1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
%
% (c) The University of Glasgow 2000
%
\section[ByteCodeItbls]{Generate infotables for interpreter-made bytecodes}
\begin{code}
{-# OPTIONS -optc-DNON_POSIX_SOURCE #-}
module ByteCodeItbls ( ItblEnv, ItblPtr, mkITbls ) where
#include "HsVersions.h"
import Name ( Name, getName )
import NameEnv
import SMRep ( typeCgRep )
import DataCon ( DataCon, dataConRepArgTys )
import TyCon ( TyCon, tyConFamilySize, isDataTyCon, tyConDataCons )
import Constants ( mIN_PAYLOAD_SIZE, wORD_SIZE )
import CgHeapery ( mkVirtHeapOffsets )
import FastString ( FastString(..) )
import Util ( lengthIs, listLengthCmp )
import Foreign
import Foreign.C
import DATA_BITS ( Bits(..), shiftR )
import GHC.Exts ( Int(I#), addr2Int# )
#if __GLASGOW_HASKELL__ < 503
import Ptr ( Ptr(..) )
#else
import GHC.Ptr ( Ptr(..) )
#endif
\end{code}
%************************************************************************
%* *
\subsection{Manufacturing of info tables for DataCons}
%* *
%************************************************************************
\begin{code}
type ItblPtr = Ptr StgInfoTable
type ItblEnv = NameEnv (Name, ItblPtr)
-- We need the Name in the range so we know which
-- elements to filter out when unloading a module
mkItblEnv :: [(Name,ItblPtr)] -> ItblEnv
mkItblEnv pairs = mkNameEnv [(n, (n,p)) | (n,p) <- pairs]
-- Make info tables for the data decls in this module
mkITbls :: [TyCon] -> IO ItblEnv
mkITbls [] = return emptyNameEnv
mkITbls (tc:tcs) = do itbls <- mkITbl tc
itbls2 <- mkITbls tcs
return (itbls `plusNameEnv` itbls2)
mkITbl :: TyCon -> IO ItblEnv
mkITbl tc
| not (isDataTyCon tc)
= return emptyNameEnv
| dcs `lengthIs` n -- paranoia; this is an assertion.
= make_constr_itbls dcs
where
dcs = tyConDataCons tc
n = tyConFamilySize tc
#include "../includes/ClosureTypes.h"
cONSTR :: Int -- Defined in ClosureTypes.h
cONSTR = CONSTR
-- Assumes constructors are numbered from zero, not one
make_constr_itbls :: [DataCon] -> IO ItblEnv
make_constr_itbls cons
| listLengthCmp cons 8 /= GT -- <= 8 elements in the list
= do is <- mapM mk_vecret_itbl (zip cons [0..])
return (mkItblEnv is)
| otherwise
= do is <- mapM mk_dirret_itbl (zip cons [0..])
return (mkItblEnv is)
where
mk_vecret_itbl (dcon, conNo)
= mk_itbl dcon conNo (vecret_entry conNo)
mk_dirret_itbl (dcon, conNo)
= mk_itbl dcon conNo stg_interp_constr_entry
mk_itbl :: DataCon -> Int -> Ptr () -> IO (Name,ItblPtr)
mk_itbl dcon conNo entry_addr
= let rep_args = [ (typeCgRep arg,arg)
| arg <- dataConRepArgTys dcon ]
(tot_wds, ptr_wds, _) = mkVirtHeapOffsets False{-not a THUNK-} rep_args
ptrs = ptr_wds
nptrs = tot_wds - ptr_wds
nptrs_really
| ptrs + nptrs >= mIN_PAYLOAD_SIZE = nptrs
| otherwise = mIN_PAYLOAD_SIZE - ptrs
itbl = StgInfoTable {
ptrs = fromIntegral ptrs,
nptrs = fromIntegral nptrs_really,
tipe = fromIntegral cONSTR,
srtlen = fromIntegral conNo,
code = code
}
-- Make a piece of code to jump to "entry_label".
-- This is the only arch-dependent bit.
code = mkJumpToAddr entry_addr
in
do addr <- malloc_exec (sizeOf itbl)
--putStrLn ("SIZE of itbl is " ++ show (sizeOf itbl))
--putStrLn ("# ptrs of itbl is " ++ show ptrs)
--putStrLn ("# nptrs of itbl is " ++ show nptrs_really)
poke addr itbl
return (getName dcon, addr `plusPtr` (2 * wORD_SIZE))
-- Make code which causes a jump to the given address. This is the
-- only arch-dependent bit of the itbl story. The returned list is
-- itblCodeLength elements (bytes) long.
-- For sparc_TARGET_ARCH, i386_TARGET_ARCH, etc.
#include "nativeGen/NCG.h"
itblCodeLength :: Int
itblCodeLength = length (mkJumpToAddr undefined)
mkJumpToAddr :: Ptr () -> [ItblCode]
ptrToInt (Ptr a#) = I# (addr2Int# a#)
#if sparc_TARGET_ARCH
-- After some consideration, we'll try this, where
-- 0x55555555 stands in for the address to jump to.
-- According to ghc/includes/MachRegs.h, %g3 is very
-- likely indeed to be baggable.
--
-- 0000 07155555 sethi %hi(0x55555555), %g3
-- 0004 8610E155 or %g3, %lo(0x55555555), %g3
-- 0008 81C0C000 jmp %g3
-- 000c 01000000 nop
type ItblCode = Word32
mkJumpToAddr a
= let w32 = fromIntegral (ptrToInt a)
hi22, lo10 :: Word32 -> Word32
lo10 x = x .&. 0x3FF
hi22 x = (x `shiftR` 10) .&. 0x3FFFF
in [ 0x07000000 .|. (hi22 w32),
0x8610E000 .|. (lo10 w32),
0x81C0C000,
0x01000000 ]
#elif powerpc_TARGET_ARCH
-- We'll use r12, for no particular reason.
-- 0xDEADBEEF stands for the adress:
-- 3D80DEAD lis r12,0xDEAD
-- 618CBEEF ori r12,r12,0xBEEF
-- 7D8903A6 mtctr r12
-- 4E800420 bctr
type ItblCode = Word32
mkJumpToAddr a =
let w32 = fromIntegral (ptrToInt a)
hi16 x = (x `shiftR` 16) .&. 0xFFFF
lo16 x = x .&. 0xFFFF
in [
0x3D800000 .|. hi16 w32,
0x618C0000 .|. lo16 w32,
0x7D8903A6, 0x4E800420
]
#elif i386_TARGET_ARCH
-- Let the address to jump to be 0xWWXXYYZZ.
-- Generate movl $0xWWXXYYZZ,%eax ; jmp *%eax
-- which is
-- B8 ZZ YY XX WW FF E0
type ItblCode = Word8
mkJumpToAddr a
= let w32 = fromIntegral (ptrToInt a) :: Word32
insnBytes :: [Word8]
insnBytes
= [0xB8, byte0 w32, byte1 w32,
byte2 w32, byte3 w32,
0xFF, 0xE0]
in
insnBytes
#elif x86_64_TARGET_ARCH
-- Generates:
-- jmpq *.L1(%rip)
-- .align 8
-- .L1:
-- .quad <addr>
--
-- We need a full 64-bit pointer (we can't assume the info table is
-- allocated in low memory). Assuming the info pointer is aligned to
-- an 8-byte boundary, the addr will also be aligned.
type ItblCode = Word8
mkJumpToAddr a
= let w64 = fromIntegral (ptrToInt a) :: Word64
insnBytes :: [Word8]
insnBytes
= [0xff, 0x25, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
byte0 w64, byte1 w64, byte2 w64, byte3 w64,
byte4 w64, byte5 w64, byte6 w64, byte7 w64]
in
insnBytes
#elif alpha_TARGET_ARCH
type ItblCode = Word32
mkJumpToAddr a
= [ 0xc3800000 -- br at, .+4
, 0xa79c000c -- ldq at, 12(at)
, 0x6bfc0000 -- jmp (at) # with zero hint -- oh well
, 0x47ff041f -- nop
, fromIntegral (w64 .&. 0x0000FFFF)
, fromIntegral ((w64 `shiftR` 32) .&. 0x0000FFFF) ]
where w64 = fromIntegral (ptrToInt a) :: Word64
#else
type ItblCode = Word32
mkJumpToAddr a
= undefined
#endif
byte0, byte1, byte2, byte3, byte4, byte5, byte6, byte7
:: (Integral w, Bits w) => w -> Word8
byte0 w = fromIntegral w
byte1 w = fromIntegral (w `shiftR` 8)
byte2 w = fromIntegral (w `shiftR` 16)
byte3 w = fromIntegral (w `shiftR` 24)
byte4 w = fromIntegral (w `shiftR` 32)
byte5 w = fromIntegral (w `shiftR` 40)
byte6 w = fromIntegral (w `shiftR` 48)
byte7 w = fromIntegral (w `shiftR` 56)
vecret_entry 0 = stg_interp_constr1_entry
vecret_entry 1 = stg_interp_constr2_entry
vecret_entry 2 = stg_interp_constr3_entry
vecret_entry 3 = stg_interp_constr4_entry
vecret_entry 4 = stg_interp_constr5_entry
vecret_entry 5 = stg_interp_constr6_entry
vecret_entry 6 = stg_interp_constr7_entry
vecret_entry 7 = stg_interp_constr8_entry
#ifndef __HADDOCK__
-- entry point for direct returns for created constr itbls
foreign import ccall "&stg_interp_constr_entry" stg_interp_constr_entry :: Ptr ()
-- and the 8 vectored ones
foreign import ccall "&stg_interp_constr1_entry" stg_interp_constr1_entry :: Ptr ()
foreign import ccall "&stg_interp_constr2_entry" stg_interp_constr2_entry :: Ptr ()
foreign import ccall "&stg_interp_constr3_entry" stg_interp_constr3_entry :: Ptr ()
foreign import ccall "&stg_interp_constr4_entry" stg_interp_constr4_entry :: Ptr ()
foreign import ccall "&stg_interp_constr5_entry" stg_interp_constr5_entry :: Ptr ()
foreign import ccall "&stg_interp_constr6_entry" stg_interp_constr6_entry :: Ptr ()
foreign import ccall "&stg_interp_constr7_entry" stg_interp_constr7_entry :: Ptr ()
foreign import ccall "&stg_interp_constr8_entry" stg_interp_constr8_entry :: Ptr ()
#endif
-- Ultra-minimalist version specially for constructors
#if SIZEOF_VOID_P == 8
type HalfWord = Word32
#else
type HalfWord = Word16
#endif
data StgInfoTable = StgInfoTable {
ptrs :: HalfWord,
nptrs :: HalfWord,
tipe :: HalfWord,
srtlen :: HalfWord,
code :: [ItblCode]
}
instance Storable StgInfoTable where
sizeOf itbl
= sum
[fieldSz ptrs itbl,
fieldSz nptrs itbl,
fieldSz tipe itbl,
fieldSz srtlen itbl,
fieldSz (head.code) itbl * itblCodeLength]
alignment itbl
= SIZEOF_VOID_P
poke a0 itbl
= runState (castPtr a0)
$ do store (ptrs itbl)
store (nptrs itbl)
store (tipe itbl)
store (srtlen itbl)
sequence_ (map store (code itbl))
peek a0
= runState (castPtr a0)
$ do ptrs <- load
nptrs <- load
tipe <- load
srtlen <- load
code <- sequence (replicate itblCodeLength load)
return
StgInfoTable {
ptrs = ptrs,
nptrs = nptrs,
tipe = tipe,
srtlen = srtlen,
code = code
}
fieldSz :: (Storable a, Storable b) => (a -> b) -> a -> Int
fieldSz sel x = sizeOf (sel x)
newtype State s m a = State (s -> m (s, a))
instance Monad m => Monad (State s m) where
return a = State (\s -> return (s, a))
State m >>= k = State (\s -> m s >>= \(s', a) -> case k a of State n -> n s')
fail str = State (\s -> fail str)
class (Monad m, Monad (t m)) => MonadT t m where
lift :: m a -> t m a
instance Monad m => MonadT (State s) m where
lift m = State (\s -> m >>= \a -> return (s, a))
runState :: (Monad m) => s -> State s m a -> m a
runState s (State m) = m s >>= return . snd
type PtrIO = State (Ptr Word8) IO
advance :: Storable a => PtrIO (Ptr a)
advance = State adv where
adv addr = case castPtr addr of { addrCast -> return
(addr `plusPtr` sizeOfPointee addrCast, addrCast) }
sizeOfPointee :: (Storable a) => Ptr a -> Int
sizeOfPointee addr = sizeOf (typeHack addr)
where typeHack = undefined :: Ptr a -> a
store :: Storable a => a -> PtrIO ()
store x = do addr <- advance
lift (poke addr x)
load :: Storable a => PtrIO a
load = do addr <- advance
lift (peek addr)
foreign import ccall unsafe "stgMallocBytesRWX"
_stgMallocBytesRWX :: CInt -> IO (Ptr a)
malloc_exec :: Int -> IO (Ptr a)
malloc_exec bytes = _stgMallocBytesRWX (fromIntegral bytes)
\end{code}
|