1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
The @match@ function
-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeFamilies #-}
module Match ( match, matchEquations, matchWrapper, matchSimply, matchSinglePat ) where
#include "HsVersions.h"
import GhcPrelude
import {-#SOURCE#-} DsExpr (dsLExpr, dsSyntaxExpr)
import DynFlags
import HsSyn
import TcHsSyn
import TcEvidence
import TcRnMonad
import Check
import CoreSyn
import Literal
import CoreUtils
import MkCore
import DsMonad
import DsBinds
import DsGRHSs
import DsUtils
import Id
import ConLike
import DataCon
import PatSyn
import MatchCon
import MatchLit
import Type
import Coercion ( eqCoercion )
import TcType ( toTcTypeBag )
import TyCon( isNewTyCon )
import TysWiredIn
import SrcLoc
import Maybes
import Util
import Name
import Outputable
import BasicTypes ( isGenerated, il_value, fl_value )
import FastString
import Unique
import UniqDFM
import Control.Monad( when, unless )
import qualified Data.Map as Map
import Data.List (groupBy)
{-
************************************************************************
* *
The main matching function
* *
************************************************************************
The function @match@ is basically the same as in the Wadler chapter
from "The Implementation of Functional Programming Languages",
except it is monadised, to carry around the name supply, info about
annotations, etc.
Notes on @match@'s arguments, assuming $m$ equations and $n$ patterns:
\begin{enumerate}
\item
A list of $n$ variable names, those variables presumably bound to the
$n$ expressions being matched against the $n$ patterns. Using the
list of $n$ expressions as the first argument showed no benefit and
some inelegance.
\item
The second argument, a list giving the ``equation info'' for each of
the $m$ equations:
\begin{itemize}
\item
the $n$ patterns for that equation, and
\item
a list of Core bindings [@(Id, CoreExpr)@ pairs] to be ``stuck on
the front'' of the matching code, as in:
\begin{verbatim}
let <binds>
in <matching-code>
\end{verbatim}
\item
and finally: (ToDo: fill in)
The right way to think about the ``after-match function'' is that it
is an embryonic @CoreExpr@ with a ``hole'' at the end for the
final ``else expression''.
\end{itemize}
There is a data type, @EquationInfo@, defined in module @DsMonad@.
An experiment with re-ordering this information about equations (in
particular, having the patterns available in column-major order)
showed no benefit.
\item
A default expression---what to evaluate if the overall pattern-match
fails. This expression will (almost?) always be
a measly expression @Var@, unless we know it will only be used once
(as we do in @glue_success_exprs@).
Leaving out this third argument to @match@ (and slamming in lots of
@Var "fail"@s) is a positively {\em bad} idea, because it makes it
impossible to share the default expressions. (Also, it stands no
chance of working in our post-upheaval world of @Locals@.)
\end{enumerate}
Note: @match@ is often called via @matchWrapper@ (end of this module),
a function that does much of the house-keeping that goes with a call
to @match@.
It is also worth mentioning the {\em typical} way a block of equations
is desugared with @match@. At each stage, it is the first column of
patterns that is examined. The steps carried out are roughly:
\begin{enumerate}
\item
Tidy the patterns in column~1 with @tidyEqnInfo@ (this may add
bindings to the second component of the equation-info):
\item
Now {\em unmix} the equations into {\em blocks} [w\/ local function
@match_groups@], in which the equations in a block all have the same
match group.
(see ``the mixture rule'' in SLPJ).
\item
Call the right match variant on each block of equations; it will do the
appropriate thing for each kind of column-1 pattern.
\end{enumerate}
We are a little more paranoid about the ``empty rule'' (SLPJ, p.~87)
than the Wadler-chapter code for @match@ (p.~93, first @match@ clause).
And gluing the ``success expressions'' together isn't quite so pretty.
This @match@ uses @tidyEqnInfo@
to get `as'- and `twiddle'-patterns out of the way (tidying), before
applying ``the mixture rule'' (SLPJ, p.~88) [which really {\em
un}mixes the equations], producing a list of equation-info
blocks, each block having as its first column patterns compatible with each other.
Note [Match Ids]
~~~~~~~~~~~~~~~~
Most of the matching functions take an Id or [Id] as argument. This Id
is the scrutinee(s) of the match. The desugared expression may
sometimes use that Id in a local binding or as a case binder. So it
should not have an External name; Lint rejects non-top-level binders
with External names (Trac #13043).
-}
type MatchId = Id -- See Note [Match Ids]
match :: [MatchId] -- Variables rep\'ing the exprs we\'re matching with
-- See Note [Match Ids]
-> Type -- Type of the case expression
-> [EquationInfo] -- Info about patterns, etc. (type synonym below)
-> DsM MatchResult -- Desugared result!
match [] ty eqns
= ASSERT2( not (null eqns), ppr ty )
return (foldr1 combineMatchResults match_results)
where
match_results = [ ASSERT( null (eqn_pats eqn) )
eqn_rhs eqn
| eqn <- eqns ]
match vars@(v:_) ty eqns -- Eqns *can* be empty
= ASSERT2( all (isInternalName . idName) vars, ppr vars )
do { dflags <- getDynFlags
-- Tidy the first pattern, generating
-- auxiliary bindings if necessary
; (aux_binds, tidy_eqns) <- mapAndUnzipM (tidyEqnInfo v) eqns
-- Group the equations and match each group in turn
; let grouped = groupEquations dflags tidy_eqns
-- print the view patterns that are commoned up to help debug
; whenDOptM Opt_D_dump_view_pattern_commoning (debug grouped)
; match_results <- match_groups grouped
; return (adjustMatchResult (foldr (.) id aux_binds) $
foldr1 combineMatchResults match_results) }
where
dropGroup :: [(PatGroup,EquationInfo)] -> [EquationInfo]
dropGroup = map snd
match_groups :: [[(PatGroup,EquationInfo)]] -> DsM [MatchResult]
-- Result list of [MatchResult] is always non-empty
match_groups [] = matchEmpty v ty
match_groups gs = mapM match_group gs
match_group :: [(PatGroup,EquationInfo)] -> DsM MatchResult
match_group [] = panic "match_group"
match_group eqns@((group,_) : _)
= case group of
PgCon {} -> matchConFamily vars ty (subGroupUniq [(c,e) | (PgCon c, e) <- eqns])
PgSyn {} -> matchPatSyn vars ty (dropGroup eqns)
PgLit {} -> matchLiterals vars ty (subGroupOrd [(l,e) | (PgLit l, e) <- eqns])
PgAny -> matchVariables vars ty (dropGroup eqns)
PgN {} -> matchNPats vars ty (dropGroup eqns)
PgOverS {}-> matchNPats vars ty (dropGroup eqns)
PgNpK {} -> matchNPlusKPats vars ty (dropGroup eqns)
PgBang -> matchBangs vars ty (dropGroup eqns)
PgCo {} -> matchCoercion vars ty (dropGroup eqns)
PgView {} -> matchView vars ty (dropGroup eqns)
PgOverloadedList -> matchOverloadedList vars ty (dropGroup eqns)
-- FIXME: we should also warn about view patterns that should be
-- commoned up but are not
-- print some stuff to see what's getting grouped
-- use -dppr-debug to see the resolution of overloaded literals
debug eqns =
let gs = map (\group -> foldr (\ (p,_) -> \acc ->
case p of PgView e _ -> e:acc
_ -> acc) [] group) eqns
maybeWarn [] = return ()
maybeWarn l = warnDs NoReason (vcat l)
in
maybeWarn $ (map (\g -> text "Putting these view expressions into the same case:" <+> (ppr g))
(filter (not . null) gs))
matchEmpty :: MatchId -> Type -> DsM [MatchResult]
-- See Note [Empty case expressions]
matchEmpty var res_ty
= return [MatchResult CanFail mk_seq]
where
mk_seq fail = return $ mkWildCase (Var var) (idType var) res_ty
[(DEFAULT, [], fail)]
matchVariables :: [MatchId] -> Type -> [EquationInfo] -> DsM MatchResult
-- Real true variables, just like in matchVar, SLPJ p 94
-- No binding to do: they'll all be wildcards by now (done in tidy)
matchVariables (_:vars) ty eqns = match vars ty (shiftEqns eqns)
matchVariables [] _ _ = panic "matchVariables"
matchBangs :: [MatchId] -> Type -> [EquationInfo] -> DsM MatchResult
matchBangs (var:vars) ty eqns
= do { match_result <- match (var:vars) ty $
map (decomposeFirstPat getBangPat) eqns
; return (mkEvalMatchResult var ty match_result) }
matchBangs [] _ _ = panic "matchBangs"
matchCoercion :: [MatchId] -> Type -> [EquationInfo] -> DsM MatchResult
-- Apply the coercion to the match variable and then match that
matchCoercion (var:vars) ty (eqns@(eqn1:_))
= do { let CoPat _ co pat _ = firstPat eqn1
; let pat_ty' = hsPatType pat
; var' <- newUniqueId var pat_ty'
; match_result <- match (var':vars) ty $
map (decomposeFirstPat getCoPat) eqns
; core_wrap <- dsHsWrapper co
; let bind = NonRec var' (core_wrap (Var var))
; return (mkCoLetMatchResult bind match_result) }
matchCoercion _ _ _ = panic "matchCoercion"
matchView :: [MatchId] -> Type -> [EquationInfo] -> DsM MatchResult
-- Apply the view function to the match variable and then match that
matchView (var:vars) ty (eqns@(eqn1:_))
= do { -- we could pass in the expr from the PgView,
-- but this needs to extract the pat anyway
-- to figure out the type of the fresh variable
let ViewPat _ viewExpr (L _ pat) = firstPat eqn1
-- do the rest of the compilation
; let pat_ty' = hsPatType pat
; var' <- newUniqueId var pat_ty'
; match_result <- match (var':vars) ty $
map (decomposeFirstPat getViewPat) eqns
-- compile the view expressions
; viewExpr' <- dsLExpr viewExpr
; return (mkViewMatchResult var'
(mkCoreAppDs (text "matchView") viewExpr' (Var var))
match_result) }
matchView _ _ _ = panic "matchView"
matchOverloadedList :: [MatchId] -> Type -> [EquationInfo] -> DsM MatchResult
matchOverloadedList (var:vars) ty (eqns@(eqn1:_))
-- Since overloaded list patterns are treated as view patterns,
-- the code is roughly the same as for matchView
= do { let ListPat _ _ elt_ty (Just (_,e)) = firstPat eqn1
; var' <- newUniqueId var (mkListTy elt_ty) -- we construct the overall type by hand
; match_result <- match (var':vars) ty $
map (decomposeFirstPat getOLPat) eqns -- getOLPat builds the pattern inside as a non-overloaded version of the overloaded list pattern
; e' <- dsSyntaxExpr e [Var var]
; return (mkViewMatchResult var' e' match_result) }
matchOverloadedList _ _ _ = panic "matchOverloadedList"
-- decompose the first pattern and leave the rest alone
decomposeFirstPat :: (Pat GhcTc -> Pat GhcTc) -> EquationInfo -> EquationInfo
decomposeFirstPat extractpat (eqn@(EqnInfo { eqn_pats = pat : pats }))
= eqn { eqn_pats = extractpat pat : pats}
decomposeFirstPat _ _ = panic "decomposeFirstPat"
getCoPat, getBangPat, getViewPat, getOLPat :: Pat GhcTc -> Pat GhcTc
getCoPat (CoPat _ _ pat _) = pat
getCoPat _ = panic "getCoPat"
getBangPat (BangPat _ pat ) = unLoc pat
getBangPat _ = panic "getBangPat"
getViewPat (ViewPat _ _ pat) = unLoc pat
getViewPat _ = panic "getViewPat"
getOLPat (ListPat x pats ty (Just _)) = ListPat x pats ty Nothing
getOLPat _ = panic "getOLPat"
{-
Note [Empty case alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The list of EquationInfo can be empty, arising from
case x of {} or \case {}
In that situation we desugar to
case x of { _ -> error "pattern match failure" }
The *desugarer* isn't certain whether there really should be no
alternatives, so it adds a default case, as it always does. A later
pass may remove it if it's inaccessible. (See also Note [Empty case
alternatives] in CoreSyn.)
We do *not* desugar simply to
error "empty case"
or some such, because 'x' might be bound to (error "hello"), in which
case we want to see that "hello" exception, not (error "empty case").
See also Note [Case elimination: lifted case] in Simplify.
************************************************************************
* *
Tidying patterns
* *
************************************************************************
Tidy up the leftmost pattern in an @EquationInfo@, given the variable @v@
which will be scrutinised.
This makes desugaring the pattern match simpler by transforming some of
the patterns to simpler forms. (Tuples to Constructor Patterns)
Among other things in the resulting Pattern:
* Variables and irrefutable(lazy) patterns are replaced by Wildcards
* As patterns are replaced by the patterns they wrap.
The bindings created by the above patterns are put into the returned wrapper
instead.
This means a definition of the form:
f x = rhs
when called with v get's desugared to the equivalent of:
let x = v
in
f _ = rhs
The same principle holds for as patterns (@) and
irrefutable/lazy patterns (~).
In the case of irrefutable patterns the irrefutable pattern is pushed into
the binding.
Pattern Constructors which only represent syntactic sugar are converted into
their desugared representation.
This usually means converting them to Constructor patterns but for some
depends on enabled extensions. (Eg OverloadedLists)
GHC also tries to convert overloaded Literals into regular ones.
The result of this tidying is that the column of patterns will include
only these which can be assigned a PatternGroup (see patGroup).
-}
tidyEqnInfo :: Id -> EquationInfo
-> DsM (DsWrapper, EquationInfo)
-- DsM'd because of internal call to dsLHsBinds
-- and mkSelectorBinds.
-- "tidy1" does the interesting stuff, looking at
-- one pattern and fiddling the list of bindings.
--
-- POST CONDITION: head pattern in the EqnInfo is
-- one of these for which patGroup is defined.
tidyEqnInfo _ (EqnInfo { eqn_pats = [] })
= panic "tidyEqnInfo"
tidyEqnInfo v eqn@(EqnInfo { eqn_pats = pat : pats })
= do { (wrap, pat') <- tidy1 v pat
; return (wrap, eqn { eqn_pats = do pat' : pats }) }
tidy1 :: Id -- The Id being scrutinised
-> Pat GhcTc -- The pattern against which it is to be matched
-> DsM (DsWrapper, -- Extra bindings to do before the match
Pat GhcTc) -- Equivalent pattern
-------------------------------------------------------
-- (pat', mr') = tidy1 v pat mr
-- tidies the *outer level only* of pat, giving pat'
-- It eliminates many pattern forms (as-patterns, variable patterns,
-- list patterns, etc) and returns any created bindings in the wrapper.
tidy1 v (ParPat _ pat) = tidy1 v (unLoc pat)
tidy1 v (SigPat _ pat) = tidy1 v (unLoc pat)
tidy1 _ (WildPat ty) = return (idDsWrapper, WildPat ty)
tidy1 v (BangPat _ (L l p)) = tidy_bang_pat v l p
-- case v of { x -> mr[] }
-- = case v of { _ -> let x=v in mr[] }
tidy1 v (VarPat _ (L _ var))
= return (wrapBind var v, WildPat (idType var))
-- case v of { x@p -> mr[] }
-- = case v of { p -> let x=v in mr[] }
tidy1 v (AsPat _ (L _ var) pat)
= do { (wrap, pat') <- tidy1 v (unLoc pat)
; return (wrapBind var v . wrap, pat') }
{- now, here we handle lazy patterns:
tidy1 v ~p bs = (v, v1 = case v of p -> v1 :
v2 = case v of p -> v2 : ... : bs )
where the v_i's are the binders in the pattern.
ToDo: in "v_i = ... -> v_i", are the v_i's really the same thing?
The case expr for v_i is just: match [v] [(p, [], \ x -> Var v_i)] any_expr
-}
tidy1 v (LazyPat _ pat)
-- This is a convenient place to check for unlifted types under a lazy pattern.
-- Doing this check during type-checking is unsatisfactory because we may
-- not fully know the zonked types yet. We sure do here.
= do { let unlifted_bndrs = filter (isUnliftedType . idType) (collectPatBinders pat)
; unless (null unlifted_bndrs) $
putSrcSpanDs (getLoc pat) $
errDs (hang (text "A lazy (~) pattern cannot bind variables of unlifted type." $$
text "Unlifted variables:")
2 (vcat (map (\id -> ppr id <+> dcolon <+> ppr (idType id))
unlifted_bndrs)))
; (_,sel_prs) <- mkSelectorBinds [] pat (Var v)
; let sel_binds = [NonRec b rhs | (b,rhs) <- sel_prs]
; return (mkCoreLets sel_binds, WildPat (idType v)) }
tidy1 _ (ListPat _ pats ty Nothing)
= return (idDsWrapper, unLoc list_ConPat)
where
list_ConPat = foldr (\ x y -> mkPrefixConPat consDataCon [x, y] [ty])
(mkNilPat ty)
pats
-- Introduce fake parallel array constructors to be able to handle parallel
-- arrays with the existing machinery for constructor pattern
tidy1 _ (PArrPat ty pats)
= return (idDsWrapper, unLoc parrConPat)
where
arity = length pats
parrConPat = mkPrefixConPat (parrFakeCon arity) pats [ty]
tidy1 _ (TuplePat tys pats boxity)
= return (idDsWrapper, unLoc tuple_ConPat)
where
arity = length pats
tuple_ConPat = mkPrefixConPat (tupleDataCon boxity arity) pats tys
tidy1 _ (SumPat tys pat alt arity)
= return (idDsWrapper, unLoc sum_ConPat)
where
sum_ConPat = mkPrefixConPat (sumDataCon alt arity) [pat] tys
-- LitPats: we *might* be able to replace these w/ a simpler form
tidy1 _ (LitPat _ lit)
= return (idDsWrapper, tidyLitPat lit)
-- NPats: we *might* be able to replace these w/ a simpler form
tidy1 _ (NPat ty (L _ lit) mb_neg eq)
= return (idDsWrapper, tidyNPat tidyLitPat lit mb_neg eq ty)
-- Everything else goes through unchanged...
tidy1 _ non_interesting_pat
= return (idDsWrapper, non_interesting_pat)
--------------------
tidy_bang_pat :: Id -> SrcSpan -> Pat GhcTc -> DsM (DsWrapper, Pat GhcTc)
-- Discard par/sig under a bang
tidy_bang_pat v _ (ParPat _ (L l p)) = tidy_bang_pat v l p
tidy_bang_pat v _ (SigPat _ (L l p)) = tidy_bang_pat v l p
-- Push the bang-pattern inwards, in the hope that
-- it may disappear next time
tidy_bang_pat v l (AsPat x v' p) = tidy1 v (AsPat x v' (L l (BangPat noExt p)))
tidy_bang_pat v l (CoPat x w p t)
= tidy1 v (CoPat x w (BangPat noExt (L l p)) t)
-- Discard bang around strict pattern
tidy_bang_pat v _ p@(LitPat {}) = tidy1 v p
tidy_bang_pat v _ p@(ListPat {}) = tidy1 v p
tidy_bang_pat v _ p@(TuplePat {}) = tidy1 v p
tidy_bang_pat v _ p@(SumPat {}) = tidy1 v p
tidy_bang_pat v _ p@(PArrPat {}) = tidy1 v p
-- Data/newtype constructors
tidy_bang_pat v l p@(ConPatOut { pat_con = L _ (RealDataCon dc)
, pat_args = args
, pat_arg_tys = arg_tys })
-- Newtypes: push bang inwards (Trac #9844)
=
if isNewTyCon (dataConTyCon dc)
then tidy1 v (p { pat_args = push_bang_into_newtype_arg l ty args })
else tidy1 v p -- Data types: discard the bang
where
(ty:_) = dataConInstArgTys dc arg_tys
-------------------
-- Default case, leave the bang there:
-- VarPat,
-- LazyPat,
-- WildPat,
-- ViewPat,
-- pattern synonyms (ConPatOut with PatSynCon)
-- NPat,
-- NPlusKPat
--
-- For LazyPat, remember that it's semantically like a VarPat
-- i.e. !(~p) is not like ~p, or p! (Trac #8952)
--
-- NB: SigPatIn, ConPatIn should not happen
tidy_bang_pat _ l p = return (idDsWrapper, BangPat noExt (L l p))
-------------------
push_bang_into_newtype_arg :: SrcSpan
-> Type -- The type of the argument we are pushing
-- onto
-> HsConPatDetails GhcTc -> HsConPatDetails GhcTc
-- See Note [Bang patterns and newtypes]
-- We are transforming !(N p) into (N !p)
push_bang_into_newtype_arg l _ty (PrefixCon (arg:args))
= ASSERT( null args)
PrefixCon [L l (BangPat noExt arg)]
push_bang_into_newtype_arg l _ty (RecCon rf)
| HsRecFields { rec_flds = L lf fld : flds } <- rf
, HsRecField { hsRecFieldArg = arg } <- fld
= ASSERT( null flds)
RecCon (rf { rec_flds = [L lf (fld { hsRecFieldArg
= L l (BangPat noExt arg) })] })
push_bang_into_newtype_arg l ty (RecCon rf) -- If a user writes !(T {})
| HsRecFields { rec_flds = [] } <- rf
= PrefixCon [L l (BangPat noExt (noLoc (WildPat ty)))]
push_bang_into_newtype_arg _ _ cd
= pprPanic "push_bang_into_newtype_arg" (pprConArgs cd)
{-
Note [Bang patterns and newtypes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For the pattern !(Just pat) we can discard the bang, because
the pattern is strict anyway. But for !(N pat), where
newtype NT = N Int
we definitely can't discard the bang. Trac #9844.
So what we do is to push the bang inwards, in the hope that it will
get discarded there. So we transform
!(N pat) into (N !pat)
But what if there is nothing to push the bang onto? In at least one instance
a user has written !(N {}) which we translate into (N !_). See #13215
\noindent
{\bf Previous @matchTwiddled@ stuff:}
Now we get to the only interesting part; note: there are choices for
translation [from Simon's notes]; translation~1:
\begin{verbatim}
deTwiddle [s,t] e
\end{verbatim}
returns
\begin{verbatim}
[ w = e,
s = case w of [s,t] -> s
t = case w of [s,t] -> t
]
\end{verbatim}
Here \tr{w} is a fresh variable, and the \tr{w}-binding prevents multiple
evaluation of \tr{e}. An alternative translation (No.~2):
\begin{verbatim}
[ w = case e of [s,t] -> (s,t)
s = case w of (s,t) -> s
t = case w of (s,t) -> t
]
\end{verbatim}
************************************************************************
* *
\subsubsection[improved-unmixing]{UNIMPLEMENTED idea for improved unmixing}
* *
************************************************************************
We might be able to optimise unmixing when confronted by
only-one-constructor-possible, of which tuples are the most notable
examples. Consider:
\begin{verbatim}
f (a,b,c) ... = ...
f d ... (e:f) = ...
f (g,h,i) ... = ...
f j ... = ...
\end{verbatim}
This definition would normally be unmixed into four equation blocks,
one per equation. But it could be unmixed into just one equation
block, because if the one equation matches (on the first column),
the others certainly will.
You have to be careful, though; the example
\begin{verbatim}
f j ... = ...
-------------------
f (a,b,c) ... = ...
f d ... (e:f) = ...
f (g,h,i) ... = ...
\end{verbatim}
{\em must} be broken into two blocks at the line shown; otherwise, you
are forcing unnecessary evaluation. In any case, the top-left pattern
always gives the cue. You could then unmix blocks into groups of...
\begin{description}
\item[all variables:]
As it is now.
\item[constructors or variables (mixed):]
Need to make sure the right names get bound for the variable patterns.
\item[literals or variables (mixed):]
Presumably just a variant on the constructor case (as it is now).
\end{description}
************************************************************************
* *
* matchWrapper: a convenient way to call @match@ *
* *
************************************************************************
\subsection[matchWrapper]{@matchWrapper@: a convenient interface to @match@}
Calls to @match@ often involve similar (non-trivial) work; that work
is collected here, in @matchWrapper@. This function takes as
arguments:
\begin{itemize}
\item
Typechecked @Matches@ (of a function definition, or a case or lambda
expression)---the main input;
\item
An error message to be inserted into any (runtime) pattern-matching
failure messages.
\end{itemize}
As results, @matchWrapper@ produces:
\begin{itemize}
\item
A list of variables (@Locals@) that the caller must ``promise'' to
bind to appropriate values; and
\item
a @CoreExpr@, the desugared output (main result).
\end{itemize}
The main actions of @matchWrapper@ include:
\begin{enumerate}
\item
Flatten the @[TypecheckedMatch]@ into a suitable list of
@EquationInfo@s.
\item
Create as many new variables as there are patterns in a pattern-list
(in any one of the @EquationInfo@s).
\item
Create a suitable ``if it fails'' expression---a call to @error@ using
the error-string input; the {\em type} of this fail value can be found
by examining one of the RHS expressions in one of the @EquationInfo@s.
\item
Call @match@ with all of this information!
\end{enumerate}
-}
matchWrapper :: HsMatchContext Name -- For shadowing warning messages
-> Maybe (LHsExpr GhcTc) -- The scrutinee, if we check a case expr
-> MatchGroup GhcTc (LHsExpr GhcTc) -- Matches being desugared
-> DsM ([Id], CoreExpr) -- Results
{-
There is one small problem with the Lambda Patterns, when somebody
writes something similar to:
\begin{verbatim}
(\ (x:xs) -> ...)
\end{verbatim}
he/she don't want a warning about incomplete patterns, that is done with
the flag @opt_WarnSimplePatterns@.
This problem also appears in the:
\begin{itemize}
\item @do@ patterns, but if the @do@ can fail
it creates another equation if the match can fail
(see @DsExpr.doDo@ function)
\item @let@ patterns, are treated by @matchSimply@
List Comprension Patterns, are treated by @matchSimply@ also
\end{itemize}
We can't call @matchSimply@ with Lambda patterns,
due to the fact that lambda patterns can have more than
one pattern, and match simply only accepts one pattern.
JJQC 30-Nov-1997
-}
matchWrapper ctxt mb_scr (MG { mg_alts = L _ matches
, mg_arg_tys = arg_tys
, mg_res_ty = rhs_ty
, mg_origin = origin })
= do { dflags <- getDynFlags
; locn <- getSrcSpanDs
; new_vars <- case matches of
[] -> mapM newSysLocalDsNoLP arg_tys
(m:_) -> selectMatchVars (map unLoc (hsLMatchPats m))
; eqns_info <- mapM (mk_eqn_info new_vars) matches
-- pattern match check warnings
; unless (isGenerated origin) $
when (isAnyPmCheckEnabled dflags (DsMatchContext ctxt locn)) $
addTmCsDs (genCaseTmCs1 mb_scr new_vars) $
-- See Note [Type and Term Equality Propagation]
checkMatches dflags (DsMatchContext ctxt locn) new_vars matches
; result_expr <- handleWarnings $
matchEquations ctxt new_vars eqns_info rhs_ty
; return (new_vars, result_expr) }
where
mk_eqn_info vars (L _ (Match { m_pats = pats, m_grhss = grhss }))
= do { dflags <- getDynFlags
; let upats = map (unLoc . decideBangHood dflags) pats
dicts = toTcTypeBag (collectEvVarsPats upats) -- Only TcTyVars
; tm_cs <- genCaseTmCs2 mb_scr upats vars
; match_result <- addDictsDs dicts $ -- See Note [Type and Term Equality Propagation]
addTmCsDs tm_cs $ -- See Note [Type and Term Equality Propagation]
dsGRHSs ctxt grhss rhs_ty
; return (EqnInfo { eqn_pats = upats, eqn_rhs = match_result}) }
handleWarnings = if isGenerated origin
then discardWarningsDs
else id
matchEquations :: HsMatchContext Name
-> [MatchId] -> [EquationInfo] -> Type
-> DsM CoreExpr
matchEquations ctxt vars eqns_info rhs_ty
= do { let error_doc = matchContextErrString ctxt
; match_result <- match vars rhs_ty eqns_info
; fail_expr <- mkErrorAppDs pAT_ERROR_ID rhs_ty error_doc
; extractMatchResult match_result fail_expr }
{-
************************************************************************
* *
\subsection[matchSimply]{@matchSimply@: match a single expression against a single pattern}
* *
************************************************************************
@mkSimpleMatch@ is a wrapper for @match@ which deals with the
situation where we want to match a single expression against a single
pattern. It returns an expression.
-}
matchSimply :: CoreExpr -- Scrutinee
-> HsMatchContext Name -- Match kind
-> LPat GhcTc -- Pattern it should match
-> CoreExpr -- Return this if it matches
-> CoreExpr -- Return this if it doesn't
-> DsM CoreExpr
-- Do not warn about incomplete patterns; see matchSinglePat comments
matchSimply scrut hs_ctx pat result_expr fail_expr = do
let
match_result = cantFailMatchResult result_expr
rhs_ty = exprType fail_expr
-- Use exprType of fail_expr, because won't refine in the case of failure!
match_result' <- matchSinglePat scrut hs_ctx pat rhs_ty match_result
extractMatchResult match_result' fail_expr
matchSinglePat :: CoreExpr -> HsMatchContext Name -> LPat GhcTc
-> Type -> MatchResult -> DsM MatchResult
-- matchSinglePat ensures that the scrutinee is a variable
-- and then calls match_single_pat_var
--
-- matchSinglePat does not warn about incomplete patterns
-- Used for things like [ e | pat <- stuff ], where
-- incomplete patterns are just fine
matchSinglePat (Var var) ctx pat ty match_result
| not (isExternalName (idName var))
= match_single_pat_var var ctx pat ty match_result
matchSinglePat scrut hs_ctx pat ty match_result
= do { var <- selectSimpleMatchVarL pat
; match_result' <- match_single_pat_var var hs_ctx pat ty match_result
; return (adjustMatchResult (bindNonRec var scrut) match_result') }
match_single_pat_var :: Id -- See Note [Match Ids]
-> HsMatchContext Name -> LPat GhcTc
-> Type -> MatchResult -> DsM MatchResult
match_single_pat_var var ctx pat ty match_result
= ASSERT2( isInternalName (idName var), ppr var )
do { dflags <- getDynFlags
; locn <- getSrcSpanDs
-- Pattern match check warnings
; checkSingle dflags (DsMatchContext ctx locn) var (unLoc pat)
; let eqn_info = EqnInfo { eqn_pats = [unLoc (decideBangHood dflags pat)]
, eqn_rhs = match_result }
; match [var] ty [eqn_info] }
{-
************************************************************************
* *
Pattern classification
* *
************************************************************************
-}
data PatGroup
= PgAny -- Immediate match: variables, wildcards,
-- lazy patterns
| PgCon DataCon -- Constructor patterns (incl list, tuple)
| PgSyn PatSyn [Type] -- See Note [Pattern synonym groups]
| PgLit Literal -- Literal patterns
| PgN Rational -- Overloaded numeric literals;
-- see Note [Don't use Literal for PgN]
| PgOverS FastString -- Overloaded string literals
| PgNpK Integer -- n+k patterns
| PgBang -- Bang patterns
| PgCo Type -- Coercion patterns; the type is the type
-- of the pattern *inside*
| PgView (LHsExpr GhcTc) -- view pattern (e -> p):
-- the LHsExpr is the expression e
Type -- the Type is the type of p (equivalently, the result type of e)
| PgOverloadedList
{- Note [Don't use Literal for PgN]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Previously we had, as PatGroup constructors
| ...
| PgN Literal -- Overloaded literals
| PgNpK Literal -- n+k patterns
| ...
But Literal is really supposed to represent an *unboxed* literal, like Int#.
We were sticking the literal from, say, an overloaded numeric literal pattern
into a MachInt constructor. This didn't really make sense; and we now have
the invariant that value in a MachInt must be in the range of the target
machine's Int# type, and an overloaded literal could meaningfully be larger.
Solution: For pattern grouping purposes, just store the literal directly in
the PgN constructor as a Rational if numeric, and add a PgOverStr constructor
for overloaded strings.
-}
groupEquations :: DynFlags -> [EquationInfo] -> [[(PatGroup, EquationInfo)]]
-- If the result is of form [g1, g2, g3],
-- (a) all the (pg,eq) pairs in g1 have the same pg
-- (b) none of the gi are empty
-- The ordering of equations is unchanged
groupEquations dflags eqns
= groupBy same_gp [(patGroup dflags (firstPat eqn), eqn) | eqn <- eqns]
where
same_gp :: (PatGroup,EquationInfo) -> (PatGroup,EquationInfo) -> Bool
(pg1,_) `same_gp` (pg2,_) = pg1 `sameGroup` pg2
subGroup :: (m -> [[EquationInfo]]) -- Map.elems
-> m -- Map.empty
-> (a -> m -> Maybe [EquationInfo]) -- Map.lookup
-> (a -> [EquationInfo] -> m -> m) -- Map.insert
-> [(a, EquationInfo)] -> [[EquationInfo]]
-- Input is a particular group. The result sub-groups the
-- equations by with particular constructor, literal etc they match.
-- Each sub-list in the result has the same PatGroup
-- See Note [Take care with pattern order]
-- Parameterized by map operations to allow different implementations
-- and constraints, eg. types without Ord instance.
subGroup elems empty lookup insert group
= map reverse $ elems $ foldl accumulate empty group
where
accumulate pg_map (pg, eqn)
= case lookup pg pg_map of
Just eqns -> insert pg (eqn:eqns) pg_map
Nothing -> insert pg [eqn] pg_map
-- pg_map :: Map a [EquationInfo]
-- Equations seen so far in reverse order of appearance
subGroupOrd :: Ord a => [(a, EquationInfo)] -> [[EquationInfo]]
subGroupOrd = subGroup Map.elems Map.empty Map.lookup Map.insert
subGroupUniq :: Uniquable a => [(a, EquationInfo)] -> [[EquationInfo]]
subGroupUniq =
subGroup eltsUDFM emptyUDFM (flip lookupUDFM) (\k v m -> addToUDFM m k v)
{- Note [Pattern synonym groups]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we see
f (P a) = e1
f (P b) = e2
...
where P is a pattern synonym, can we put (P a -> e1) and (P b -> e2) in the
same group? We can if P is a constructor, but /not/ if P is a pattern synonym.
Consider (Trac #11224)
-- readMaybe :: Read a => String -> Maybe a
pattern PRead :: Read a => () => a -> String
pattern PRead a <- (readMaybe -> Just a)
f (PRead (x::Int)) = e1
f (PRead (y::Bool)) = e2
This is all fine: we match the string by trying to read an Int; if that
fails we try to read a Bool. But clearly we can't combine the two into a single
match.
Conclusion: we can combine when we invoke PRead /at the same type/. Hence
in PgSyn we record the instantiaing types, and use them in sameGroup.
Note [Take care with pattern order]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the subGroup function we must be very careful about pattern re-ordering,
Consider the patterns [ (True, Nothing), (False, x), (True, y) ]
Then in bringing together the patterns for True, we must not
swap the Nothing and y!
-}
sameGroup :: PatGroup -> PatGroup -> Bool
-- Same group means that a single case expression
-- or test will suffice to match both, *and* the order
-- of testing within the group is insignificant.
sameGroup PgAny PgAny = True
sameGroup PgBang PgBang = True
sameGroup (PgCon _) (PgCon _) = True -- One case expression
sameGroup (PgSyn p1 t1) (PgSyn p2 t2) = p1==p2 && eqTypes t1 t2
-- eqTypes: See Note [Pattern synonym groups]
sameGroup (PgLit _) (PgLit _) = True -- One case expression
sameGroup (PgN l1) (PgN l2) = l1==l2 -- Order is significant
sameGroup (PgOverS s1) (PgOverS s2) = s1==s2
sameGroup (PgNpK l1) (PgNpK l2) = l1==l2 -- See Note [Grouping overloaded literal patterns]
sameGroup (PgCo t1) (PgCo t2) = t1 `eqType` t2
-- CoPats are in the same goup only if the type of the
-- enclosed pattern is the same. The patterns outside the CoPat
-- always have the same type, so this boils down to saying that
-- the two coercions are identical.
sameGroup (PgView e1 t1) (PgView e2 t2) = viewLExprEq (e1,t1) (e2,t2)
-- ViewPats are in the same group iff the expressions
-- are "equal"---conservatively, we use syntactic equality
sameGroup _ _ = False
-- An approximation of syntactic equality used for determining when view
-- exprs are in the same group.
-- This function can always safely return false;
-- but doing so will result in the application of the view function being repeated.
--
-- Currently: compare applications of literals and variables
-- and anything else that we can do without involving other
-- HsSyn types in the recursion
--
-- NB we can't assume that the two view expressions have the same type. Consider
-- f (e1 -> True) = ...
-- f (e2 -> "hi") = ...
viewLExprEq :: (LHsExpr GhcTc,Type) -> (LHsExpr GhcTc,Type) -> Bool
viewLExprEq (e1,_) (e2,_) = lexp e1 e2
where
lexp :: LHsExpr GhcTc -> LHsExpr GhcTc -> Bool
lexp e e' = exp (unLoc e) (unLoc e')
---------
exp :: HsExpr GhcTc -> HsExpr GhcTc -> Bool
-- real comparison is on HsExpr's
-- strip parens
exp (HsPar (L _ e)) e' = exp e e'
exp e (HsPar (L _ e')) = exp e e'
-- because the expressions do not necessarily have the same type,
-- we have to compare the wrappers
exp (HsWrap h e) (HsWrap h' e') = wrap h h' && exp e e'
exp (HsVar i) (HsVar i') = i == i'
exp (HsConLikeOut c) (HsConLikeOut c') = c == c'
-- the instance for IPName derives using the id, so this works if the
-- above does
exp (HsIPVar i) (HsIPVar i') = i == i'
exp (HsOverLabel l x) (HsOverLabel l' x') = l == l' && x == x'
exp (HsOverLit l) (HsOverLit l') =
-- Overloaded lits are equal if they have the same type
-- and the data is the same.
-- this is coarser than comparing the SyntaxExpr's in l and l',
-- which resolve the overloading (e.g., fromInteger 1),
-- because these expressions get written as a bunch of different variables
-- (presumably to improve sharing)
eqType (overLitType l) (overLitType l') && l == l'
exp (HsApp e1 e2) (HsApp e1' e2') = lexp e1 e1' && lexp e2 e2'
-- the fixities have been straightened out by now, so it's safe
-- to ignore them?
exp (OpApp l o _ ri) (OpApp l' o' _ ri') =
lexp l l' && lexp o o' && lexp ri ri'
exp (NegApp e n) (NegApp e' n') = lexp e e' && syn_exp n n'
exp (SectionL e1 e2) (SectionL e1' e2') =
lexp e1 e1' && lexp e2 e2'
exp (SectionR e1 e2) (SectionR e1' e2') =
lexp e1 e1' && lexp e2 e2'
exp (ExplicitTuple es1 _) (ExplicitTuple es2 _) =
eq_list tup_arg es1 es2
exp (ExplicitSum _ _ e _) (ExplicitSum _ _ e' _) = lexp e e'
exp (HsIf _ e e1 e2) (HsIf _ e' e1' e2') =
lexp e e' && lexp e1 e1' && lexp e2 e2'
-- Enhancement: could implement equality for more expressions
-- if it seems useful
-- But no need for HsLit, ExplicitList, ExplicitTuple,
-- because they cannot be functions
exp _ _ = False
---------
syn_exp :: SyntaxExpr GhcTc -> SyntaxExpr GhcTc -> Bool
syn_exp (SyntaxExpr { syn_expr = expr1
, syn_arg_wraps = arg_wraps1
, syn_res_wrap = res_wrap1 })
(SyntaxExpr { syn_expr = expr2
, syn_arg_wraps = arg_wraps2
, syn_res_wrap = res_wrap2 })
= exp expr1 expr2 &&
and (zipWithEqual "viewLExprEq" wrap arg_wraps1 arg_wraps2) &&
wrap res_wrap1 res_wrap2
---------
tup_arg (L _ (Present e1)) (L _ (Present e2)) = lexp e1 e2
tup_arg (L _ (Missing t1)) (L _ (Missing t2)) = eqType t1 t2
tup_arg _ _ = False
---------
wrap :: HsWrapper -> HsWrapper -> Bool
-- Conservative, in that it demands that wrappers be
-- syntactically identical and doesn't look under binders
--
-- Coarser notions of equality are possible
-- (e.g., reassociating compositions,
-- equating different ways of writing a coercion)
wrap WpHole WpHole = True
wrap (WpCompose w1 w2) (WpCompose w1' w2') = wrap w1 w1' && wrap w2 w2'
wrap (WpFun w1 w2 _ _) (WpFun w1' w2' _ _) = wrap w1 w1' && wrap w2 w2'
wrap (WpCast co) (WpCast co') = co `eqCoercion` co'
wrap (WpEvApp et1) (WpEvApp et2) = et1 `ev_term` et2
wrap (WpTyApp t) (WpTyApp t') = eqType t t'
-- Enhancement: could implement equality for more wrappers
-- if it seems useful (lams and lets)
wrap _ _ = False
---------
ev_term :: EvTerm -> EvTerm -> Bool
ev_term (EvId a) (EvId b) = a==b
ev_term (EvCoercion a) (EvCoercion b) = a `eqCoercion` b
ev_term _ _ = False
---------
eq_list :: (a->a->Bool) -> [a] -> [a] -> Bool
eq_list _ [] [] = True
eq_list _ [] (_:_) = False
eq_list _ (_:_) [] = False
eq_list eq (x:xs) (y:ys) = eq x y && eq_list eq xs ys
patGroup :: DynFlags -> Pat GhcTc -> PatGroup
patGroup _ (ConPatOut { pat_con = L _ con
, pat_arg_tys = tys })
| RealDataCon dcon <- con = PgCon dcon
| PatSynCon psyn <- con = PgSyn psyn tys
patGroup _ (WildPat {}) = PgAny
patGroup _ (BangPat {}) = PgBang
patGroup _ (NPat _ (L _ OverLit {ol_val=oval}) mb_neg _) =
case (oval, isJust mb_neg) of
(HsIntegral i, False) -> PgN (fromInteger (il_value i))
(HsIntegral i, True ) -> PgN (-fromInteger (il_value i))
(HsFractional r, False) -> PgN (fl_value r)
(HsFractional r, True ) -> PgN (-fl_value r)
(HsIsString _ s, _) -> ASSERT(isNothing mb_neg)
PgOverS s
patGroup _ (NPlusKPat _ _ (L _ OverLit {ol_val=oval}) _ _ _) =
case oval of
HsIntegral i -> PgNpK (il_value i)
_ -> pprPanic "patGroup NPlusKPat" (ppr oval)
patGroup _ (CoPat _ _ p _) = PgCo (hsPatType p)
-- Type of innelexp pattern
patGroup _ (ViewPat _ expr p) = PgView expr (hsPatType (unLoc p))
patGroup _ (ListPat _ _ _ (Just _)) = PgOverloadedList
patGroup dflags (LitPat _ lit) = PgLit (hsLitKey dflags lit)
patGroup _ pat = pprPanic "patGroup" (ppr pat)
{-
Note [Grouping overloaded literal patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
WATCH OUT! Consider
f (n+1) = ...
f (n+2) = ...
f (n+1) = ...
We can't group the first and third together, because the second may match
the same thing as the first. Same goes for *overloaded* literal patterns
f 1 True = ...
f 2 False = ...
f 1 False = ...
If the first arg matches '1' but the second does not match 'True', we
cannot jump to the third equation! Because the same argument might
match '2'!
Hence we don't regard 1 and 2, or (n+1) and (n+2), as part of the same group.
-}
|