr	-- Scrutinee
	  -> CoreExpr
-- mkCoreSel [x,y,z] x v e
-- ===>  case e of v { (x,y,z) -> x
mkCoreSel [var] should_be_the_same_var scrut_var scrut
  = ASSERT(var == should_be_the_same_var)
    scrut

mkCoreSel vars the_var scrut_var scrut
  = ASSERT( notNull vars )
    Case scrut scrut_var (idType the_var)
	 [(DataAlt (tupleCon Boxed (length vars)), vars, Var the_var)]
\end{code}

%************************************************************************
%*									*
\subsection[mkFailurePair]{Code for pattern-matching and other failures}
%*									*
%************************************************************************

Generally, we handle pattern matching failure like this: let-bind a
fail-variable, and use that variable if the thing fails:
\begin{verbatim}
	let fail.33 = error "Help"
	in
	case x of
		p1 -> ...
		p2 -> fail.33
		p3 -> fail.33
		p4 -> ...
\end{verbatim}
Then
\begin{itemize}
\item
If the case can't fail, then there'll be no mention of @fail.33@, and the
simplifier will later discard it.

\item
If it can fail in only one way, then the simplifier will inline it.

\item
Only if it is used more than once will the let-binding remain.
\end{itemize}

There's a problem when the result of the case expression is of
unboxed type.  Then the type of @fail.33@ is unboxed too, and
there is every chance that someone will change the let into a case:
\begin{verbatim}
	case error "Help" of
	  fail.33 -> case ....
\end{verbatim}

which is of course utterly wrong.  Rather than drop the condition that
only boxed types can be let-bound, we just turn the fail into a function
for the primitive case:
\begin{verbatim}
	let fail.33 :: Void -> Int#
	    fail.33 = \_ -> error "Help"
	in
	case x of
		p1 -> ...
		p2 -> fail.33 void
		p3 -> fail.33 void
		p4 -> ...
\end{verbatim}

Now @fail.33@ is a function, so it can be let-bound.

\begin{code}
mkFailurePair :: CoreExpr	-- Result type of the whole case expression
	      -> DsM (CoreBind,	-- Binds the newly-created fail variable
				-- to either the expression or \ _ -> expression
		      CoreExpr)	-- Either the fail variable, or fail variable
				-- applied to unit tuple
mkFailurePair expr
  | isUnLiftedType ty
  = newFailLocalDs (unitTy `mkFunTy` ty)	`thenDs` \ fail_fun_var ->
    newSysLocalDs unitTy			`thenDs` \ fail_fun_arg ->
    returnDs (NonRec fail_fun_var (Lam fail_fun_arg expr),
	      App (Var fail_fun_var) (Var unitDataConId))

  | otherwise
  = newFailLocalDs ty 		`thenDs` \ fail_var ->
    returnDs (NonRec fail_var expr, Var fail_var)
  where
    ty = exprType expr
\end{code}

\begin{code}
mkOptTickBox :: Maybe Int -> CoreExpr -> DsM CoreExpr
mkOptTickBox Nothing e   = return e
mkOptTickBox (Just ix) e = mkTickBox ix e

mkTickBox :: Int -> CoreExpr -> DsM CoreExpr
mkTickBox ix e = do
       uq <- newUnique 	
       mod <- getModuleDs
       let tick = mkTickBoxOpId uq mod ix
       uq2 <- newUnique 	
       let occName = mkVarOcc "tick"
       let name = mkInternalName uq2 occName noSrcLoc   -- use mkSysLocal?
       let var  = Id.mkLocalId name realWorldStatePrimTy
       return $ Case (Var tick) 
	             var
		     ty
	             [(DEFAULT,[],e)]
  where
     ty = exprType e

mkBinaryTickBox :: Int -> Int -> CoreExpr -> DsM CoreExpr
mkBinaryTickBox ixT ixF e = do
       mod <- getModuleDs
       uq <- newUnique 	
       mod <- getModuleDs
       let bndr1 = mkSysLocal FSLIT("t1") uq boolTy 
       falseBox <- mkTickBox ixF $ Var falseDataConId
       trueBox  <- mkTickBox ixT $ Var trueDataConId
       return $ Case e bndr1 boolTy
                       [ (DataAlt falseDataCon, [], falseBox)
                       , (DataAlt trueDataCon,  [], trueBox)
                       ]
\end{code}