1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
|
%
% (c) The University of Glasgow 2002-2006
%
ByteCodeLink: Bytecode assembler and linker
\begin{code}
{-# OPTIONS -optc-DNON_POSIX_SOURCE #-}
{-# LANGUAGE BangPatterns #-}
module ByteCodeAsm (
assembleBCOs, assembleBCO,
CompiledByteCode(..),
UnlinkedBCO(..), BCOPtr(..), BCONPtr(..), bcoFreeNames,
SizedSeq, sizeSS, ssElts,
iNTERP_STACK_CHECK_THRESH
) where
#include "HsVersions.h"
import ByteCodeInstr
import ByteCodeItbls
import Name
import NameSet
import Literal
import TyCon
import PrimOp
import FastString
import StgCmmLayout ( ArgRep(..) )
import SMRep
import DynFlags
import Outputable
import Platform
import Util
import Control.Monad
import Control.Monad.ST ( runST )
import Data.Array.MArray
import Data.Array.Unboxed ( listArray )
import Data.Array.Base ( UArray(..) )
import Data.Array.Unsafe( castSTUArray )
import Foreign
import Data.Char ( ord )
import Data.List
import Data.Map (Map)
import Data.Maybe (fromMaybe)
import qualified Data.Map as Map
import GHC.Base ( ByteArray#, MutableByteArray#, RealWorld )
-- -----------------------------------------------------------------------------
-- Unlinked BCOs
-- CompiledByteCode represents the result of byte-code
-- compiling a bunch of functions and data types
data CompiledByteCode
= ByteCode [UnlinkedBCO] -- Bunch of interpretable bindings
ItblEnv -- A mapping from DataCons to their itbls
instance Outputable CompiledByteCode where
ppr (ByteCode bcos _) = ppr bcos
data UnlinkedBCO
= UnlinkedBCO {
unlinkedBCOName :: Name,
unlinkedBCOArity :: Int,
unlinkedBCOInstrs :: ByteArray#, -- insns
unlinkedBCOBitmap :: ByteArray#, -- bitmap
unlinkedBCOLits :: (SizedSeq BCONPtr), -- non-ptrs
unlinkedBCOPtrs :: (SizedSeq BCOPtr) -- ptrs
}
data BCOPtr
= BCOPtrName Name
| BCOPtrPrimOp PrimOp
| BCOPtrBCO UnlinkedBCO
| BCOPtrBreakInfo BreakInfo
| BCOPtrArray (MutableByteArray# RealWorld)
data BCONPtr
= BCONPtrWord Word
| BCONPtrLbl FastString
| BCONPtrItbl Name
-- | Finds external references. Remember to remove the names
-- defined by this group of BCOs themselves
bcoFreeNames :: UnlinkedBCO -> NameSet
bcoFreeNames bco
= bco_refs bco `minusNameSet` mkNameSet [unlinkedBCOName bco]
where
bco_refs (UnlinkedBCO _ _ _ _ nonptrs ptrs)
= unionManyNameSets (
mkNameSet [ n | BCOPtrName n <- ssElts ptrs ] :
mkNameSet [ n | BCONPtrItbl n <- ssElts nonptrs ] :
map bco_refs [ bco | BCOPtrBCO bco <- ssElts ptrs ]
)
instance Outputable UnlinkedBCO where
ppr (UnlinkedBCO nm _arity _insns _bitmap lits ptrs)
= sep [text "BCO", ppr nm, text "with",
ppr (sizeSS lits), text "lits",
ppr (sizeSS ptrs), text "ptrs" ]
-- -----------------------------------------------------------------------------
-- The bytecode assembler
-- The object format for bytecodes is: 16 bits for the opcode, and 16
-- for each field -- so the code can be considered a sequence of
-- 16-bit ints. Each field denotes either a stack offset or number of
-- items on the stack (eg SLIDE), and index into the pointer table (eg
-- PUSH_G), an index into the literal table (eg PUSH_I/D/L), or a
-- bytecode address in this BCO.
-- Top level assembler fn.
assembleBCOs :: DynFlags -> [ProtoBCO Name] -> [TyCon] -> IO CompiledByteCode
assembleBCOs dflags proto_bcos tycons
= do itblenv <- mkITbls dflags tycons
bcos <- mapM (assembleBCO dflags) proto_bcos
return (ByteCode bcos itblenv)
assembleBCO :: DynFlags -> ProtoBCO Name -> IO UnlinkedBCO
assembleBCO dflags (ProtoBCO nm instrs bitmap bsize arity _origin _malloced) = do
-- pass 1: collect up the offsets of the local labels.
let asm = mapM_ (assembleI dflags) instrs
initial_offset = 0
-- Jump instructions are variable-sized, there are long and short variants
-- depending on the magnitude of the offset. However, we can't tell what
-- size instructions we will need until we have calculated the offsets of
-- the labels, which depends on the size of the instructions... So we
-- first create the label environment assuming that all jumps are short,
-- and if the final size is indeed small enough for short jumps, we are
-- done. Otherwise, we repeat the calculation, and we force all jumps in
-- this BCO to be long.
(n_insns0, lbl_map0) = inspectAsm dflags False initial_offset asm
((n_insns, lbl_map), long_jumps)
| isLarge n_insns0 = (inspectAsm dflags True initial_offset asm, True)
| otherwise = ((n_insns0, lbl_map0), False)
env :: Word16 -> Word
env lbl = fromMaybe
(pprPanic "assembleBCO.findLabel" (ppr lbl))
(Map.lookup lbl lbl_map)
-- pass 2: run assembler and generate instructions, literals and pointers
let initial_state = (emptySS, emptySS, emptySS)
(final_insns, final_lits, final_ptrs) <- execState initial_state $ runAsm dflags long_jumps env asm
-- precomputed size should be equal to final size
ASSERT (n_insns == sizeSS final_insns) return ()
let asm_insns = ssElts final_insns
barr a = case a of UArray _lo _hi _n b -> b
insns_arr = listArray (0, n_insns - 1) asm_insns
!insns_barr = barr insns_arr
bitmap_arr = mkBitmapArray dflags bsize bitmap
!bitmap_barr = barr bitmap_arr
ul_bco = UnlinkedBCO nm arity insns_barr bitmap_barr final_lits final_ptrs
-- 8 Aug 01: Finalisers aren't safe when attached to non-primitive
-- objects, since they might get run too early. Disable this until
-- we figure out what to do.
-- when (notNull malloced) (addFinalizer ul_bco (mapM_ zonk malloced))
return ul_bco
mkBitmapArray :: DynFlags -> Word16 -> [StgWord] -> UArray Int StgWord
mkBitmapArray dflags bsize bitmap
= listArray (0, length bitmap) (toStgWord dflags (toInteger bsize) : bitmap)
-- instrs nonptrs ptrs
type AsmState = (SizedSeq Word16,
SizedSeq BCONPtr,
SizedSeq BCOPtr)
data SizedSeq a = SizedSeq !Word [a]
emptySS :: SizedSeq a
emptySS = SizedSeq 0 []
addToSS :: SizedSeq a -> a -> SizedSeq a
addToSS (SizedSeq n r_xs) x = SizedSeq (n+1) (x:r_xs)
addListToSS :: SizedSeq a -> [a] -> SizedSeq a
addListToSS (SizedSeq n r_xs) xs
= SizedSeq (n + genericLength xs) (reverse xs ++ r_xs)
ssElts :: SizedSeq a -> [a]
ssElts (SizedSeq _ r_xs) = reverse r_xs
sizeSS :: SizedSeq a -> Word
sizeSS (SizedSeq n _) = n
data Operand
= Op Word
| SmallOp Word16
| LabelOp Word16
-- (unused) | LargeOp Word
data Assembler a
= AllocPtr (IO BCOPtr) (Word -> Assembler a)
| AllocLit [BCONPtr] (Word -> Assembler a)
| AllocLabel Word16 (Assembler a)
| Emit Word16 [Operand] (Assembler a)
| NullAsm a
instance Monad Assembler where
return = NullAsm
NullAsm x >>= f = f x
AllocPtr p k >>= f = AllocPtr p (k >=> f)
AllocLit l k >>= f = AllocLit l (k >=> f)
AllocLabel lbl k >>= f = AllocLabel lbl (k >>= f)
Emit w ops k >>= f = Emit w ops (k >>= f)
ioptr :: IO BCOPtr -> Assembler Word
ioptr p = AllocPtr p return
ptr :: BCOPtr -> Assembler Word
ptr = ioptr . return
lit :: [BCONPtr] -> Assembler Word
lit l = AllocLit l return
label :: Word16 -> Assembler ()
label w = AllocLabel w (return ())
emit :: Word16 -> [Operand] -> Assembler ()
emit w ops = Emit w ops (return ())
type LabelEnv = Word16 -> Word
largeOp :: Bool -> Operand -> Bool
largeOp long_jumps op = case op of
SmallOp _ -> False
Op w -> isLarge w
LabelOp _ -> long_jumps
-- LargeOp _ -> True
runAsm :: DynFlags -> Bool -> LabelEnv -> Assembler a -> State AsmState IO a
runAsm dflags long_jumps e = go
where
go (NullAsm x) = return x
go (AllocPtr p_io k) = do
p <- lift p_io
w <- State $ \(st_i0,st_l0,st_p0) -> do
let st_p1 = addToSS st_p0 p
return ((st_i0,st_l0,st_p1), sizeSS st_p0)
go $ k w
go (AllocLit lits k) = do
w <- State $ \(st_i0,st_l0,st_p0) -> do
let st_l1 = addListToSS st_l0 lits
return ((st_i0,st_l1,st_p0), sizeSS st_l0)
go $ k w
go (AllocLabel _ k) = go k
go (Emit w ops k) = do
let largeOps = any (largeOp long_jumps) ops
opcode
| largeOps = largeArgInstr w
| otherwise = w
words = concatMap expand ops
expand (SmallOp w) = [w]
expand (LabelOp w) = expand (Op (e w))
expand (Op w) = if largeOps then largeArg dflags w else [fromIntegral w]
-- expand (LargeOp w) = largeArg dflags w
State $ \(st_i0,st_l0,st_p0) -> do
let st_i1 = addListToSS st_i0 (opcode : words)
return ((st_i1,st_l0,st_p0), ())
go k
type LabelEnvMap = Map Word16 Word
data InspectState = InspectState
{ instrCount :: !Word
, ptrCount :: !Word
, litCount :: !Word
, lblEnv :: LabelEnvMap
}
inspectAsm :: DynFlags -> Bool -> Word -> Assembler a -> (Word, LabelEnvMap)
inspectAsm dflags long_jumps initial_offset
= go (InspectState initial_offset 0 0 Map.empty)
where
go s (NullAsm _) = (instrCount s, lblEnv s)
go s (AllocPtr _ k) = go (s { ptrCount = n + 1 }) (k n)
where n = ptrCount s
go s (AllocLit ls k) = go (s { litCount = n + genericLength ls }) (k n)
where n = litCount s
go s (AllocLabel lbl k) = go s' k
where s' = s { lblEnv = Map.insert lbl (instrCount s) (lblEnv s) }
go s (Emit _ ops k) = go s' k
where
s' = s { instrCount = instrCount s + size }
size = sum (map count ops) + 1
largeOps = any (largeOp long_jumps) ops
count (SmallOp _) = 1
count (LabelOp _) = count (Op 0)
count (Op _) = if largeOps then largeArg16s dflags else 1
-- count (LargeOp _) = largeArg16s dflags
-- Bring in all the bci_ bytecode constants.
#include "rts/Bytecodes.h"
largeArgInstr :: Word16 -> Word16
largeArgInstr bci = bci_FLAG_LARGE_ARGS .|. bci
largeArg :: DynFlags -> Word -> [Word16]
largeArg dflags w
| wORD_SIZE_IN_BITS dflags == 64
= [fromIntegral (w `shiftR` 48),
fromIntegral (w `shiftR` 32),
fromIntegral (w `shiftR` 16),
fromIntegral w]
| wORD_SIZE_IN_BITS dflags == 32
= [fromIntegral (w `shiftR` 16),
fromIntegral w]
| otherwise = error "wORD_SIZE_IN_BITS not 32 or 64?"
largeArg16s :: DynFlags -> Word
largeArg16s dflags | wORD_SIZE_IN_BITS dflags == 64 = 4
| otherwise = 2
assembleI :: DynFlags
-> BCInstr
-> Assembler ()
assembleI dflags i = case i of
STKCHECK n -> emit bci_STKCHECK [Op n]
PUSH_L o1 -> emit bci_PUSH_L [SmallOp o1]
PUSH_LL o1 o2 -> emit bci_PUSH_LL [SmallOp o1, SmallOp o2]
PUSH_LLL o1 o2 o3 -> emit bci_PUSH_LLL [SmallOp o1, SmallOp o2, SmallOp o3]
PUSH_G nm -> do p <- ptr (BCOPtrName nm)
emit bci_PUSH_G [Op p]
PUSH_PRIMOP op -> do p <- ptr (BCOPtrPrimOp op)
emit bci_PUSH_G [Op p]
PUSH_BCO proto -> do let ul_bco = assembleBCO dflags proto
p <- ioptr (liftM BCOPtrBCO ul_bco)
emit bci_PUSH_G [Op p]
PUSH_ALTS proto -> do let ul_bco = assembleBCO dflags proto
p <- ioptr (liftM BCOPtrBCO ul_bco)
emit bci_PUSH_ALTS [Op p]
PUSH_ALTS_UNLIFTED proto pk
-> do let ul_bco = assembleBCO dflags proto
p <- ioptr (liftM BCOPtrBCO ul_bco)
emit (push_alts pk) [Op p]
PUSH_UBX (Left lit) nws -> do np <- literal lit
emit bci_PUSH_UBX [Op np, SmallOp nws]
PUSH_UBX (Right aa) nws -> do np <- addr aa
emit bci_PUSH_UBX [Op np, SmallOp nws]
PUSH_APPLY_N -> emit bci_PUSH_APPLY_N []
PUSH_APPLY_V -> emit bci_PUSH_APPLY_V []
PUSH_APPLY_F -> emit bci_PUSH_APPLY_F []
PUSH_APPLY_D -> emit bci_PUSH_APPLY_D []
PUSH_APPLY_L -> emit bci_PUSH_APPLY_L []
PUSH_APPLY_P -> emit bci_PUSH_APPLY_P []
PUSH_APPLY_PP -> emit bci_PUSH_APPLY_PP []
PUSH_APPLY_PPP -> emit bci_PUSH_APPLY_PPP []
PUSH_APPLY_PPPP -> emit bci_PUSH_APPLY_PPPP []
PUSH_APPLY_PPPPP -> emit bci_PUSH_APPLY_PPPPP []
PUSH_APPLY_PPPPPP -> emit bci_PUSH_APPLY_PPPPPP []
SLIDE n by -> emit bci_SLIDE [SmallOp n, SmallOp by]
ALLOC_AP n -> emit bci_ALLOC_AP [SmallOp n]
ALLOC_AP_NOUPD n -> emit bci_ALLOC_AP_NOUPD [SmallOp n]
ALLOC_PAP arity n -> emit bci_ALLOC_PAP [SmallOp arity, SmallOp n]
MKAP off sz -> emit bci_MKAP [SmallOp off, SmallOp sz]
MKPAP off sz -> emit bci_MKPAP [SmallOp off, SmallOp sz]
UNPACK n -> emit bci_UNPACK [SmallOp n]
PACK dcon sz -> do itbl_no <- lit [BCONPtrItbl (getName dcon)]
emit bci_PACK [Op itbl_no, SmallOp sz]
LABEL lbl -> label lbl
TESTLT_I i l -> do np <- int i
emit bci_TESTLT_I [Op np, LabelOp l]
TESTEQ_I i l -> do np <- int i
emit bci_TESTEQ_I [Op np, LabelOp l]
TESTLT_W w l -> do np <- word w
emit bci_TESTLT_W [Op np, LabelOp l]
TESTEQ_W w l -> do np <- word w
emit bci_TESTEQ_W [Op np, LabelOp l]
TESTLT_F f l -> do np <- float f
emit bci_TESTLT_F [Op np, LabelOp l]
TESTEQ_F f l -> do np <- float f
emit bci_TESTEQ_F [Op np, LabelOp l]
TESTLT_D d l -> do np <- double d
emit bci_TESTLT_D [Op np, LabelOp l]
TESTEQ_D d l -> do np <- double d
emit bci_TESTEQ_D [Op np, LabelOp l]
TESTLT_P i l -> emit bci_TESTLT_P [SmallOp i, LabelOp l]
TESTEQ_P i l -> emit bci_TESTEQ_P [SmallOp i, LabelOp l]
CASEFAIL -> emit bci_CASEFAIL []
SWIZZLE stkoff n -> emit bci_SWIZZLE [SmallOp stkoff, SmallOp n]
JMP l -> emit bci_JMP [LabelOp l]
ENTER -> emit bci_ENTER []
RETURN -> emit bci_RETURN []
RETURN_UBX rep -> emit (return_ubx rep) []
CCALL off m_addr i -> do np <- addr m_addr
emit bci_CCALL [SmallOp off, Op np, SmallOp i]
BRK_FUN array index info -> do p1 <- ptr (BCOPtrArray array)
p2 <- ptr (BCOPtrBreakInfo info)
emit bci_BRK_FUN [Op p1, SmallOp index, Op p2]
where
literal (MachLabel fs (Just sz) _)
| platformOS (targetPlatform dflags) == OSMinGW32
= litlabel (appendFS fs (mkFastString ('@':show sz)))
-- On Windows, stdcall labels have a suffix indicating the no. of
-- arg words, e.g. foo@8. testcase: ffi012(ghci)
literal (MachLabel fs _ _) = litlabel fs
literal (MachWord w) = int (fromIntegral w)
literal (MachInt j) = int (fromIntegral j)
literal MachNullAddr = int 0
literal (MachFloat r) = float (fromRational r)
literal (MachDouble r) = double (fromRational r)
literal (MachChar c) = int (ord c)
literal (MachInt64 ii) = int64 (fromIntegral ii)
literal (MachWord64 ii) = int64 (fromIntegral ii)
literal other = pprPanic "ByteCodeAsm.literal" (ppr other)
litlabel fs = lit [BCONPtrLbl fs]
addr = words . mkLitPtr
float = words . mkLitF
double = words . mkLitD dflags
int = words . mkLitI
int64 = words . mkLitI64 dflags
words ws = lit (map BCONPtrWord ws)
word w = words [w]
isLarge :: Word -> Bool
isLarge n = n > 65535
push_alts :: ArgRep -> Word16
push_alts V = bci_PUSH_ALTS_V
push_alts P = bci_PUSH_ALTS_P
push_alts N = bci_PUSH_ALTS_N
push_alts L = bci_PUSH_ALTS_L
push_alts F = bci_PUSH_ALTS_F
push_alts D = bci_PUSH_ALTS_D
push_alts V16 = error "push_alts: vector"
return_ubx :: ArgRep -> Word16
return_ubx V = bci_RETURN_V
return_ubx P = bci_RETURN_P
return_ubx N = bci_RETURN_N
return_ubx L = bci_RETURN_L
return_ubx F = bci_RETURN_F
return_ubx D = bci_RETURN_D
return_ubx V16 = error "return_ubx: vector"
-- Make lists of host-sized words for literals, so that when the
-- words are placed in memory at increasing addresses, the
-- bit pattern is correct for the host's word size and endianness.
mkLitI :: Int -> [Word]
mkLitF :: Float -> [Word]
mkLitD :: DynFlags -> Double -> [Word]
mkLitPtr :: Ptr () -> [Word]
mkLitI64 :: DynFlags -> Int64 -> [Word]
mkLitF f
= runST (do
arr <- newArray_ ((0::Int),0)
writeArray arr 0 f
f_arr <- castSTUArray arr
w0 <- readArray f_arr 0
return [w0 :: Word]
)
mkLitD dflags d
| wORD_SIZE dflags == 4
= runST (do
arr <- newArray_ ((0::Int),1)
writeArray arr 0 d
d_arr <- castSTUArray arr
w0 <- readArray d_arr 0
w1 <- readArray d_arr 1
return [w0 :: Word, w1]
)
| wORD_SIZE dflags == 8
= runST (do
arr <- newArray_ ((0::Int),0)
writeArray arr 0 d
d_arr <- castSTUArray arr
w0 <- readArray d_arr 0
return [w0 :: Word]
)
| otherwise
= panic "mkLitD: Bad wORD_SIZE"
mkLitI64 dflags ii
| wORD_SIZE dflags == 4
= runST (do
arr <- newArray_ ((0::Int),1)
writeArray arr 0 ii
d_arr <- castSTUArray arr
w0 <- readArray d_arr 0
w1 <- readArray d_arr 1
return [w0 :: Word,w1]
)
| wORD_SIZE dflags == 8
= runST (do
arr <- newArray_ ((0::Int),0)
writeArray arr 0 ii
d_arr <- castSTUArray arr
w0 <- readArray d_arr 0
return [w0 :: Word]
)
| otherwise
= panic "mkLitI64: Bad wORD_SIZE"
mkLitI i
= runST (do
arr <- newArray_ ((0::Int),0)
writeArray arr 0 i
i_arr <- castSTUArray arr
w0 <- readArray i_arr 0
return [w0 :: Word]
)
mkLitPtr a
= runST (do
arr <- newArray_ ((0::Int),0)
writeArray arr 0 a
a_arr <- castSTUArray arr
w0 <- readArray a_arr 0
return [w0 :: Word]
)
iNTERP_STACK_CHECK_THRESH :: Int
iNTERP_STACK_CHECK_THRESH = INTERP_STACK_CHECK_THRESH
\end{code}
|