1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
Pattern-matching literal patterns
-}
{-# LANGUAGE CPP, ScopedTypeVariables #-}
{-# LANGUAGE ViewPatterns #-}
module MatchLit ( dsLit, dsOverLit, hsLitKey
, tidyLitPat, tidyNPat
, matchLiterals, matchNPlusKPats, matchNPats
, warnAboutIdentities
, warnAboutOverflowedOverLit, warnAboutOverflowedLit
, warnAboutEmptyEnumerations
) where
#include "HsVersions.h"
import GhcPrelude
import {-# SOURCE #-} Match ( match )
import {-# SOURCE #-} DsExpr ( dsExpr, dsSyntaxExpr )
import DsMonad
import DsUtils
import HsSyn
import Id
import CoreSyn
import MkCore
import TyCon
import DataCon
import TcHsSyn ( shortCutLit )
import TcType
import Name
import Type
import PrelNames
import TysWiredIn
import TysPrim
import Literal
import SrcLoc
import Data.Ratio
import Outputable
import BasicTypes
import DynFlags
import Util
import FastString
import qualified GHC.LanguageExtensions as LangExt
import Control.Monad
import Data.Int
import Data.Word
import Data.Proxy
{-
************************************************************************
* *
Desugaring literals
[used to be in DsExpr, but DsMeta needs it,
and it's nice to avoid a loop]
* *
************************************************************************
We give int/float literals type @Integer@ and @Rational@, respectively.
The typechecker will (presumably) have put \tr{from{Integer,Rational}s}
around them.
ToDo: put in range checks for when converting ``@i@''
(or should that be in the typechecker?)
For numeric literals, we try to detect there use at a standard type
(@Int@, @Float@, etc.) are directly put in the right constructor.
[NB: down with the @App@ conversion.]
See also below where we look for @DictApps@ for \tr{plusInt}, etc.
-}
dsLit :: HsLit GhcRn -> DsM CoreExpr
dsLit l = do
dflags <- getDynFlags
case l of
HsStringPrim _ s -> return (Lit (LitString s))
HsCharPrim _ c -> return (Lit (LitChar c))
HsIntPrim _ i -> return (Lit (mkLitIntWrap dflags i))
HsWordPrim _ w -> return (Lit (mkLitWordWrap dflags w))
HsInt64Prim _ i -> return (Lit (mkLitInt64Wrap dflags i))
HsWord64Prim _ w -> return (Lit (mkLitWord64Wrap dflags w))
HsFloatPrim _ f -> return (Lit (LitFloat (fl_value f)))
HsDoublePrim _ d -> return (Lit (LitDouble (fl_value d)))
HsChar _ c -> return (mkCharExpr c)
HsString _ str -> mkStringExprFS str
HsInteger _ i _ -> mkIntegerExpr i
HsInt _ i -> return (mkIntExpr dflags (il_value i))
XLit x -> pprPanic "dsLit" (ppr x)
HsRat _ (FL _ _ val) ty -> do
num <- mkIntegerExpr (numerator val)
denom <- mkIntegerExpr (denominator val)
return (mkCoreConApps ratio_data_con [Type integer_ty, num, denom])
where
(ratio_data_con, integer_ty)
= case tcSplitTyConApp ty of
(tycon, [i_ty]) -> ASSERT(isIntegerTy i_ty && tycon `hasKey` ratioTyConKey)
(head (tyConDataCons tycon), i_ty)
x -> pprPanic "dsLit" (ppr x)
dsOverLit :: HsOverLit GhcTc -> DsM CoreExpr
-- ^ Post-typechecker, the 'HsExpr' field of an 'OverLit' contains
-- (an expression for) the literal value itself.
dsOverLit (OverLit { ol_val = val, ol_ext = OverLitTc rebindable ty
, ol_witness = witness }) = do
dflags <- getDynFlags
case shortCutLit dflags val ty of
Just expr | not rebindable -> dsExpr expr -- Note [Literal short cut]
_ -> dsExpr witness
dsOverLit XOverLit{} = panic "dsOverLit"
{-
Note [Literal short cut]
~~~~~~~~~~~~~~~~~~~~~~~~
The type checker tries to do this short-cutting as early as possible, but
because of unification etc, more information is available to the desugarer.
And where it's possible to generate the correct literal right away, it's
much better to do so.
************************************************************************
* *
Warnings about overflowed literals
* *
************************************************************************
Warn about functions like toInteger, fromIntegral, that convert
between one type and another when the to- and from- types are the
same. Then it's probably (albeit not definitely) the identity
-}
warnAboutIdentities :: DynFlags -> CoreExpr -> Type -> DsM ()
warnAboutIdentities dflags (Var conv_fn) type_of_conv
| wopt Opt_WarnIdentities dflags
, idName conv_fn `elem` conversionNames
, Just (arg_ty, res_ty) <- splitFunTy_maybe type_of_conv
, arg_ty `eqType` res_ty -- So we are converting ty -> ty
= warnDs (Reason Opt_WarnIdentities)
(vcat [ text "Call of" <+> ppr conv_fn <+> dcolon <+> ppr type_of_conv
, nest 2 $ text "can probably be omitted"
])
warnAboutIdentities _ _ _ = return ()
conversionNames :: [Name]
conversionNames
= [ toIntegerName, toRationalName
, fromIntegralName, realToFracName ]
-- We can't easily add fromIntegerName, fromRationalName,
-- because they are generated by literals
-- | Emit warnings on overloaded integral literals which overflow the bounds
-- implied by their type.
warnAboutOverflowedOverLit :: HsOverLit GhcTc -> DsM ()
warnAboutOverflowedOverLit hsOverLit = do
dflags <- getDynFlags
warnAboutOverflowedLiterals dflags (getIntegralLit hsOverLit)
-- | Emit warnings on integral literals which overflow the boudns implied by
-- their type.
warnAboutOverflowedLit :: HsLit GhcTc -> DsM ()
warnAboutOverflowedLit hsLit = do
dflags <- getDynFlags
warnAboutOverflowedLiterals dflags (getSimpleIntegralLit hsLit)
-- | Emit warnings on integral literals which overflow the bounds implied by
-- their type.
warnAboutOverflowedLiterals
:: DynFlags
-> Maybe (Integer, Name) -- ^ the literal value and name of its tycon
-> DsM ()
warnAboutOverflowedLiterals dflags lit
| wopt Opt_WarnOverflowedLiterals dflags
, Just (i, tc) <- lit
= if tc == intTyConName then check i tc (Proxy :: Proxy Int)
-- These only show up via the 'HsOverLit' route
else if tc == int8TyConName then check i tc (Proxy :: Proxy Int8)
else if tc == int16TyConName then check i tc (Proxy :: Proxy Int16)
else if tc == int32TyConName then check i tc (Proxy :: Proxy Int32)
else if tc == int64TyConName then check i tc (Proxy :: Proxy Int64)
else if tc == wordTyConName then check i tc (Proxy :: Proxy Word)
else if tc == word8TyConName then check i tc (Proxy :: Proxy Word8)
else if tc == word16TyConName then check i tc (Proxy :: Proxy Word16)
else if tc == word32TyConName then check i tc (Proxy :: Proxy Word32)
else if tc == word64TyConName then check i tc (Proxy :: Proxy Word64)
else if tc == naturalTyConName then checkPositive i tc
-- These only show up via the 'HsLit' route
else if tc == intPrimTyConName then check i tc (Proxy :: Proxy Int)
else if tc == int8PrimTyConName then check i tc (Proxy :: Proxy Int8)
else if tc == int32PrimTyConName then check i tc (Proxy :: Proxy Int32)
else if tc == int64PrimTyConName then check i tc (Proxy :: Proxy Int64)
else if tc == wordPrimTyConName then check i tc (Proxy :: Proxy Word)
else if tc == word8PrimTyConName then check i tc (Proxy :: Proxy Word8)
else if tc == word32PrimTyConName then check i tc (Proxy :: Proxy Word32)
else if tc == word64PrimTyConName then check i tc (Proxy :: Proxy Word64)
else return ()
| otherwise = return ()
where
checkPositive :: Integer -> Name -> DsM ()
checkPositive i tc
= when (i < 0) $ do
warnDs (Reason Opt_WarnOverflowedLiterals)
(vcat [ text "Literal" <+> integer i
<+> text "is negative but" <+> ppr tc
<+> ptext (sLit "only supports positive numbers")
])
check :: forall a. (Bounded a, Integral a) => Integer -> Name -> Proxy a -> DsM ()
check i tc _proxy
= when (i < minB || i > maxB) $ do
warnDs (Reason Opt_WarnOverflowedLiterals)
(vcat [ text "Literal" <+> integer i
<+> text "is out of the" <+> ppr tc <+> ptext (sLit "range")
<+> integer minB <> text ".." <> integer maxB
, sug ])
where
minB = toInteger (minBound :: a)
maxB = toInteger (maxBound :: a)
sug | minB == -i -- Note [Suggest NegativeLiterals]
, i > 0
, not (xopt LangExt.NegativeLiterals dflags)
= text "If you are trying to write a large negative literal, use NegativeLiterals"
| otherwise = Outputable.empty
{-
Note [Suggest NegativeLiterals]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you write
x :: Int8
x = -128
it'll parse as (negate 128), and overflow. In this case, suggest NegativeLiterals.
We get an erroneous suggestion for
x = 128
but perhaps that does not matter too much.
-}
warnAboutEmptyEnumerations :: DynFlags -> LHsExpr GhcTc -> Maybe (LHsExpr GhcTc)
-> LHsExpr GhcTc -> DsM ()
-- ^ Warns about @[2,3 .. 1]@ which returns the empty list.
-- Only works for integral types, not floating point.
warnAboutEmptyEnumerations dflags fromExpr mThnExpr toExpr
| wopt Opt_WarnEmptyEnumerations dflags
, Just (from,tc) <- getLHsIntegralLit fromExpr
, Just mThn <- traverse getLHsIntegralLit mThnExpr
, Just (to,_) <- getLHsIntegralLit toExpr
, let check :: forall a. (Enum a, Num a) => Proxy a -> DsM ()
check _proxy
= when (null enumeration) $
warnDs (Reason Opt_WarnEmptyEnumerations) (text "Enumeration is empty")
where
enumeration :: [a]
enumeration = case mThn of
Nothing -> [fromInteger from .. fromInteger to]
Just (thn,_) -> [fromInteger from, fromInteger thn .. fromInteger to]
= if tc == intTyConName then check (Proxy :: Proxy Int)
else if tc == int8TyConName then check (Proxy :: Proxy Int8)
else if tc == int16TyConName then check (Proxy :: Proxy Int16)
else if tc == int32TyConName then check (Proxy :: Proxy Int32)
else if tc == int64TyConName then check (Proxy :: Proxy Int64)
else if tc == wordTyConName then check (Proxy :: Proxy Word)
else if tc == word8TyConName then check (Proxy :: Proxy Word8)
else if tc == word16TyConName then check (Proxy :: Proxy Word16)
else if tc == word32TyConName then check (Proxy :: Proxy Word32)
else if tc == word64TyConName then check (Proxy :: Proxy Word64)
else if tc == integerTyConName then check (Proxy :: Proxy Integer)
else if tc == naturalTyConName then check (Proxy :: Proxy Integer)
-- We use 'Integer' because otherwise a negative 'Natural' literal
-- could cause a compile time crash (instead of a runtime one).
-- See the T10930b test case for an example of where this matters.
else return ()
| otherwise = return ()
getLHsIntegralLit :: LHsExpr GhcTc -> Maybe (Integer, Name)
-- ^ See if the expression is an 'Integral' literal.
-- Remember to look through automatically-added tick-boxes! (Trac #8384)
getLHsIntegralLit (dL->L _ (HsPar _ e)) = getLHsIntegralLit e
getLHsIntegralLit (dL->L _ (HsTick _ _ e)) = getLHsIntegralLit e
getLHsIntegralLit (dL->L _ (HsBinTick _ _ _ e)) = getLHsIntegralLit e
getLHsIntegralLit (dL->L _ (HsOverLit _ over_lit)) = getIntegralLit over_lit
getLHsIntegralLit (dL->L _ (HsLit _ lit)) = getSimpleIntegralLit lit
getLHsIntegralLit _ = Nothing
-- | If 'Integral', extract the value and type name of the overloaded literal.
getIntegralLit :: HsOverLit GhcTc -> Maybe (Integer, Name)
getIntegralLit (OverLit { ol_val = HsIntegral i, ol_ext = OverLitTc _ ty })
| Just tc <- tyConAppTyCon_maybe ty
= Just (il_value i, tyConName tc)
getIntegralLit _ = Nothing
-- | If 'Integral', extract the value and type name of the non-overloaded
-- literal.
getSimpleIntegralLit :: HsLit GhcTc -> Maybe (Integer, Name)
getSimpleIntegralLit (HsInt _ IL{ il_value = i }) = Just (i, intTyConName)
getSimpleIntegralLit (HsIntPrim _ i) = Just (i, intPrimTyConName)
getSimpleIntegralLit (HsWordPrim _ i) = Just (i, wordPrimTyConName)
getSimpleIntegralLit (HsInt64Prim _ i) = Just (i, int64PrimTyConName)
getSimpleIntegralLit (HsWord64Prim _ i) = Just (i, word64PrimTyConName)
getSimpleIntegralLit (HsInteger _ i ty)
| Just tc <- tyConAppTyCon_maybe ty
= Just (i, tyConName tc)
getSimpleIntegralLit _ = Nothing
{-
************************************************************************
* *
Tidying lit pats
* *
************************************************************************
-}
tidyLitPat :: HsLit GhcTc -> Pat GhcTc
-- Result has only the following HsLits:
-- HsIntPrim, HsWordPrim, HsCharPrim, HsFloatPrim
-- HsDoublePrim, HsStringPrim, HsString
-- * HsInteger, HsRat, HsInt can't show up in LitPats
-- * We get rid of HsChar right here
tidyLitPat (HsChar src c) = unLoc (mkCharLitPat src c)
tidyLitPat (HsString src s)
| lengthFS s <= 1 -- Short string literals only
= unLoc $ foldr (\c pat -> mkPrefixConPat consDataCon
[mkCharLitPat src c, pat] [charTy])
(mkNilPat charTy) (unpackFS s)
-- The stringTy is the type of the whole pattern, not
-- the type to instantiate (:) or [] with!
tidyLitPat lit = LitPat noExt lit
----------------
tidyNPat :: HsOverLit GhcTc -> Maybe (SyntaxExpr GhcTc) -> SyntaxExpr GhcTc
-> Type
-> Pat GhcTc
tidyNPat (OverLit (OverLitTc False ty) val _) mb_neg _eq outer_ty
-- False: Take short cuts only if the literal is not using rebindable syntax
--
-- Once that is settled, look for cases where the type of the
-- entire overloaded literal matches the type of the underlying literal,
-- and in that case take the short cut
-- NB: Watch out for weird cases like Trac #3382
-- f :: Int -> Int
-- f "blah" = 4
-- which might be ok if we have 'instance IsString Int'
--
| not type_change, isIntTy ty, Just int_lit <- mb_int_lit
= mk_con_pat intDataCon (HsIntPrim NoSourceText int_lit)
| not type_change, isWordTy ty, Just int_lit <- mb_int_lit
= mk_con_pat wordDataCon (HsWordPrim NoSourceText int_lit)
| not type_change, isStringTy ty, Just str_lit <- mb_str_lit
= tidyLitPat (HsString NoSourceText str_lit)
-- NB: do /not/ convert Float or Double literals to F# 3.8 or D# 5.3
-- If we do convert to the constructor form, we'll generate a case
-- expression on a Float# or Double# and that's not allowed in Core; see
-- Trac #9238 and Note [Rules for floating-point comparisons] in PrelRules
where
-- Sometimes (like in test case
-- overloadedlists/should_run/overloadedlistsrun04), the SyntaxExprs include
-- type-changing wrappers (for example, from Id Int to Int, for the identity
-- type family Id). In these cases, we can't do the short-cut.
type_change = not (outer_ty `eqType` ty)
mk_con_pat :: DataCon -> HsLit GhcTc -> Pat GhcTc
mk_con_pat con lit
= unLoc (mkPrefixConPat con [noLoc $ LitPat noExt lit] [])
mb_int_lit :: Maybe Integer
mb_int_lit = case (mb_neg, val) of
(Nothing, HsIntegral i) -> Just (il_value i)
(Just _, HsIntegral i) -> Just (-(il_value i))
_ -> Nothing
mb_str_lit :: Maybe FastString
mb_str_lit = case (mb_neg, val) of
(Nothing, HsIsString _ s) -> Just s
_ -> Nothing
tidyNPat over_lit mb_neg eq outer_ty
= NPat outer_ty (noLoc over_lit) mb_neg eq
{-
************************************************************************
* *
Pattern matching on LitPat
* *
************************************************************************
-}
matchLiterals :: [Id]
-> Type -- Type of the whole case expression
-> [[EquationInfo]] -- All PgLits
-> DsM MatchResult
matchLiterals (var:vars) ty sub_groups
= ASSERT( notNull sub_groups && all notNull sub_groups )
do { -- Deal with each group
; alts <- mapM match_group sub_groups
-- Combine results. For everything except String
-- we can use a case expression; for String we need
-- a chain of if-then-else
; if isStringTy (idType var) then
do { eq_str <- dsLookupGlobalId eqStringName
; mrs <- mapM (wrap_str_guard eq_str) alts
; return (foldr1 combineMatchResults mrs) }
else
return (mkCoPrimCaseMatchResult var ty alts)
}
where
match_group :: [EquationInfo] -> DsM (Literal, MatchResult)
match_group eqns
= do { dflags <- getDynFlags
; let LitPat _ hs_lit = firstPat (head eqns)
; match_result <- match vars ty (shiftEqns eqns)
; return (hsLitKey dflags hs_lit, match_result) }
wrap_str_guard :: Id -> (Literal,MatchResult) -> DsM MatchResult
-- Equality check for string literals
wrap_str_guard eq_str (LitString s, mr)
= do { -- We now have to convert back to FastString. Perhaps there
-- should be separate LitBytes and LitString constructors?
let s' = mkFastStringByteString s
; lit <- mkStringExprFS s'
; let pred = mkApps (Var eq_str) [Var var, lit]
; return (mkGuardedMatchResult pred mr) }
wrap_str_guard _ (l, _) = pprPanic "matchLiterals/wrap_str_guard" (ppr l)
matchLiterals [] _ _ = panic "matchLiterals []"
---------------------------
hsLitKey :: DynFlags -> HsLit GhcTc -> Literal
-- Get the Core literal corresponding to a HsLit.
-- It only works for primitive types and strings;
-- others have been removed by tidy
-- For HsString, it produces a LitString, which really represents an _unboxed_
-- string literal; and we deal with it in matchLiterals above. Otherwise, it
-- produces a primitive Literal of type matching the original HsLit.
-- In the case of the fixed-width numeric types, we need to wrap here
-- because Literal has an invariant that the literal is in range, while
-- HsLit does not.
hsLitKey dflags (HsIntPrim _ i) = mkLitIntWrap dflags i
hsLitKey dflags (HsWordPrim _ w) = mkLitWordWrap dflags w
hsLitKey dflags (HsInt64Prim _ i) = mkLitInt64Wrap dflags i
hsLitKey dflags (HsWord64Prim _ w) = mkLitWord64Wrap dflags w
hsLitKey _ (HsCharPrim _ c) = mkLitChar c
hsLitKey _ (HsFloatPrim _ f) = mkLitFloat (fl_value f)
hsLitKey _ (HsDoublePrim _ d) = mkLitDouble (fl_value d)
hsLitKey _ (HsString _ s) = LitString (bytesFS s)
hsLitKey _ l = pprPanic "hsLitKey" (ppr l)
{-
************************************************************************
* *
Pattern matching on NPat
* *
************************************************************************
-}
matchNPats :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult
matchNPats (var:vars) ty (eqn1:eqns) -- All for the same literal
= do { let NPat _ (dL->L _ lit) mb_neg eq_chk = firstPat eqn1
; lit_expr <- dsOverLit lit
; neg_lit <- case mb_neg of
Nothing -> return lit_expr
Just neg -> dsSyntaxExpr neg [lit_expr]
; pred_expr <- dsSyntaxExpr eq_chk [Var var, neg_lit]
; match_result <- match vars ty (shiftEqns (eqn1:eqns))
; return (mkGuardedMatchResult pred_expr match_result) }
matchNPats vars _ eqns = pprPanic "matchOneNPat" (ppr (vars, eqns))
{-
************************************************************************
* *
Pattern matching on n+k patterns
* *
************************************************************************
For an n+k pattern, we use the various magic expressions we've been given.
We generate:
\begin{verbatim}
if ge var lit then
let n = sub var lit
in <expr-for-a-successful-match>
else
<try-next-pattern-or-whatever>
\end{verbatim}
-}
matchNPlusKPats :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult
-- All NPlusKPats, for the *same* literal k
matchNPlusKPats (var:vars) ty (eqn1:eqns)
= do { let NPlusKPat _ (dL->L _ n1) (dL->L _ lit1) lit2 ge minus
= firstPat eqn1
; lit1_expr <- dsOverLit lit1
; lit2_expr <- dsOverLit lit2
; pred_expr <- dsSyntaxExpr ge [Var var, lit1_expr]
; minusk_expr <- dsSyntaxExpr minus [Var var, lit2_expr]
; let (wraps, eqns') = mapAndUnzip (shift n1) (eqn1:eqns)
; match_result <- match vars ty eqns'
; return (mkGuardedMatchResult pred_expr $
mkCoLetMatchResult (NonRec n1 minusk_expr) $
adjustMatchResult (foldr1 (.) wraps) $
match_result) }
where
shift n1 eqn@(EqnInfo { eqn_pats = NPlusKPat _ (dL->L _ n) _ _ _ _ : pats })
= (wrapBind n n1, eqn { eqn_pats = pats })
-- The wrapBind is a no-op for the first equation
shift _ e = pprPanic "matchNPlusKPats/shift" (ppr e)
matchNPlusKPats vars _ eqns = pprPanic "matchNPlusKPats" (ppr (vars, eqns))
|