summaryrefslogtreecommitdiff
path: root/compiler/deSugar/Match.lhs
blob: d6769118c608fc15fe131168a24189172dcbcd7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%

The @match@ function

\begin{code}
{-# OPTIONS -fno-warn-incomplete-patterns #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
-- for details

module Match ( match, matchEquations, matchWrapper, matchSimply, matchSinglePat ) where

#include "HsVersions.h"

import {-#SOURCE#-} DsExpr (dsLExpr)

import DynFlags
import HsSyn		
import TcHsSyn
import Check
import CoreSyn
import Literal
import CoreUtils
import MkCore
import DsMonad
import DsBinds
import DsGRHSs
import DsUtils
import Id
import DataCon
import MatchCon
import MatchLit
import PrelInfo
import Type
import TysWiredIn
import ListSetOps
import SrcLoc
import Maybes
import Util
import Name
import FiniteMap
import Outputable
import FastString
\end{code}

This function is a wrapper of @match@, it must be called from all the parts where 
it was called match, but only substitutes the firs call, ....
if the associated flags are declared, warnings will be issued.
It can not be called matchWrapper because this name already exists :-(

JJCQ 30-Nov-1997

\begin{code}
matchCheck ::  DsMatchContext
	    -> [Id]	        -- Vars rep'ing the exprs we're matching with
            -> Type             -- Type of the case expression
            -> [EquationInfo]   -- Info about patterns, etc. (type synonym below)
            -> DsM MatchResult  -- Desugared result!

matchCheck ctx vars ty qs = do
    dflags <- getDOptsDs
    matchCheck_really dflags ctx vars ty qs

matchCheck_really :: DynFlags
                  -> DsMatchContext
                  -> [Id]
                  -> Type
                  -> [EquationInfo]
                  -> DsM MatchResult
matchCheck_really dflags ctx vars ty qs
  | incomplete && shadow  = do
      dsShadowWarn ctx eqns_shadow
      dsIncompleteWarn ctx pats
      match vars ty qs
  | incomplete            = do
      dsIncompleteWarn ctx pats
      match vars ty qs
  | shadow                = do
      dsShadowWarn ctx eqns_shadow
      match vars ty qs
  | otherwise             =
      match vars ty qs
  where (pats, eqns_shadow) = check qs
        incomplete    = want_incomplete && (notNull pats)
        want_incomplete = case ctx of
                              DsMatchContext RecUpd _ ->
                                  dopt Opt_WarnIncompletePatternsRecUpd dflags
                              _ ->
                                  dopt Opt_WarnIncompletePatterns       dflags
        shadow        = dopt Opt_WarnOverlappingPatterns dflags
			&& not (null eqns_shadow)
\end{code}

This variable shows the maximum number of lines of output generated for warnings.
It will limit the number of patterns/equations displayed to@ maximum_output@.

(ToDo: add command-line option?)

\begin{code}
maximum_output :: Int
maximum_output = 4
\end{code}

The next two functions create the warning message.

\begin{code}
dsShadowWarn :: DsMatchContext -> [EquationInfo] -> DsM ()
dsShadowWarn ctx@(DsMatchContext kind loc) qs
  = putSrcSpanDs loc (warnDs warn)
  where
    warn | qs `lengthExceeds` maximum_output
         = pp_context ctx (ptext (sLit "are overlapped"))
		      (\ f -> vcat (map (ppr_eqn f kind) (take maximum_output qs)) $$
		      ptext (sLit "..."))
	 | otherwise
         = pp_context ctx (ptext (sLit "are overlapped"))
	              (\ f -> vcat $ map (ppr_eqn f kind) qs)


dsIncompleteWarn :: DsMatchContext -> [ExhaustivePat] -> DsM ()
dsIncompleteWarn ctx@(DsMatchContext kind loc) pats 
  = putSrcSpanDs loc (warnDs warn)
	where
	  warn = pp_context ctx (ptext (sLit "are non-exhaustive"))
                            (\_ -> hang (ptext (sLit "Patterns not matched:"))
		                   4 ((vcat $ map (ppr_incomplete_pats kind)
						  (take maximum_output pats))
		                      $$ dots))

	  dots | pats `lengthExceeds` maximum_output = ptext (sLit "...")
	       | otherwise                           = empty

pp_context :: DsMatchContext -> SDoc -> ((SDoc -> SDoc) -> SDoc) -> SDoc
pp_context (DsMatchContext kind _loc) msg rest_of_msg_fun
  = vcat [ptext (sLit "Pattern match(es)") <+> msg,
	  sep [ptext (sLit "In") <+> ppr_match <> char ':', nest 4 (rest_of_msg_fun pref)]]
  where
    (ppr_match, pref)
	= case kind of
	     FunRhs fun _ -> (pprMatchContext kind, \ pp -> ppr fun <+> pp)
             _            -> (pprMatchContext kind, \ pp -> pp)

ppr_pats :: Outputable a => [a] -> SDoc
ppr_pats pats = sep (map ppr pats)

ppr_shadow_pats :: HsMatchContext Name -> [Pat Id] -> SDoc
ppr_shadow_pats kind pats
  = sep [ppr_pats pats, matchSeparator kind, ptext (sLit "...")]

ppr_incomplete_pats :: HsMatchContext Name -> ExhaustivePat -> SDoc
ppr_incomplete_pats _ (pats,[]) = ppr_pats pats
ppr_incomplete_pats _ (pats,constraints) =
	                 sep [ppr_pats pats, ptext (sLit "with"), 
	                      sep (map ppr_constraint constraints)]

ppr_constraint :: (Name,[HsLit]) -> SDoc
ppr_constraint (var,pats) = sep [ppr var, ptext (sLit "`notElem`"), ppr pats]

ppr_eqn :: (SDoc -> SDoc) -> HsMatchContext Name -> EquationInfo -> SDoc
ppr_eqn prefixF kind eqn = prefixF (ppr_shadow_pats kind (eqn_pats eqn))
\end{code}


%************************************************************************
%*									*
		The main matching function
%*									*
%************************************************************************

The function @match@ is basically the same as in the Wadler chapter,
except it is monadised, to carry around the name supply, info about
annotations, etc.

Notes on @match@'s arguments, assuming $m$ equations and $n$ patterns:
\begin{enumerate}
\item
A list of $n$ variable names, those variables presumably bound to the
$n$ expressions being matched against the $n$ patterns.  Using the
list of $n$ expressions as the first argument showed no benefit and
some inelegance.

\item
The second argument, a list giving the ``equation info'' for each of
the $m$ equations:
\begin{itemize}
\item
the $n$ patterns for that equation, and
\item
a list of Core bindings [@(Id, CoreExpr)@ pairs] to be ``stuck on
the front'' of the matching code, as in:
\begin{verbatim}
let <binds>
in  <matching-code>
\end{verbatim}
\item
and finally: (ToDo: fill in)

The right way to think about the ``after-match function'' is that it
is an embryonic @CoreExpr@ with a ``hole'' at the end for the
final ``else expression''.
\end{itemize}

There is a type synonym, @EquationInfo@, defined in module @DsUtils@.

An experiment with re-ordering this information about equations (in
particular, having the patterns available in column-major order)
showed no benefit.

\item
A default expression---what to evaluate if the overall pattern-match
fails.  This expression will (almost?) always be
a measly expression @Var@, unless we know it will only be used once
(as we do in @glue_success_exprs@).

Leaving out this third argument to @match@ (and slamming in lots of
@Var "fail"@s) is a positively {\em bad} idea, because it makes it
impossible to share the default expressions.  (Also, it stands no
chance of working in our post-upheaval world of @Locals@.)
\end{enumerate}

Note: @match@ is often called via @matchWrapper@ (end of this module),
a function that does much of the house-keeping that goes with a call
to @match@.

It is also worth mentioning the {\em typical} way a block of equations
is desugared with @match@.  At each stage, it is the first column of
patterns that is examined.  The steps carried out are roughly:
\begin{enumerate}
\item
Tidy the patterns in column~1 with @tidyEqnInfo@ (this may add
bindings to the second component of the equation-info):
\begin{itemize}
\item
Remove the `as' patterns from column~1.
\item
Make all constructor patterns in column~1 into @ConPats@, notably
@ListPats@ and @TuplePats@.
\item
Handle any irrefutable (or ``twiddle'') @LazyPats@.
\end{itemize}
\item
Now {\em unmix} the equations into {\em blocks} [w\/ local function
@unmix_eqns@], in which the equations in a block all have variable
patterns in column~1, or they all have constructor patterns in ...
(see ``the mixture rule'' in SLPJ).
\item
Call @matchEqnBlock@ on each block of equations; it will do the
appropriate thing for each kind of column-1 pattern, usually ending up
in a recursive call to @match@.
\end{enumerate}

We are a little more paranoid about the ``empty rule'' (SLPJ, p.~87)
than the Wadler-chapter code for @match@ (p.~93, first @match@ clause).
And gluing the ``success expressions'' together isn't quite so pretty.

This (more interesting) clause of @match@ uses @tidy_and_unmix_eqns@
(a)~to get `as'- and `twiddle'-patterns out of the way (tidying), and
(b)~to do ``the mixture rule'' (SLPJ, p.~88) [which really {\em
un}mixes the equations], producing a list of equation-info
blocks, each block having as its first column of patterns either all
constructors, or all variables (or similar beasts), etc.

@match_unmixed_eqn_blks@ simply takes the place of the @foldr@ in the
Wadler-chapter @match@ (p.~93, last clause), and @match_unmixed_blk@
corresponds roughly to @matchVarCon@.

\begin{code}
match :: [Id]		  -- Variables rep\'ing the exprs we\'re matching with
      -> Type             -- Type of the case expression
      -> [EquationInfo]	  -- Info about patterns, etc. (type synonym below)
      -> DsM MatchResult  -- Desugared result!

match [] ty eqns
  = ASSERT2( not (null eqns), ppr ty )
    return (foldr1 combineMatchResults match_results)
  where
    match_results = [ ASSERT( null (eqn_pats eqn) ) 
		      eqn_rhs eqn
		    | eqn <- eqns ]

match vars@(v:_) ty eqns
  = ASSERT( not (null eqns ) )
    do	{ 	-- Tidy the first pattern, generating
		-- auxiliary bindings if necessary
	  (aux_binds, tidy_eqns) <- mapAndUnzipM (tidyEqnInfo v) eqns

		-- Group the equations and match each group in turn
       ; let grouped = groupEquations tidy_eqns

         -- print the view patterns that are commoned up to help debug
       ; ifOptM Opt_D_dump_view_pattern_commoning (debug grouped)

	; match_results <- mapM match_group grouped
	; return (adjustMatchResult (foldr1 (.) aux_binds) $
		  foldr1 combineMatchResults match_results) }
  where
    dropGroup :: [(PatGroup,EquationInfo)] -> [EquationInfo]
    dropGroup = map snd

    match_group :: [(PatGroup,EquationInfo)] -> DsM MatchResult
    match_group eqns@((group,_) : _)
        = case group of
            PgCon _    -> matchConFamily  vars ty (subGroup [(c,e) | (PgCon c, e) <- eqns])
            PgLit _    -> matchLiterals   vars ty (subGroup [(l,e) | (PgLit l, e) <- eqns])

            PgAny      -> matchVariables  vars ty (dropGroup eqns)
            PgN _      -> matchNPats      vars ty (dropGroup eqns)
            PgNpK _    -> matchNPlusKPats vars ty (dropGroup eqns)
            PgBang     -> matchBangs      vars ty (dropGroup eqns)
            PgCo _     -> matchCoercion   vars ty (dropGroup eqns)
            PgView _ _ -> matchView       vars ty (dropGroup eqns)

    -- FIXME: we should also warn about view patterns that should be
    -- commoned up but are not

    -- print some stuff to see what's getting grouped
    -- use -dppr-debug to see the resolution of overloaded lits
    debug eqns = 
        let gs = map (\group -> foldr (\ (p,_) -> \acc -> 
                                           case p of PgView e _ -> e:acc 
                                                     _ -> acc) [] group) eqns
            maybeWarn [] = return ()
            maybeWarn l = warnDs (vcat l)
        in 
          maybeWarn $ (map (\g -> text "Putting these view expressions into the same case:" <+> (ppr g))
                       (filter (not . null) gs))

matchVariables :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult
-- Real true variables, just like in matchVar, SLPJ p 94
-- No binding to do: they'll all be wildcards by now (done in tidy)
matchVariables (_:vars) ty eqns = match vars ty (shiftEqns eqns)

matchBangs :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult
matchBangs (var:vars) ty eqns
  = do	{ match_result <- match (var:vars) ty (map decomposeFirst_Bang eqns)
	; return (mkEvalMatchResult var ty match_result) }

matchCoercion :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult
-- Apply the coercion to the match variable and then match that
matchCoercion (var:vars) ty (eqns@(eqn1:_))
  = do	{ let CoPat co pat _ = firstPat eqn1
	; var' <- newUniqueId var (hsPatType pat)
	; match_result <- match (var':vars) ty (map decomposeFirst_Coercion eqns)
	; co' <- dsCoercion co
        ; let rhs' = co' (Var var)
	; return (mkCoLetMatchResult (NonRec var' rhs') match_result) }

matchView :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult
-- Apply the view function to the match variable and then match that
matchView (var:vars) ty (eqns@(eqn1:_))
  = do	{ -- we could pass in the expr from the PgView,
         -- but this needs to extract the pat anyway 
         -- to figure out the type of the fresh variable
         let ViewPat viewExpr (L _ pat) _ = firstPat eqn1
         -- do the rest of the compilation 
	; var' <- newUniqueId var (hsPatType pat)
	; match_result <- match (var':vars) ty (map decomposeFirst_View eqns)
         -- compile the view expressions
       ; viewExpr' <- dsLExpr viewExpr
	; return (mkViewMatchResult var' viewExpr' var match_result) }

-- decompose the first pattern and leave the rest alone
decomposeFirstPat :: (Pat Id -> Pat Id) -> EquationInfo -> EquationInfo
decomposeFirstPat extractpat (eqn@(EqnInfo { eqn_pats = pat : pats }))
	= eqn { eqn_pats = extractpat pat : pats}

decomposeFirst_Coercion, decomposeFirst_Bang, decomposeFirst_View :: EquationInfo -> EquationInfo

decomposeFirst_Coercion = decomposeFirstPat (\ (CoPat _ pat _) -> pat)
decomposeFirst_Bang     = decomposeFirstPat (\ (BangPat pat  ) -> unLoc pat)
decomposeFirst_View     = decomposeFirstPat (\ (ViewPat _ pat _) -> unLoc pat)

\end{code}

%************************************************************************
%*									*
		Tidying patterns
%*									*
%************************************************************************

Tidy up the leftmost pattern in an @EquationInfo@, given the variable @v@
which will be scrutinised.  This means:
\begin{itemize}
\item
Replace variable patterns @x@ (@x /= v@) with the pattern @_@,
together with the binding @x = v@.
\item
Replace the `as' pattern @x@@p@ with the pattern p and a binding @x = v@.
\item
Removing lazy (irrefutable) patterns (you don't want to know...).
\item
Converting explicit tuple-, list-, and parallel-array-pats into ordinary
@ConPats@. 
\item
Convert the literal pat "" to [].
\end{itemize}

The result of this tidying is that the column of patterns will include
{\em only}:
\begin{description}
\item[@WildPats@:]
The @VarPat@ information isn't needed any more after this.

\item[@ConPats@:]
@ListPats@, @TuplePats@, etc., are all converted into @ConPats@.

\item[@LitPats@ and @NPats@:]
@LitPats@/@NPats@ of ``known friendly types'' (Int, Char,
Float, 	Double, at least) are converted to unboxed form; e.g.,
\tr{(NPat (HsInt i) _ _)} is converted to:
\begin{verbatim}
(ConPat I# _ _ [LitPat (HsIntPrim i)])
\end{verbatim}
\end{description}

\begin{code}
tidyEqnInfo :: Id -> EquationInfo
	    -> DsM (DsWrapper, EquationInfo)
	-- DsM'd because of internal call to dsLHsBinds
	-- 	and mkSelectorBinds.
	-- "tidy1" does the interesting stuff, looking at
	-- one pattern and fiddling the list of bindings.
	--
	-- POST CONDITION: head pattern in the EqnInfo is
	--	WildPat
	--	ConPat
	--	NPat
	--	LitPat
	--	NPlusKPat
	-- but no other

tidyEqnInfo v eqn@(EqnInfo { eqn_pats = pat : pats }) = do
    (wrap, pat') <- tidy1 v pat
    return (wrap, eqn { eqn_pats = do pat' : pats })

tidy1 :: Id 			-- The Id being scrutinised
      -> Pat Id 		-- The pattern against which it is to be matched
      -> DsM (DsWrapper,	-- Extra bindings to do before the match
	      Pat Id) 		-- Equivalent pattern

-------------------------------------------------------
--	(pat', mr') = tidy1 v pat mr
-- tidies the *outer level only* of pat, giving pat'
-- It eliminates many pattern forms (as-patterns, variable patterns,
-- list patterns, etc) yielding one of:
--	WildPat
--	ConPatOut
--	LitPat
--	NPat
--	NPlusKPat

tidy1 v (ParPat pat)      = tidy1 v (unLoc pat) 
tidy1 v (SigPatOut pat _) = tidy1 v (unLoc pat) 
tidy1 _ (WildPat ty)      = return (idDsWrapper, WildPat ty)

	-- case v of { x -> mr[] }
	-- = case v of { _ -> let x=v in mr[] }
tidy1 v (VarPat var)
  = return (wrapBind var v, WildPat (idType var)) 

tidy1 v (VarPatOut var binds)
  = do	{ prs <- dsLHsBinds binds
	; return (wrapBind var v . mkCoreLet (Rec prs),
		  WildPat (idType var)) }

	-- case v of { x@p -> mr[] }
	-- = case v of { p -> let x=v in mr[] }
tidy1 v (AsPat (L _ var) pat)
  = do	{ (wrap, pat') <- tidy1 v (unLoc pat)
	; return (wrapBind var v . wrap, pat') }

{- now, here we handle lazy patterns:
    tidy1 v ~p bs = (v, v1 = case v of p -> v1 :
			v2 = case v of p -> v2 : ... : bs )

    where the v_i's are the binders in the pattern.

    ToDo: in "v_i = ... -> v_i", are the v_i's really the same thing?

    The case expr for v_i is just: match [v] [(p, [], \ x -> Var v_i)] any_expr
-}

tidy1 v (LazyPat pat)
  = do	{ sel_prs <- mkSelectorBinds pat (Var v)
	; let sel_binds =  [NonRec b rhs | (b,rhs) <- sel_prs]
	; return (mkCoreLets sel_binds, WildPat (idType v)) }

tidy1 _ (ListPat pats ty)
  = return (idDsWrapper, unLoc list_ConPat)
  where
    list_ty     = mkListTy ty
    list_ConPat = foldr (\ x y -> mkPrefixConPat consDataCon [x, y] list_ty)
	      	  	(mkNilPat list_ty)
	      	  	pats

-- Introduce fake parallel array constructors to be able to handle parallel
-- arrays with the existing machinery for constructor pattern
tidy1 _ (PArrPat pats ty)
  = return (idDsWrapper, unLoc parrConPat)
  where
    arity      = length pats
    parrConPat = mkPrefixConPat (parrFakeCon arity) pats (mkPArrTy ty)

tidy1 _ (TuplePat pats boxity ty)
  = return (idDsWrapper, unLoc tuple_ConPat)
  where
    arity = length pats
    tuple_ConPat = mkPrefixConPat (tupleCon boxity arity) pats ty

-- LitPats: we *might* be able to replace these w/ a simpler form
tidy1 _ (LitPat lit)
  = return (idDsWrapper, tidyLitPat lit)

-- NPats: we *might* be able to replace these w/ a simpler form
tidy1 _ (NPat lit mb_neg eq)
  = return (idDsWrapper, tidyNPat lit mb_neg eq)

-- BangPatterns: Pattern matching is already strict in constructors,
-- tuples etc, so the last case strips off the bang for thoses patterns.
tidy1 v (BangPat (L _ (LazyPat p)))       = tidy1 v (BangPat p)
tidy1 v (BangPat (L _ (ParPat p)))        = tidy1 v (BangPat p)
tidy1 _ p@(BangPat (L _(VarPat _)))       = return (idDsWrapper, p)
tidy1 _ p@(BangPat (L _(VarPatOut _ _)))  = return (idDsWrapper, p)
tidy1 _ p@(BangPat (L _ (WildPat _)))     = return (idDsWrapper, p)
tidy1 _ p@(BangPat (L _ (CoPat _ _ _)))   = return (idDsWrapper, p)
tidy1 _ p@(BangPat (L _ (SigPatIn _ _)))  = return (idDsWrapper, p)
tidy1 _ p@(BangPat (L _ (SigPatOut _ _))) = return (idDsWrapper, p)
tidy1 v (BangPat (L _ (AsPat (L _ var) pat)))
  = do	{ (wrap, pat') <- tidy1 v (BangPat pat)
        ; return (wrapBind var v . wrap, pat') }
tidy1 v (BangPat (L _ p))                   = tidy1 v p

-- Everything else goes through unchanged...

tidy1 _ non_interesting_pat
  = return (idDsWrapper, non_interesting_pat)
\end{code}

\noindent
{\bf Previous @matchTwiddled@ stuff:}

Now we get to the only interesting part; note: there are choices for
translation [from Simon's notes]; translation~1:
\begin{verbatim}
deTwiddle [s,t] e
\end{verbatim}
returns
\begin{verbatim}
[ w = e,
  s = case w of [s,t] -> s
  t = case w of [s,t] -> t
]
\end{verbatim}

Here \tr{w} is a fresh variable, and the \tr{w}-binding prevents multiple
evaluation of \tr{e}.  An alternative translation (No.~2):
\begin{verbatim}
[ w = case e of [s,t] -> (s,t)
  s = case w of (s,t) -> s
  t = case w of (s,t) -> t
]
\end{verbatim}

%************************************************************************
%*									*
\subsubsection[improved-unmixing]{UNIMPLEMENTED idea for improved unmixing}
%*									*
%************************************************************************

We might be able to optimise unmixing when confronted by
only-one-constructor-possible, of which tuples are the most notable
examples.  Consider:
\begin{verbatim}
f (a,b,c) ... = ...
f d ... (e:f) = ...
f (g,h,i) ... = ...
f j ...       = ...
\end{verbatim}
This definition would normally be unmixed into four equation blocks,
one per equation.  But it could be unmixed into just one equation
block, because if the one equation matches (on the first column),
the others certainly will.

You have to be careful, though; the example
\begin{verbatim}
f j ...       = ...
-------------------
f (a,b,c) ... = ...
f d ... (e:f) = ...
f (g,h,i) ... = ...
\end{verbatim}
{\em must} be broken into two blocks at the line shown; otherwise, you
are forcing unnecessary evaluation.  In any case, the top-left pattern
always gives the cue.  You could then unmix blocks into groups of...
\begin{description}
\item[all variables:]
As it is now.
\item[constructors or variables (mixed):]
Need to make sure the right names get bound for the variable patterns.
\item[literals or variables (mixed):]
Presumably just a variant on the constructor case (as it is now).
\end{description}

%************************************************************************
%*									*
%*  matchWrapper: a convenient way to call @match@			*
%*									*
%************************************************************************
\subsection[matchWrapper]{@matchWrapper@: a convenient interface to @match@}

Calls to @match@ often involve similar (non-trivial) work; that work
is collected here, in @matchWrapper@.  This function takes as
arguments:
\begin{itemize}
\item
Typchecked @Matches@ (of a function definition, or a case or lambda
expression)---the main input;
\item
An error message to be inserted into any (runtime) pattern-matching
failure messages.
\end{itemize}

As results, @matchWrapper@ produces:
\begin{itemize}
\item
A list of variables (@Locals@) that the caller must ``promise'' to
bind to appropriate values; and
\item
a @CoreExpr@, the desugared output (main result).
\end{itemize}

The main actions of @matchWrapper@ include:
\begin{enumerate}
\item
Flatten the @[TypecheckedMatch]@ into a suitable list of
@EquationInfo@s.
\item
Create as many new variables as there are patterns in a pattern-list
(in any one of the @EquationInfo@s).
\item
Create a suitable ``if it fails'' expression---a call to @error@ using
the error-string input; the {\em type} of this fail value can be found
by examining one of the RHS expressions in one of the @EquationInfo@s.
\item
Call @match@ with all of this information!
\end{enumerate}

\begin{code}
matchWrapper :: HsMatchContext Name	-- For shadowing warning messages
	     -> MatchGroup Id		-- Matches being desugared
	     -> DsM ([Id], CoreExpr) 	-- Results
\end{code}

 There is one small problem with the Lambda Patterns, when somebody
 writes something similar to:
\begin{verbatim}
    (\ (x:xs) -> ...)
\end{verbatim}
 he/she don't want a warning about incomplete patterns, that is done with 
 the flag @opt_WarnSimplePatterns@.
 This problem also appears in the:
\begin{itemize}
\item @do@ patterns, but if the @do@ can fail
      it creates another equation if the match can fail
      (see @DsExpr.doDo@ function)
\item @let@ patterns, are treated by @matchSimply@
   List Comprension Patterns, are treated by @matchSimply@ also
\end{itemize}

We can't call @matchSimply@ with Lambda patterns,
due to the fact that lambda patterns can have more than
one pattern, and match simply only accepts one pattern.

JJQC 30-Nov-1997

\begin{code}
matchWrapper ctxt (MatchGroup matches match_ty)
  = ASSERT( notNull matches )
    do	{ eqns_info   <- mapM mk_eqn_info matches
	; new_vars    <- selectMatchVars arg_pats
	; result_expr <- matchEquations ctxt new_vars eqns_info rhs_ty
	; return (new_vars, result_expr) }
  where
    arg_pats    = map unLoc (hsLMatchPats (head matches))
    n_pats	= length arg_pats
    (_, rhs_ty) = splitFunTysN n_pats match_ty

    mk_eqn_info (L _ (Match pats _ grhss))
      = do { let upats = map unLoc pats
	   ; match_result <- dsGRHSs ctxt upats grhss rhs_ty
	   ; return (EqnInfo { eqn_pats = upats, eqn_rhs  = match_result}) }


matchEquations  :: HsMatchContext Name
		-> [Id]	-> [EquationInfo] -> Type
		-> DsM CoreExpr
matchEquations ctxt vars eqns_info rhs_ty
  = do	{ dflags <- getDOptsDs
	; locn   <- getSrcSpanDs
	; let   ds_ctxt      = DsMatchContext ctxt locn
		error_doc = matchContextErrString ctxt

	; match_result <- match_fun dflags ds_ctxt vars rhs_ty eqns_info

	; fail_expr <- mkErrorAppDs pAT_ERROR_ID rhs_ty error_doc
	; extractMatchResult match_result fail_expr }
  where 
    match_fun dflags ds_ctxt
       = case ctxt of 
           LambdaExpr | dopt Opt_WarnSimplePatterns dflags -> matchCheck ds_ctxt
                      | otherwise                          -> match
           _                                               -> matchCheck ds_ctxt
\end{code}

%************************************************************************
%*									*
\subsection[matchSimply]{@matchSimply@: match a single expression against a single pattern}
%*									*
%************************************************************************

@mkSimpleMatch@ is a wrapper for @match@ which deals with the
situation where we want to match a single expression against a single
pattern. It returns an expression.

\begin{code}
matchSimply :: CoreExpr			-- Scrutinee
	    -> HsMatchContext Name	-- Match kind
	    -> LPat Id			-- Pattern it should match
	    -> CoreExpr			-- Return this if it matches
	    -> CoreExpr			-- Return this if it doesn't
	    -> DsM CoreExpr

matchSimply scrut hs_ctx pat result_expr fail_expr = do
    let
      match_result = cantFailMatchResult result_expr
      rhs_ty       = exprType fail_expr
        -- Use exprType of fail_expr, because won't refine in the case of failure!
    match_result' <- matchSinglePat scrut hs_ctx pat rhs_ty match_result
    extractMatchResult match_result' fail_expr


matchSinglePat :: CoreExpr -> HsMatchContext Name -> LPat Id
	       -> Type -> MatchResult -> DsM MatchResult
matchSinglePat (Var var) hs_ctx (L _ pat) ty match_result = do
    dflags <- getDOptsDs
    locn <- getSrcSpanDs
    let
        match_fn dflags
           | dopt Opt_WarnSimplePatterns dflags = matchCheck ds_ctx
           | otherwise                          = match
           where
             ds_ctx = DsMatchContext hs_ctx locn
    match_fn dflags [var] ty [EqnInfo { eqn_pats = [pat], eqn_rhs  = match_result }]

matchSinglePat scrut hs_ctx pat ty match_result = do
    var <- selectSimpleMatchVarL pat
    match_result' <- matchSinglePat (Var var) hs_ctx pat ty match_result
    return (adjustMatchResult (bindNonRec var scrut) match_result')
\end{code}


%************************************************************************
%*									*
		Pattern classification
%*									*
%************************************************************************

\begin{code}
data PatGroup
  = PgAny		-- Immediate match: variables, wildcards, 
			--		    lazy patterns
  | PgCon DataCon	-- Constructor patterns (incl list, tuple)
  | PgLit Literal	-- Literal patterns
  | PgN   Literal	-- Overloaded literals
  | PgNpK Literal	-- n+k patterns
  | PgBang		-- Bang patterns
  | PgCo Type		-- Coercion patterns; the type is the type
			--	of the pattern *inside*
  | PgView (LHsExpr Id) -- view pattern (e -> p):
                        -- the LHsExpr is the expression e
           Type         -- the Type is the type of p (equivalently, the result type of e)

groupEquations :: [EquationInfo] -> [[(PatGroup, EquationInfo)]]
-- If the result is of form [g1, g2, g3], 
-- (a) all the (pg,eq) pairs in g1 have the same pg
-- (b) none of the gi are empty
-- The ordering of equations is unchanged
groupEquations eqns
  = runs same_gp [(patGroup (firstPat eqn), eqn) | eqn <- eqns]
  where
    same_gp :: (PatGroup,EquationInfo) -> (PatGroup,EquationInfo) -> Bool
    (pg1,_) `same_gp` (pg2,_) = pg1 `sameGroup` pg2

subGroup :: Ord a => [(a, EquationInfo)] -> [[EquationInfo]]
-- Input is a particular group.  The result sub-groups the 
-- equations by with particular constructor, literal etc they match.
-- Each sub-list in the result has the same PatGroup
-- See Note [Take care with pattern order]
subGroup group 
    = map reverse $ eltsFM $ foldl accumulate emptyFM group
  where
    accumulate pg_map (pg, eqn)
      = case lookupFM pg_map pg of
          Just eqns -> addToFM pg_map pg (eqn:eqns)
          Nothing   -> addToFM pg_map pg [eqn]

    -- pg_map :: FiniteMap a [EquationInfo]
    -- Equations seen so far in reverse order of appearance
\end{code}

Note [Take care with pattern order]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the subGroup function we must be very careful about pattern re-ordering,
Consider the patterns [ (True, Nothing), (False, x), (True, y) ]
Then in bringing together the patterns for True, we must not 
swap the Nothing and y!


\begin{code}
sameGroup :: PatGroup -> PatGroup -> Bool
-- Same group means that a single case expression 
-- or test will suffice to match both, *and* the order
-- of testing within the group is insignificant.
sameGroup PgAny      PgAny      = True
sameGroup PgBang     PgBang     = True
sameGroup (PgCon _)  (PgCon _)  = True		-- One case expression
sameGroup (PgLit _)  (PgLit _)  = True		-- One case expression
sameGroup (PgN l1)   (PgN l2)   = l1==l2	-- Order is significant
sameGroup (PgNpK l1) (PgNpK l2) = l1==l2	-- See Note [Grouping overloaded literal patterns]
sameGroup (PgCo	t1)  (PgCo t2)  = t1 `coreEqType` t2
	-- CoPats are in the same goup only if the type of the
	-- enclosed pattern is the same. The patterns outside the CoPat
	-- always have the same type, so this boils down to saying that
	-- the two coercions are identical.
sameGroup (PgView e1 t1) (PgView e2 t2) = viewLExprEq (e1,t1) (e2,t2) 
       -- ViewPats are in the same gorup iff the expressions
       -- are "equal"---conservatively, we use syntactic equality
sameGroup _          _          = False

-- An approximation of syntactic equality used for determining when view
-- exprs are in the same group.
-- This function can always safely return false;
-- but doing so will result in the application of the view function being repeated.
--
-- Currently: compare applications of literals and variables
--            and anything else that we can do without involving other
--            HsSyn types in the recursion
--
-- NB we can't assume that the two view expressions have the same type.  Consider
--   f (e1 -> True) = ...
--   f (e2 -> "hi") = ...
viewLExprEq :: (LHsExpr Id,Type) -> (LHsExpr Id,Type) -> Bool
viewLExprEq (e1,_) (e2,_) =
    let 
        -- short name for recursive call on unLoc
        lexp e e' = exp (unLoc e) (unLoc e')

	eq_list :: (a->a->Bool) -> [a] -> [a] -> Bool
        eq_list _  []     []     = True
        eq_list _  []     (_:_)  = False
        eq_list _  (_:_)  []     = False
        eq_list eq (x:xs) (y:ys) = eq x y && eq_list eq xs ys

        -- conservative, in that it demands that wrappers be
        -- syntactically identical and doesn't look under binders
        --
        -- coarser notions of equality are possible
        -- (e.g., reassociating compositions,
        --        equating different ways of writing a coercion)
        wrap WpHole WpHole = True
        wrap (WpCompose w1 w2) (WpCompose w1' w2') = wrap w1 w1' && wrap w2 w2'
        wrap (WpCast c)  (WpCast c')  = tcEqType c c'
        wrap (WpApp d)   (WpApp d')   = d == d'
        wrap (WpTyApp t) (WpTyApp t') = tcEqType t t'
        -- Enhancement: could implement equality for more wrappers
        --   if it seems useful (lams and lets)
        wrap _ _ = False

        -- real comparison is on HsExpr's
        -- strip parens 
        exp (HsPar (L _ e)) e'   = exp e e'
        exp e (HsPar (L _ e'))   = exp e e'
        -- because the expressions do not necessarily have the same type,
        -- we have to compare the wrappers
        exp (HsWrap h e) (HsWrap h' e') = wrap h h' && exp e e'
        exp (HsVar i) (HsVar i') =  i == i' 
        -- the instance for IPName derives using the id, so this works if the
        -- above does
        exp (HsIPVar i) (HsIPVar i') = i == i' 
        exp (HsOverLit l) (HsOverLit l') = 
            -- Overloaded lits are equal if they have the same type
            -- and the data is the same.
            -- this is coarser than comparing the SyntaxExpr's in l and l',
            -- which resolve the overloading (e.g., fromInteger 1),
            -- because these expressions get written as a bunch of different variables
            -- (presumably to improve sharing)
            tcEqType (overLitType l) (overLitType l') && l == l'
        exp (HsApp e1 e2) (HsApp e1' e2') = lexp e1 e1' && lexp e2 e2'
        -- the fixities have been straightened out by now, so it's safe
        -- to ignore them?
        exp (OpApp l o _ ri) (OpApp l' o' _ ri') = 
            lexp l l' && lexp o o' && lexp ri ri'
        exp (NegApp e n) (NegApp e' n') = lexp e e' && exp n n'
        exp (SectionL e1 e2) (SectionL e1' e2') = 
            lexp e1 e1' && lexp e2 e2'
        exp (SectionR e1 e2) (SectionR e1' e2') = 
            lexp e1 e1' && lexp e2 e2'
        exp (ExplicitTuple es1 _) (ExplicitTuple es2 _) =
            eq_list tup_arg es1 es2
        exp (HsIf e e1 e2) (HsIf e' e1' e2') =
            lexp e e' && lexp e1 e1' && lexp e2 e2'

        -- Enhancement: could implement equality for more expressions
        --   if it seems useful
	-- But no need for HsLit, ExplicitList, ExplicitTuple, 
	-- because they cannot be functions
        exp _ _  = False

        tup_arg (Present e1) (Present e2) = lexp e1 e2
        tup_arg (Missing t1) (Missing t2) = tcEqType t1 t2
        tup_arg _ _ = False
    in
      lexp e1 e2

patGroup :: Pat Id -> PatGroup
patGroup (WildPat {})       	      = PgAny
patGroup (BangPat {})       	      = PgBang  
patGroup (ConPatOut { pat_con = dc }) = PgCon (unLoc dc)
patGroup (LitPat lit)		      = PgLit (hsLitKey lit)
patGroup (NPat olit mb_neg _)	      = PgN   (hsOverLitKey olit (isJust mb_neg))
patGroup (NPlusKPat _ olit _ _)	      = PgNpK (hsOverLitKey olit False)
patGroup (CoPat _ p _)		      = PgCo  (hsPatType p)	-- Type of innelexp pattern
patGroup (ViewPat expr p _)               = PgView expr (hsPatType (unLoc p))
patGroup pat = pprPanic "patGroup" (ppr pat)
\end{code}

Note [Grouping overloaded literal patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
WATCH OUT!  Consider

	f (n+1) = ...
	f (n+2) = ...
	f (n+1) = ...

We can't group the first and third together, because the second may match 
the same thing as the first.  Same goes for *overloaded* literal patterns
	f 1 True = ...
	f 2 False = ...
	f 1 False = ...
If the first arg matches '1' but the second does not match 'True', we
cannot jump to the third equation!  Because the same argument might
match '2'!
Hence we don't regard 1 and 2, or (n+1) and (n+2), as part of the same group.