summaryrefslogtreecommitdiff
path: root/compiler/hsSyn/Convert.hs
blob: f9e5ca195820858bffa18dfad7bc141f1fe57b01 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998


This module converts Template Haskell syntax into HsSyn
-}

{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}

module Convert( convertToHsExpr, convertToPat, convertToHsDecls,
                convertToHsType,
                thRdrNameGuesses ) where

import GhcPrelude

import HsSyn as Hs
import qualified Class
import RdrName
import qualified Name
import Module
import RdrHsSyn
import qualified OccName
import OccName
import SrcLoc
import Type
import qualified Coercion ( Role(..) )
import TysWiredIn
import TysPrim (eqPrimTyCon)
import BasicTypes as Hs
import ForeignCall
import Unique
import ErrUtils
import Bag
import Lexeme
import Util
import FastString
import Outputable
import MonadUtils ( foldrM )

import qualified Data.ByteString as BS
import Control.Monad( unless, liftM, ap, (<=<) )

import Data.Maybe( catMaybes, fromMaybe, isNothing )
import Language.Haskell.TH as TH hiding (sigP)
import Language.Haskell.TH.Syntax as TH

-------------------------------------------------------------------
--              The external interface

convertToHsDecls :: SrcSpan -> [TH.Dec] -> Either MsgDoc [LHsDecl GhcPs]
convertToHsDecls loc ds = initCvt loc (fmap catMaybes (mapM cvt_dec ds))
  where
    cvt_dec d = wrapMsg "declaration" d (cvtDec d)

convertToHsExpr :: SrcSpan -> TH.Exp -> Either MsgDoc (LHsExpr GhcPs)
convertToHsExpr loc e
  = initCvt loc $ wrapMsg "expression" e $ cvtl e

convertToPat :: SrcSpan -> TH.Pat -> Either MsgDoc (LPat GhcPs)
convertToPat loc p
  = initCvt loc $ wrapMsg "pattern" p $ cvtPat p

convertToHsType :: SrcSpan -> TH.Type -> Either MsgDoc (LHsType GhcPs)
convertToHsType loc t
  = initCvt loc $ wrapMsg "type" t $ cvtType t

-------------------------------------------------------------------
newtype CvtM a = CvtM { unCvtM :: SrcSpan -> Either MsgDoc (SrcSpan, a) }
        -- Push down the source location;
        -- Can fail, with a single error message

-- NB: If the conversion succeeds with (Right x), there should
--     be no exception values hiding in x
-- Reason: so a (head []) in TH code doesn't subsequently
--         make GHC crash when it tries to walk the generated tree

-- Use the loc everywhere, for lack of anything better
-- In particular, we want it on binding locations, so that variables bound in
-- the spliced-in declarations get a location that at least relates to the splice point

instance Functor CvtM where
    fmap = liftM

instance Applicative CvtM where
    pure x = CvtM $ \loc -> Right (loc,x)
    (<*>) = ap

instance Monad CvtM where
  (CvtM m) >>= k = CvtM $ \loc -> case m loc of
                                  Left err -> Left err
                                  Right (loc',v) -> unCvtM (k v) loc'

initCvt :: SrcSpan -> CvtM a -> Either MsgDoc a
initCvt loc (CvtM m) = fmap snd (m loc)

force :: a -> CvtM ()
force a = a `seq` return ()

failWith :: MsgDoc -> CvtM a
failWith m = CvtM (\_ -> Left m)

getL :: CvtM SrcSpan
getL = CvtM (\loc -> Right (loc,loc))

setL :: SrcSpan -> CvtM ()
setL loc = CvtM (\_ -> Right (loc, ()))

returnL :: a -> CvtM (Located a)
returnL x = CvtM (\loc -> Right (loc, L loc x))

returnJustL :: a -> CvtM (Maybe (Located a))
returnJustL = fmap Just . returnL

wrapParL :: (Located a -> a) -> a -> CvtM a
wrapParL add_par x = CvtM (\loc -> Right (loc, add_par (L loc x)))

wrapMsg :: (Show a, TH.Ppr a) => String -> a -> CvtM b -> CvtM b
-- E.g  wrapMsg "declaration" dec thing
wrapMsg what item (CvtM m)
  = CvtM (\loc -> case m loc of
                     Left err -> Left (err $$ getPprStyle msg)
                     Right v  -> Right v)
  where
        -- Show the item in pretty syntax normally,
        -- but with all its constructors if you say -dppr-debug
    msg sty = hang (text "When splicing a TH" <+> text what <> colon)
                 2 (if debugStyle sty
                    then text (show item)
                    else text (pprint item))

wrapL :: CvtM a -> CvtM (Located a)
wrapL (CvtM m) = CvtM (\loc -> case m loc of
                               Left err -> Left err
                               Right (loc',v) -> Right (loc',L loc v))

-------------------------------------------------------------------
cvtDecs :: [TH.Dec] -> CvtM [LHsDecl GhcPs]
cvtDecs = fmap catMaybes . mapM cvtDec

cvtDec :: TH.Dec -> CvtM (Maybe (LHsDecl GhcPs))
cvtDec (TH.ValD pat body ds)
  | TH.VarP s <- pat
  = do  { s' <- vNameL s
        ; cl' <- cvtClause (mkPrefixFunRhs s') (Clause [] body ds)
        ; returnJustL $ Hs.ValD $ mkFunBind s' [cl'] }

  | otherwise
  = do  { pat' <- cvtPat pat
        ; body' <- cvtGuard body
        ; ds' <- cvtLocalDecs (text "a where clause") ds
        ; returnJustL $ Hs.ValD $
          PatBind { pat_lhs = pat', pat_rhs = GRHSs body' (noLoc ds')
                  , pat_rhs_ty = placeHolderType, bind_fvs = placeHolderNames
                  , pat_ticks = ([],[]) } }

cvtDec (TH.FunD nm cls)
  | null cls
  = failWith (text "Function binding for"
                 <+> quotes (text (TH.pprint nm))
                 <+> text "has no equations")
  | otherwise
  = do  { nm' <- vNameL nm
        ; cls' <- mapM (cvtClause (mkPrefixFunRhs nm')) cls
        ; returnJustL $ Hs.ValD $ mkFunBind nm' cls' }

cvtDec (TH.SigD nm typ)
  = do  { nm' <- vNameL nm
        ; ty' <- cvtType typ
        ; returnJustL $ Hs.SigD (TypeSig [nm'] (mkLHsSigWcType ty')) }

cvtDec (TH.InfixD fx nm)
  -- Fixity signatures are allowed for variables, constructors, and types
  -- the renamer automatically looks for types during renaming, even when
  -- the RdrName says it's a variable or a constructor. So, just assume
  -- it's a variable or constructor and proceed.
  = do { nm' <- vcNameL nm
       ; returnJustL (Hs.SigD (FixSig (FixitySig [nm'] (cvtFixity fx)))) }

cvtDec (PragmaD prag)
  = cvtPragmaD prag

cvtDec (TySynD tc tvs rhs)
  = do  { (_, tc', tvs') <- cvt_tycl_hdr [] tc tvs
        ; rhs' <- cvtType rhs
        ; returnJustL $ TyClD $
          SynDecl { tcdLName = tc', tcdTyVars = tvs'
                  , tcdFixity = Prefix
                  , tcdFVs = placeHolderNames
                  , tcdRhs = rhs' } }

cvtDec (DataD ctxt tc tvs ksig constrs derivs)
  = do  { let isGadtCon (GadtC    _ _ _) = True
              isGadtCon (RecGadtC _ _ _) = True
              isGadtCon (ForallC  _ _ c) = isGadtCon c
              isGadtCon _                = False
              isGadtDecl  = all isGadtCon constrs
              isH98Decl   = all (not . isGadtCon) constrs
        ; unless (isGadtDecl || isH98Decl)
                 (failWith (text "Cannot mix GADT constructors with Haskell 98"
                        <+> text "constructors"))
        ; unless (isNothing ksig || isGadtDecl)
                 (failWith (text "Kind signatures are only allowed on GADTs"))
        ; (ctxt', tc', tvs') <- cvt_tycl_hdr ctxt tc tvs
        ; ksig' <- cvtKind `traverse` ksig
        ; cons' <- mapM cvtConstr constrs
        ; derivs' <- cvtDerivs derivs
        ; let defn = HsDataDefn { dd_ND = DataType, dd_cType = Nothing
                                , dd_ctxt = ctxt'
                                , dd_kindSig = ksig'
                                , dd_cons = cons', dd_derivs = derivs' }
        ; returnJustL $ TyClD (DataDecl { tcdLName = tc', tcdTyVars = tvs'
                                        , tcdFixity = Prefix
                                        , tcdDataDefn = defn
                                        , tcdDataCusk = PlaceHolder
                                        , tcdFVs = placeHolderNames }) }

cvtDec (NewtypeD ctxt tc tvs ksig constr derivs)
  = do  { (ctxt', tc', tvs') <- cvt_tycl_hdr ctxt tc tvs
        ; ksig' <- cvtKind `traverse` ksig
        ; con' <- cvtConstr constr
        ; derivs' <- cvtDerivs derivs
        ; let defn = HsDataDefn { dd_ND = NewType, dd_cType = Nothing
                                , dd_ctxt = ctxt'
                                , dd_kindSig = ksig'
                                , dd_cons = [con']
                                , dd_derivs = derivs' }
        ; returnJustL $ TyClD (DataDecl { tcdLName = tc', tcdTyVars = tvs'
                                    , tcdFixity = Prefix
                                    , tcdDataDefn = defn
                                    , tcdDataCusk = PlaceHolder
                                    , tcdFVs = placeHolderNames }) }

cvtDec (ClassD ctxt cl tvs fds decs)
  = do  { (cxt', tc', tvs') <- cvt_tycl_hdr ctxt cl tvs
        ; fds'  <- mapM cvt_fundep fds
        ; (binds', sigs', fams', ats', adts') <- cvt_ci_decs (text "a class declaration") decs
        ; unless (null adts')
            (failWith $ (text "Default data instance declarations"
                     <+> text "are not allowed:")
                   $$ (Outputable.ppr adts'))
        ; at_defs <- mapM cvt_at_def ats'
        ; returnJustL $ TyClD $
          ClassDecl { tcdCtxt = cxt', tcdLName = tc', tcdTyVars = tvs'
                    , tcdFixity = Prefix
                    , tcdFDs = fds', tcdSigs = Hs.mkClassOpSigs sigs'
                    , tcdMeths = binds'
                    , tcdATs = fams', tcdATDefs = at_defs, tcdDocs = []
                    , tcdFVs = placeHolderNames }
                              -- no docs in TH ^^
        }
  where
    cvt_at_def :: LTyFamInstDecl GhcPs -> CvtM (LTyFamDefltEqn GhcPs)
    -- Very similar to what happens in RdrHsSyn.mkClassDecl
    cvt_at_def decl = case RdrHsSyn.mkATDefault decl of
                        Right def     -> return def
                        Left (_, msg) -> failWith msg

cvtDec (InstanceD o ctxt ty decs)
  = do  { let doc = text "an instance declaration"
        ; (binds', sigs', fams', ats', adts') <- cvt_ci_decs doc decs
        ; unless (null fams') (failWith (mkBadDecMsg doc fams'))
        ; ctxt' <- cvtContext ctxt
        ; L loc ty' <- cvtType ty
        ; let inst_ty' = mkHsQualTy ctxt loc ctxt' $ L loc ty'
        ; returnJustL $ InstD $ ClsInstD $
          ClsInstDecl { cid_poly_ty = mkLHsSigType inst_ty'
                      , cid_binds = binds'
                      , cid_sigs = Hs.mkClassOpSigs sigs'
                      , cid_tyfam_insts = ats', cid_datafam_insts = adts'
                      , cid_overlap_mode = fmap (L loc . overlap) o } }
  where
  overlap pragma =
    case pragma of
      TH.Overlaps      -> Hs.Overlaps     (SourceText "OVERLAPS")
      TH.Overlappable  -> Hs.Overlappable (SourceText "OVERLAPPABLE")
      TH.Overlapping   -> Hs.Overlapping  (SourceText "OVERLAPPING")
      TH.Incoherent    -> Hs.Incoherent   (SourceText "INCOHERENT")




cvtDec (ForeignD ford)
  = do { ford' <- cvtForD ford
       ; returnJustL $ ForD ford' }

cvtDec (DataFamilyD tc tvs kind)
  = do { (_, tc', tvs') <- cvt_tycl_hdr [] tc tvs
       ; result <- cvtMaybeKindToFamilyResultSig kind
       ; returnJustL $ TyClD $ FamDecl $
         FamilyDecl DataFamily tc' tvs' Prefix result Nothing }

cvtDec (DataInstD ctxt tc tys ksig constrs derivs)
  = do { (ctxt', tc', typats') <- cvt_tyinst_hdr ctxt tc tys
       ; ksig' <- cvtKind `traverse` ksig
       ; cons' <- mapM cvtConstr constrs
       ; derivs' <- cvtDerivs derivs
       ; let defn = HsDataDefn { dd_ND = DataType, dd_cType = Nothing
                               , dd_ctxt = ctxt'
                               , dd_kindSig = ksig'
                               , dd_cons = cons', dd_derivs = derivs' }

       ; returnJustL $ InstD $ DataFamInstD
           { dfid_inst = DataFamInstDecl { dfid_eqn = mkHsImplicitBndrs $
                           FamEqn { feqn_tycon = tc', feqn_pats = typats'
                                  , feqn_rhs = defn
                                  , feqn_fixity = Prefix } }}}

cvtDec (NewtypeInstD ctxt tc tys ksig constr derivs)
  = do { (ctxt', tc', typats') <- cvt_tyinst_hdr ctxt tc tys
       ; ksig' <- cvtKind `traverse` ksig
       ; con' <- cvtConstr constr
       ; derivs' <- cvtDerivs derivs
       ; let defn = HsDataDefn { dd_ND = NewType, dd_cType = Nothing
                               , dd_ctxt = ctxt'
                               , dd_kindSig = ksig'
                               , dd_cons = [con'], dd_derivs = derivs' }
       ; returnJustL $ InstD $ DataFamInstD
           { dfid_inst = DataFamInstDecl { dfid_eqn = mkHsImplicitBndrs $
                           FamEqn { feqn_tycon = tc', feqn_pats = typats'
                                  , feqn_rhs = defn
                                  , feqn_fixity = Prefix } }}}

cvtDec (TySynInstD tc eqn)
  = do  { tc' <- tconNameL tc
        ; L _ eqn' <- cvtTySynEqn tc' eqn
        ; returnJustL $ InstD $ TyFamInstD
            { tfid_inst = TyFamInstDecl { tfid_eqn = eqn' } } }

cvtDec (OpenTypeFamilyD head)
  = do { (tc', tyvars', result', injectivity') <- cvt_tyfam_head head
       ; returnJustL $ TyClD $ FamDecl $
         FamilyDecl OpenTypeFamily tc' tyvars' Prefix result' injectivity' }

cvtDec (ClosedTypeFamilyD head eqns)
  = do { (tc', tyvars', result', injectivity') <- cvt_tyfam_head head
       ; eqns' <- mapM (cvtTySynEqn tc') eqns
       ; returnJustL $ TyClD $ FamDecl $
         FamilyDecl (ClosedTypeFamily (Just eqns')) tc' tyvars' Prefix result'
                                      injectivity' }

cvtDec (TH.RoleAnnotD tc roles)
  = do { tc' <- tconNameL tc
       ; let roles' = map (noLoc . cvtRole) roles
       ; returnJustL $ Hs.RoleAnnotD (RoleAnnotDecl tc' roles') }

cvtDec (TH.StandaloneDerivD ds cxt ty)
  = do { cxt' <- cvtContext cxt
       ; L loc ty'  <- cvtType ty
       ; let inst_ty' = mkHsQualTy cxt loc cxt' $ L loc ty'
       ; returnJustL $ DerivD $
         DerivDecl { deriv_strategy = fmap (L loc . cvtDerivStrategy) ds
                   , deriv_type = mkLHsSigType inst_ty'
                   , deriv_overlap_mode = Nothing } }

cvtDec (TH.DefaultSigD nm typ)
  = do { nm' <- vNameL nm
       ; ty' <- cvtType typ
       ; returnJustL $ Hs.SigD $ ClassOpSig True [nm'] (mkLHsSigType ty') }

cvtDec (TH.PatSynD nm args dir pat)
  = do { nm'   <- cNameL nm
       ; args' <- cvtArgs args
       ; dir'  <- cvtDir nm' dir
       ; pat'  <- cvtPat pat
       ; returnJustL $ Hs.ValD $ PatSynBind $
           PSB nm' placeHolderType args' pat' dir' }
  where
    cvtArgs (TH.PrefixPatSyn args) = Hs.PrefixPatSyn <$> mapM vNameL args
    cvtArgs (TH.InfixPatSyn a1 a2) = Hs.InfixPatSyn <$> vNameL a1 <*> vNameL a2
    cvtArgs (TH.RecordPatSyn sels)
      = do { sels' <- mapM vNameL sels
           ; vars' <- mapM (vNameL . mkNameS . nameBase) sels
           ; return $ Hs.RecordPatSyn $ zipWith RecordPatSynField sels' vars' }

    cvtDir _ Unidir          = return Unidirectional
    cvtDir _ ImplBidir       = return ImplicitBidirectional
    cvtDir n (ExplBidir cls) =
      do { ms <- mapM (cvtClause (mkPrefixFunRhs n)) cls
         ; return $ ExplicitBidirectional $ mkMatchGroup FromSource ms }

cvtDec (TH.PatSynSigD nm ty)
  = do { nm' <- cNameL nm
       ; ty' <- cvtPatSynSigTy ty
       ; returnJustL $ Hs.SigD $ PatSynSig [nm'] (mkLHsSigType ty') }

----------------
cvtTySynEqn :: Located RdrName -> TySynEqn -> CvtM (LTyFamInstEqn GhcPs)
cvtTySynEqn tc (TySynEqn lhs rhs)
  = do  { lhs' <- mapM (wrap_apps <=< cvtType) lhs
        ; rhs' <- cvtType rhs
        ; returnL $ mkHsImplicitBndrs
                  $ FamEqn { feqn_tycon  = tc
                           , feqn_pats   = lhs'
                           , feqn_fixity = Prefix
                           , feqn_rhs    = rhs' } }

----------------
cvt_ci_decs :: MsgDoc -> [TH.Dec]
            -> CvtM (LHsBinds GhcPs,
                     [LSig GhcPs],
                     [LFamilyDecl GhcPs],
                     [LTyFamInstDecl GhcPs],
                     [LDataFamInstDecl GhcPs])
-- Convert the declarations inside a class or instance decl
-- ie signatures, bindings, and associated types
cvt_ci_decs doc decs
  = do  { decs' <- cvtDecs decs
        ; let (ats', bind_sig_decs') = partitionWith is_tyfam_inst decs'
        ; let (adts', no_ats')       = partitionWith is_datafam_inst bind_sig_decs'
        ; let (sigs', prob_binds')   = partitionWith is_sig no_ats'
        ; let (binds', prob_fams')   = partitionWith is_bind prob_binds'
        ; let (fams', bads)          = partitionWith is_fam_decl prob_fams'
        ; unless (null bads) (failWith (mkBadDecMsg doc bads))
          --We use FromSource as the origin of the bind
          -- because the TH declaration is user-written
        ; return (listToBag binds', sigs', fams', ats', adts') }

----------------
cvt_tycl_hdr :: TH.Cxt -> TH.Name -> [TH.TyVarBndr]
             -> CvtM ( LHsContext GhcPs
                     , Located RdrName
                     , LHsQTyVars GhcPs)
cvt_tycl_hdr cxt tc tvs
  = do { cxt' <- cvtContext cxt
       ; tc'  <- tconNameL tc
       ; tvs' <- cvtTvs tvs
       ; return (cxt', tc', tvs')
       }

cvt_tyinst_hdr :: TH.Cxt -> TH.Name -> [TH.Type]
               -> CvtM ( LHsContext GhcPs
                       , Located RdrName
                       , HsTyPats GhcPs)
cvt_tyinst_hdr cxt tc tys
  = do { cxt' <- cvtContext cxt
       ; tc'  <- tconNameL tc
       ; tys' <- mapM (wrap_apps <=< cvtType) tys
       ; return (cxt', tc', tys') }

----------------
cvt_tyfam_head :: TypeFamilyHead
               -> CvtM ( Located RdrName
                       , LHsQTyVars GhcPs
                       , Hs.LFamilyResultSig GhcPs
                       , Maybe (Hs.LInjectivityAnn GhcPs))

cvt_tyfam_head (TypeFamilyHead tc tyvars result injectivity)
  = do {(_, tc', tyvars') <- cvt_tycl_hdr [] tc tyvars
       ; result' <- cvtFamilyResultSig result
       ; injectivity' <- traverse cvtInjectivityAnnotation injectivity
       ; return (tc', tyvars', result', injectivity') }

-------------------------------------------------------------------
--              Partitioning declarations
-------------------------------------------------------------------

is_fam_decl :: LHsDecl GhcPs -> Either (LFamilyDecl GhcPs) (LHsDecl GhcPs)
is_fam_decl (L loc (TyClD (FamDecl { tcdFam = d }))) = Left (L loc d)
is_fam_decl decl = Right decl

is_tyfam_inst :: LHsDecl GhcPs -> Either (LTyFamInstDecl GhcPs) (LHsDecl GhcPs)
is_tyfam_inst (L loc (Hs.InstD (TyFamInstD { tfid_inst = d }))) = Left (L loc d)
is_tyfam_inst decl                                              = Right decl

is_datafam_inst :: LHsDecl GhcPs
                -> Either (LDataFamInstDecl GhcPs) (LHsDecl GhcPs)
is_datafam_inst (L loc (Hs.InstD (DataFamInstD { dfid_inst = d }))) = Left (L loc d)
is_datafam_inst decl                                                = Right decl

is_sig :: LHsDecl GhcPs -> Either (LSig GhcPs) (LHsDecl GhcPs)
is_sig (L loc (Hs.SigD sig)) = Left (L loc sig)
is_sig decl                  = Right decl

is_bind :: LHsDecl GhcPs -> Either (LHsBind GhcPs) (LHsDecl GhcPs)
is_bind (L loc (Hs.ValD bind)) = Left (L loc bind)
is_bind decl                   = Right decl

mkBadDecMsg :: Outputable a => MsgDoc -> [a] -> MsgDoc
mkBadDecMsg doc bads
  = sep [ text "Illegal declaration(s) in" <+> doc <> colon
        , nest 2 (vcat (map Outputable.ppr bads)) ]

---------------------------------------------------
--      Data types
---------------------------------------------------

cvtConstr :: TH.Con -> CvtM (LConDecl GhcPs)

cvtConstr (NormalC c strtys)
  = do  { c'   <- cNameL c
        ; cxt' <- returnL []
        ; tys' <- mapM cvt_arg strtys
        ; returnL $ mkConDeclH98 c' Nothing cxt' (PrefixCon tys') }

cvtConstr (RecC c varstrtys)
  = do  { c'    <- cNameL c
        ; cxt'  <- returnL []
        ; args' <- mapM cvt_id_arg varstrtys
        ; returnL $ mkConDeclH98 c' Nothing cxt'
                                   (RecCon (noLoc args')) }

cvtConstr (InfixC st1 c st2)
  = do  { c'   <- cNameL c
        ; cxt' <- returnL []
        ; st1' <- cvt_arg st1
        ; st2' <- cvt_arg st2
        ; returnL $ mkConDeclH98 c' Nothing cxt' (InfixCon st1' st2') }

cvtConstr (ForallC tvs ctxt con)
  = do  { tvs'        <- cvtTvs tvs
        ; L loc ctxt' <- cvtContext ctxt
        ; L _ con'    <- cvtConstr con
        ; returnL $ case con' of
                ConDeclGADT { con_type = conT } ->
                  let hs_ty  = mkHsForAllTy tvs noSrcSpan tvs' rho_ty
                      rho_ty = mkHsQualTy ctxt noSrcSpan (L loc ctxt')
                                                         (hsib_body conT)
                  in con' { con_type = mkHsImplicitBndrs hs_ty }
                ConDeclH98  {} ->
                  let qvars = case (tvs, con_qvars con') of
                        ([], Nothing) -> Nothing
                        (_ , m_qvs  ) -> Just $
                          mkHsQTvs (hsQTvExplicit tvs' ++
                                    maybe [] hsQTvExplicit m_qvs)
                  in con' { con_qvars = qvars
                          , con_cxt = Just $
                            L loc (ctxt' ++
                                   unLoc (fromMaybe (noLoc [])
                                          (con_cxt con'))) } }

cvtConstr (GadtC c strtys ty)
  = do  { c'      <- mapM cNameL c
        ; args    <- mapM cvt_arg strtys
        ; L _ ty' <- cvtType ty
        ; c_ty    <- mk_arr_apps args ty'
        ; returnL $ mkGadtDecl c' (mkLHsSigType c_ty)}

cvtConstr (RecGadtC c varstrtys ty)
  = do  { c'       <- mapM cNameL c
        ; ty'      <- cvtType ty
        ; rec_flds <- mapM cvt_id_arg varstrtys
        ; let rec_ty = noLoc (HsFunTy (noLoc $ HsRecTy rec_flds) ty')
        ; returnL $ mkGadtDecl c' (mkLHsSigType rec_ty) }

cvtSrcUnpackedness :: TH.SourceUnpackedness -> SrcUnpackedness
cvtSrcUnpackedness NoSourceUnpackedness = NoSrcUnpack
cvtSrcUnpackedness SourceNoUnpack       = SrcNoUnpack
cvtSrcUnpackedness SourceUnpack         = SrcUnpack

cvtSrcStrictness :: TH.SourceStrictness -> SrcStrictness
cvtSrcStrictness NoSourceStrictness = NoSrcStrict
cvtSrcStrictness SourceLazy         = SrcLazy
cvtSrcStrictness SourceStrict       = SrcStrict

cvt_arg :: (TH.Bang, TH.Type) -> CvtM (LHsType GhcPs)
cvt_arg (Bang su ss, ty)
  = do { ty'' <- cvtType ty
       ; ty' <- wrap_apps ty''
       ; let su' = cvtSrcUnpackedness su
       ; let ss' = cvtSrcStrictness ss
       ; returnL $ HsBangTy (HsSrcBang NoSourceText su' ss') ty' }

cvt_id_arg :: (TH.Name, TH.Bang, TH.Type) -> CvtM (LConDeclField GhcPs)
cvt_id_arg (i, str, ty)
  = do  { L li i' <- vNameL i
        ; ty' <- cvt_arg (str,ty)
        ; return $ noLoc (ConDeclField
                          { cd_fld_names
                              = [L li $ FieldOcc (L li i') PlaceHolder]
                          , cd_fld_type =  ty'
                          , cd_fld_doc = Nothing}) }

cvtDerivs :: [TH.DerivClause] -> CvtM (HsDeriving GhcPs)
cvtDerivs cs = do { cs' <- mapM cvtDerivClause cs
                  ; returnL cs' }

cvt_fundep :: FunDep -> CvtM (Located (Class.FunDep (Located RdrName)))
cvt_fundep (FunDep xs ys) = do { xs' <- mapM tNameL xs
                               ; ys' <- mapM tNameL ys
                               ; returnL (xs', ys') }


------------------------------------------
--      Foreign declarations
------------------------------------------

cvtForD :: Foreign -> CvtM (ForeignDecl GhcPs)
cvtForD (ImportF callconv safety from nm ty)
  -- the prim and javascript calling conventions do not support headers
  -- and are inserted verbatim, analogous to mkImport in RdrHsSyn
  | callconv == TH.Prim || callconv == TH.JavaScript
  = mk_imp (CImport (noLoc (cvt_conv callconv)) (noLoc safety') Nothing
                    (CFunction (StaticTarget (SourceText from)
                                             (mkFastString from) Nothing
                                             True))
                    (noLoc $ quotedSourceText from))
  | Just impspec <- parseCImport (noLoc (cvt_conv callconv)) (noLoc safety')
                                 (mkFastString (TH.nameBase nm))
                                 from (noLoc $ quotedSourceText from)
  = mk_imp impspec
  | otherwise
  = failWith $ text (show from) <+> text "is not a valid ccall impent"
  where
    mk_imp impspec
      = do { nm' <- vNameL nm
           ; ty' <- cvtType ty
           ; return (ForeignImport { fd_name = nm'
                                   , fd_sig_ty = mkLHsSigType ty'
                                   , fd_co = noForeignImportCoercionYet
                                   , fd_fi = impspec })
           }
    safety' = case safety of
                     Unsafe     -> PlayRisky
                     Safe       -> PlaySafe
                     Interruptible -> PlayInterruptible

cvtForD (ExportF callconv as nm ty)
  = do  { nm' <- vNameL nm
        ; ty' <- cvtType ty
        ; let e = CExport (noLoc (CExportStatic (SourceText as)
                                                (mkFastString as)
                                                (cvt_conv callconv)))
                                                (noLoc (SourceText as))
        ; return $ ForeignExport { fd_name = nm'
                                 , fd_sig_ty = mkLHsSigType ty'
                                 , fd_co = noForeignExportCoercionYet
                                 , fd_fe = e } }

cvt_conv :: TH.Callconv -> CCallConv
cvt_conv TH.CCall      = CCallConv
cvt_conv TH.StdCall    = StdCallConv
cvt_conv TH.CApi       = CApiConv
cvt_conv TH.Prim       = PrimCallConv
cvt_conv TH.JavaScript = JavaScriptCallConv

------------------------------------------
--              Pragmas
------------------------------------------

cvtPragmaD :: Pragma -> CvtM (Maybe (LHsDecl GhcPs))
cvtPragmaD (InlineP nm inline rm phases)
  = do { nm' <- vNameL nm
       ; let dflt = dfltActivation inline
       ; let src TH.NoInline  = "{-# NOINLINE"
             src TH.Inline    = "{-# INLINE"
             src TH.Inlinable = "{-# INLINABLE"
       ; let ip   = InlinePragma { inl_src    = SourceText $ src inline
                                 , inl_inline = cvtInline inline
                                 , inl_rule   = cvtRuleMatch rm
                                 , inl_act    = cvtPhases phases dflt
                                 , inl_sat    = Nothing }
       ; returnJustL $ Hs.SigD $ InlineSig nm' ip }

cvtPragmaD (SpecialiseP nm ty inline phases)
  = do { nm' <- vNameL nm
       ; ty' <- cvtType ty
       ; let src TH.NoInline  = "{-# SPECIALISE NOINLINE"
             src TH.Inline    = "{-# SPECIALISE INLINE"
             src TH.Inlinable = "{-# SPECIALISE INLINE"
       ; let (inline', dflt,srcText) = case inline of
               Just inline1 -> (cvtInline inline1, dfltActivation inline1,
                                src inline1)
               Nothing      -> (NoUserInline,   AlwaysActive,
                                "{-# SPECIALISE")
       ; let ip = InlinePragma { inl_src    = SourceText srcText
                               , inl_inline = inline'
                               , inl_rule   = Hs.FunLike
                               , inl_act    = cvtPhases phases dflt
                               , inl_sat    = Nothing }
       ; returnJustL $ Hs.SigD $ SpecSig nm' [mkLHsSigType ty'] ip }

cvtPragmaD (SpecialiseInstP ty)
  = do { ty' <- cvtType ty
       ; returnJustL $ Hs.SigD $
         SpecInstSig (SourceText "{-# SPECIALISE") (mkLHsSigType ty') }

cvtPragmaD (RuleP nm bndrs lhs rhs phases)
  = do { let nm' = mkFastString nm
       ; let act = cvtPhases phases AlwaysActive
       ; bndrs' <- mapM cvtRuleBndr bndrs
       ; lhs'   <- cvtl lhs
       ; rhs'   <- cvtl rhs
       ; returnJustL $ Hs.RuleD
            $ HsRules (SourceText "{-# RULES")
                      [noLoc $ HsRule (noLoc (SourceText nm,nm')) act bndrs'
                                                  lhs' placeHolderNames
                                                  rhs' placeHolderNames]
       }

cvtPragmaD (AnnP target exp)
  = do { exp' <- cvtl exp
       ; target' <- case target of
         ModuleAnnotation  -> return ModuleAnnProvenance
         TypeAnnotation n  -> do
           n' <- tconName n
           return (TypeAnnProvenance  (noLoc n'))
         ValueAnnotation n -> do
           n' <- vcName n
           return (ValueAnnProvenance (noLoc n'))
       ; returnJustL $ Hs.AnnD $ HsAnnotation (SourceText "{-# ANN") target'
                                               exp'
       }

cvtPragmaD (LineP line file)
  = do { setL (srcLocSpan (mkSrcLoc (fsLit file) line 1))
       ; return Nothing
       }
cvtPragmaD (CompleteP cls mty)
  = do { cls' <- noLoc <$> mapM cNameL cls
       ; mty'  <- traverse tconNameL mty
       ; returnJustL $ Hs.SigD
                   $ CompleteMatchSig NoSourceText cls' mty' }

dfltActivation :: TH.Inline -> Activation
dfltActivation TH.NoInline = NeverActive
dfltActivation _           = AlwaysActive

cvtInline :: TH.Inline -> Hs.InlineSpec
cvtInline TH.NoInline  = Hs.NoInline
cvtInline TH.Inline    = Hs.Inline
cvtInline TH.Inlinable = Hs.Inlinable

cvtRuleMatch :: TH.RuleMatch -> RuleMatchInfo
cvtRuleMatch TH.ConLike = Hs.ConLike
cvtRuleMatch TH.FunLike = Hs.FunLike

cvtPhases :: TH.Phases -> Activation -> Activation
cvtPhases AllPhases       dflt = dflt
cvtPhases (FromPhase i)   _    = ActiveAfter NoSourceText i
cvtPhases (BeforePhase i) _    = ActiveBefore NoSourceText i

cvtRuleBndr :: TH.RuleBndr -> CvtM (Hs.LRuleBndr GhcPs)
cvtRuleBndr (RuleVar n)
  = do { n' <- vNameL n
       ; return $ noLoc $ Hs.RuleBndr n' }
cvtRuleBndr (TypedRuleVar n ty)
  = do { n'  <- vNameL n
       ; ty' <- cvtType ty
       ; return $ noLoc $ Hs.RuleBndrSig n' $ mkLHsSigWcType ty' }

---------------------------------------------------
--              Declarations
---------------------------------------------------

cvtLocalDecs :: MsgDoc -> [TH.Dec] -> CvtM (HsLocalBinds GhcPs)
cvtLocalDecs doc ds
  | null ds
  = return EmptyLocalBinds
  | otherwise
  = do { ds' <- cvtDecs ds
       ; let (binds, prob_sigs) = partitionWith is_bind ds'
       ; let (sigs, bads) = partitionWith is_sig prob_sigs
       ; unless (null bads) (failWith (mkBadDecMsg doc bads))
       ; return (HsValBinds (ValBindsIn (listToBag binds) sigs)) }

cvtClause :: HsMatchContext RdrName
          -> TH.Clause -> CvtM (Hs.LMatch GhcPs (LHsExpr GhcPs))
cvtClause ctxt (Clause ps body wheres)
  = do  { ps' <- cvtPats ps
        ; pps <- mapM wrap_conpat ps'
        ; g'  <- cvtGuard body
        ; ds' <- cvtLocalDecs (text "a where clause") wheres
        ; returnL $ Hs.Match ctxt pps Nothing
                             (GRHSs g' (noLoc ds')) }


-------------------------------------------------------------------
--              Expressions
-------------------------------------------------------------------

cvtl :: TH.Exp -> CvtM (LHsExpr GhcPs)
cvtl e = wrapL (cvt e)
  where
    cvt (VarE s)        = do { s' <- vName s; return $ HsVar (noLoc s') }
    cvt (ConE s)        = do { s' <- cName s; return $ HsVar (noLoc s') }
    cvt (LitE l)
      | overloadedLit l = do { l' <- cvtOverLit l; return $ HsOverLit l' }
      | otherwise       = do { l' <- cvtLit l;     return $ HsLit l' }
    cvt (AppE x@(LamE _ _) y) = do { x' <- cvtl x; y' <- cvtl y
                                   ; return $ HsApp (mkLHsPar x') (mkLHsPar y')}
    cvt (AppE x y)            = do { x' <- cvtl x; y' <- cvtl y
                                   ; return $ HsApp (mkLHsPar x') (mkLHsPar y')}
    cvt (AppTypeE e t) = do { e' <- cvtl e
                            ; t' <- cvtType t
                            ; tp <- wrap_apps t'
                            ; return $ HsAppType e' $ mkHsWildCardBndrs tp }
    cvt (LamE [] e)    = cvt e -- Degenerate case. We convert the body as its
                               -- own expression to avoid pretty-printing
                               -- oddities that can result from zero-argument
                               -- lambda expressions. See #13856.
    cvt (LamE ps e)    = do { ps' <- cvtPats ps; e' <- cvtl e
                            ; return $ HsLam (mkMatchGroup FromSource
                                             [mkSimpleMatch LambdaExpr ps' e'])}
    cvt (LamCaseE ms)  = do { ms' <- mapM (cvtMatch LambdaExpr) ms
                            ; return $ HsLamCase (mkMatchGroup FromSource ms')
                            }
    cvt (TupE [e])     = do { e' <- cvtl e; return $ HsPar e' }
                                 -- Note [Dropping constructors]
                                 -- Singleton tuples treated like nothing (just parens)
    cvt (TupE es)      = do { es' <- mapM cvtl es
                            ; return $ ExplicitTuple (map (noLoc . Present) es')
                                                      Boxed }
    cvt (UnboxedTupE es)      = do { es' <- mapM cvtl es
                                   ; return $ ExplicitTuple
                                           (map (noLoc . Present) es') Unboxed }
    cvt (UnboxedSumE e alt arity) = do { e' <- cvtl e
                                       ; unboxedSumChecks alt arity
                                       ; return $ ExplicitSum
                                             alt arity e' placeHolderType }
    cvt (CondE x y z)  = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z;
                            ; return $ HsIf (Just noSyntaxExpr) x' y' z' }
    cvt (MultiIfE alts)
      | null alts      = failWith (text "Multi-way if-expression with no alternatives")
      | otherwise      = do { alts' <- mapM cvtpair alts
                            ; return $ HsMultiIf placeHolderType alts' }
    cvt (LetE ds e)    = do { ds' <- cvtLocalDecs (text "a let expression") ds
                            ; e' <- cvtl e; return $ HsLet (noLoc ds') e' }
    cvt (CaseE e ms)   = do { e' <- cvtl e; ms' <- mapM (cvtMatch CaseAlt) ms
                            ; return $ HsCase e' (mkMatchGroup FromSource ms') }
    cvt (DoE ss)       = cvtHsDo DoExpr ss
    cvt (CompE ss)     = cvtHsDo ListComp ss
    cvt (ArithSeqE dd) = do { dd' <- cvtDD dd; return $ ArithSeq noPostTcExpr Nothing dd' }
    cvt (ListE xs)
      | Just s <- allCharLs xs       = do { l' <- cvtLit (StringL s); return (HsLit l') }
             -- Note [Converting strings]
      | otherwise       = do { xs' <- mapM cvtl xs
                             ; return $ ExplicitList placeHolderType Nothing xs'
                             }

    -- Infix expressions
    cvt (InfixE (Just x) s (Just y)) = do { x' <- cvtl x; s' <- cvtl s; y' <- cvtl y
                                          ; wrapParL HsPar $
                                            OpApp (mkLHsPar x') s' undefined (mkLHsPar y') }
                                            -- Parenthesise both arguments and result,
                                            -- to ensure this operator application does
                                            -- does not get re-associated
                            -- See Note [Operator association]
    cvt (InfixE Nothing  s (Just y)) = do { s' <- cvtl s; y' <- cvtl y
                                          ; wrapParL HsPar $ SectionR s' y' }
                                            -- See Note [Sections in HsSyn] in HsExpr
    cvt (InfixE (Just x) s Nothing ) = do { x' <- cvtl x; s' <- cvtl s
                                          ; wrapParL HsPar $ SectionL x' s' }

    cvt (InfixE Nothing  s Nothing ) = do { s' <- cvtl s; return $ HsPar s' }
                                       -- Can I indicate this is an infix thing?
                                       -- Note [Dropping constructors]

    cvt (UInfixE x s y)  = do { x' <- cvtl x
                              ; let x'' = case x' of
                                            L _ (OpApp {}) -> x'
                                            _ -> mkLHsPar x'
                              ; cvtOpApp x'' s y } --  Note [Converting UInfix]

    cvt (ParensE e)      = do { e' <- cvtl e; return $ HsPar e' }
    cvt (SigE e t)       = do { e' <- cvtl e; t' <- cvtType t
                              ; return $ ExprWithTySig e' (mkLHsSigWcType t') }
    cvt (RecConE c flds) = do { c' <- cNameL c
                              ; flds' <- mapM (cvtFld (mkFieldOcc . noLoc)) flds
                              ; return $ mkRdrRecordCon c' (HsRecFields flds' Nothing) }
    cvt (RecUpdE e flds) = do { e' <- cvtl e
                              ; flds'
                                  <- mapM (cvtFld (mkAmbiguousFieldOcc . noLoc))
                                           flds
                              ; return $ mkRdrRecordUpd e' flds' }
    cvt (StaticE e)      = fmap (HsStatic placeHolderNames) $ cvtl e
    cvt (UnboundVarE s)  = do { s' <- vName s; return $ HsVar (noLoc s') }
    cvt (LabelE s)       = do { return $ HsOverLabel Nothing (fsLit s) }

{- Note [Dropping constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we drop constructors from the input (for instance, when we encounter @TupE [e]@)
we must insert parentheses around the argument. Otherwise, @UInfix@ constructors in @e@
could meet @UInfix@ constructors containing the @TupE [e]@. For example:

  UInfixE x * (TupE [UInfixE y + z])

If we drop the singleton tuple but don't insert parentheses, the @UInfixE@s would meet
and the above expression would be reassociated to

  OpApp (OpApp x * y) + z

which we don't want.
-}

cvtFld :: (RdrName -> t) -> (TH.Name, TH.Exp)
       -> CvtM (LHsRecField' t (LHsExpr GhcPs))
cvtFld f (v,e)
  = do  { v' <- vNameL v; e' <- cvtl e
        ; return (noLoc $ HsRecField { hsRecFieldLbl = fmap f v'
                                     , hsRecFieldArg = e'
                                     , hsRecPun      = False}) }

cvtDD :: Range -> CvtM (ArithSeqInfo GhcPs)
cvtDD (FromR x)           = do { x' <- cvtl x; return $ From x' }
cvtDD (FromThenR x y)     = do { x' <- cvtl x; y' <- cvtl y; return $ FromThen x' y' }
cvtDD (FromToR x y)       = do { x' <- cvtl x; y' <- cvtl y; return $ FromTo x' y' }
cvtDD (FromThenToR x y z) = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z; return $ FromThenTo x' y' z' }

{- Note [Operator assocation]
We must be quite careful about adding parens:
  * Infix (UInfix ...) op arg      Needs parens round the first arg
  * Infix (Infix ...) op arg       Needs parens round the first arg
  * UInfix (UInfix ...) op arg     No parens for first arg
  * UInfix (Infix ...) op arg      Needs parens round first arg


Note [Converting UInfix]
~~~~~~~~~~~~~~~~~~~~~~~~
When converting @UInfixE@, @UInfixP@, and @UInfixT@ values, we want to readjust
the trees to reflect the fixities of the underlying operators:

  UInfixE x * (UInfixE y + z) ---> (x * y) + z

This is done by the renamer (see @mkOppAppRn@, @mkConOppPatRn@, and
@mkHsOpTyRn@ in RnTypes), which expects that the input will be completely
right-biased for types and left-biased for everything else. So we left-bias the
trees of @UInfixP@ and @UInfixE@ and use HsAppsTy for UInfixT.

Sample input:

  UInfixE
   (UInfixE x op1 y)
   op2
   (UInfixE z op3 w)

Sample output:

  OpApp
    (OpApp
      (OpApp x op1 y)
      op2
      z)
    op3
    w

The functions @cvtOpApp@, @cvtOpAppP@, and @cvtOpAppT@ are responsible for this
biasing.
-}

{- | @cvtOpApp x op y@ converts @op@ and @y@ and produces the operator application @x `op` y@.
The produced tree of infix expressions will be left-biased, provided @x@ is.

We can see that @cvtOpApp@ is correct as follows. The inductive hypothesis
is that @cvtOpApp x op y@ is left-biased, provided @x@ is. It is clear that
this holds for both branches (of @cvtOpApp@), provided we assume it holds for
the recursive calls to @cvtOpApp@.

When we call @cvtOpApp@ from @cvtl@, the first argument will always be left-biased
since we have already run @cvtl@ on it.
-}
cvtOpApp :: LHsExpr GhcPs -> TH.Exp -> TH.Exp -> CvtM (HsExpr GhcPs)
cvtOpApp x op1 (UInfixE y op2 z)
  = do { l <- wrapL $ cvtOpApp x op1 y
       ; cvtOpApp l op2 z }
cvtOpApp x op y
  = do { op' <- cvtl op
       ; y' <- cvtl y
       ; return (OpApp x op' undefined y') }

-------------------------------------
--      Do notation and statements
-------------------------------------

cvtHsDo :: HsStmtContext Name.Name -> [TH.Stmt] -> CvtM (HsExpr GhcPs)
cvtHsDo do_or_lc stmts
  | null stmts = failWith (text "Empty stmt list in do-block")
  | otherwise
  = do  { stmts' <- cvtStmts stmts
        ; let Just (stmts'', last') = snocView stmts'

        ; last'' <- case last' of
                    L loc (BodyStmt body _ _ _) -> return (L loc (mkLastStmt body))
                    _ -> failWith (bad_last last')

        ; return $ HsDo do_or_lc (noLoc (stmts'' ++ [last''])) placeHolderType }
  where
    bad_last stmt = vcat [ text "Illegal last statement of" <+> pprAStmtContext do_or_lc <> colon
                         , nest 2 $ Outputable.ppr stmt
                         , text "(It should be an expression.)" ]

cvtStmts :: [TH.Stmt] -> CvtM [Hs.LStmt GhcPs (LHsExpr GhcPs)]
cvtStmts = mapM cvtStmt

cvtStmt :: TH.Stmt -> CvtM (Hs.LStmt GhcPs (LHsExpr GhcPs))
cvtStmt (NoBindS e)    = do { e' <- cvtl e; returnL $ mkBodyStmt e' }
cvtStmt (TH.BindS p e) = do { p' <- cvtPat p; e' <- cvtl e; returnL $ mkBindStmt p' e' }
cvtStmt (TH.LetS ds)   = do { ds' <- cvtLocalDecs (text "a let binding") ds
                            ; returnL $ LetStmt (noLoc ds') }
cvtStmt (TH.ParS dss)  = do { dss' <- mapM cvt_one dss; returnL $ ParStmt dss' noExpr noSyntaxExpr placeHolderType }
                       where
                         cvt_one ds = do { ds' <- cvtStmts ds; return (ParStmtBlock ds' undefined noSyntaxExpr) }

cvtMatch :: HsMatchContext RdrName
         -> TH.Match -> CvtM (Hs.LMatch GhcPs (LHsExpr GhcPs))
cvtMatch ctxt (TH.Match p body decs)
  = do  { p' <- cvtPat p
        ; lp <- case ctxt of
            CaseAlt -> return p'
            _       -> wrap_conpat p'
        ; g' <- cvtGuard body
        ; decs' <- cvtLocalDecs (text "a where clause") decs
        ; returnL $ Hs.Match ctxt [lp] Nothing
                             (GRHSs g' (noLoc decs')) }

cvtGuard :: TH.Body -> CvtM [LGRHS GhcPs (LHsExpr GhcPs)]
cvtGuard (GuardedB pairs) = mapM cvtpair pairs
cvtGuard (NormalB e)      = do { e' <- cvtl e; g' <- returnL $ GRHS [] e'; return [g'] }

cvtpair :: (TH.Guard, TH.Exp) -> CvtM (LGRHS GhcPs (LHsExpr GhcPs))
cvtpair (NormalG ge,rhs) = do { ge' <- cvtl ge; rhs' <- cvtl rhs
                              ; g' <- returnL $ mkBodyStmt ge'
                              ; returnL $ GRHS [g'] rhs' }
cvtpair (PatG gs,rhs)    = do { gs' <- cvtStmts gs; rhs' <- cvtl rhs
                              ; returnL $ GRHS gs' rhs' }

cvtOverLit :: Lit -> CvtM (HsOverLit GhcPs)
cvtOverLit (IntegerL i)
  = do { force i; return $ mkHsIntegral   (mkIntegralLit i)   placeHolderType}
cvtOverLit (RationalL r)
  = do { force r; return $ mkHsFractional (mkFractionalLit r) placeHolderType}
cvtOverLit (StringL s)
  = do { let { s' = mkFastString s }
       ; force s'
       ; return $ mkHsIsString (quotedSourceText s) s' placeHolderType
       }
cvtOverLit _ = panic "Convert.cvtOverLit: Unexpected overloaded literal"
-- An Integer is like an (overloaded) '3' in a Haskell source program
-- Similarly 3.5 for fractionals

{- Note [Converting strings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we get (ListE [CharL 'x', CharL 'y']) we'd like to convert to
a string literal for "xy".  Of course, we might hope to get
(LitE (StringL "xy")), but not always, and allCharLs fails quickly
if it isn't a literal string
-}

allCharLs :: [TH.Exp] -> Maybe String
-- Note [Converting strings]
-- NB: only fire up this setup for a non-empty list, else
--     there's a danger of returning "" for [] :: [Int]!
allCharLs xs
  = case xs of
      LitE (CharL c) : ys -> go [c] ys
      _                   -> Nothing
  where
    go cs []                    = Just (reverse cs)
    go cs (LitE (CharL c) : ys) = go (c:cs) ys
    go _  _                     = Nothing

cvtLit :: Lit -> CvtM (HsLit GhcPs)
cvtLit (IntPrimL i)    = do { force i; return $ HsIntPrim NoSourceText i }
cvtLit (WordPrimL w)   = do { force w; return $ HsWordPrim NoSourceText w }
cvtLit (FloatPrimL f)
  = do { force f; return $ HsFloatPrim def (mkFractionalLit f) }
cvtLit (DoublePrimL f)
  = do { force f; return $ HsDoublePrim def (mkFractionalLit f) }
cvtLit (CharL c)       = do { force c; return $ HsChar NoSourceText c }
cvtLit (CharPrimL c)   = do { force c; return $ HsCharPrim NoSourceText c }
cvtLit (StringL s)     = do { let { s' = mkFastString s }
                            ; force s'
                            ; return $ HsString (quotedSourceText s) s' }
cvtLit (StringPrimL s) = do { let { s' = BS.pack s }
                            ; force s'
                            ; return $ HsStringPrim NoSourceText s' }
cvtLit _ = panic "Convert.cvtLit: Unexpected literal"
        -- cvtLit should not be called on IntegerL, RationalL
        -- That precondition is established right here in
        -- Convert.hs, hence panic

quotedSourceText :: String -> SourceText
quotedSourceText s = SourceText $ "\"" ++ s ++ "\""

cvtPats :: [TH.Pat] -> CvtM [Hs.LPat GhcPs]
cvtPats pats = mapM cvtPat pats

cvtPat :: TH.Pat -> CvtM (Hs.LPat GhcPs)
cvtPat pat = wrapL (cvtp pat)

cvtp :: TH.Pat -> CvtM (Hs.Pat GhcPs)
cvtp (TH.LitP l)
  | overloadedLit l    = do { l' <- cvtOverLit l
                            ; return (mkNPat (noLoc l') Nothing) }
                                  -- Not right for negative patterns;
                                  -- need to think about that!
  | otherwise          = do { l' <- cvtLit l; return $ Hs.LitPat l' }
cvtp (TH.VarP s)       = do { s' <- vName s; return $ Hs.VarPat (noLoc s') }
cvtp (TupP [p])        = do { p' <- cvtPat p; return $ ParPat p' } -- Note [Dropping constructors]
cvtp (TupP ps)         = do { ps' <- cvtPats ps; return $ TuplePat ps' Boxed   [] }
cvtp (UnboxedTupP ps)  = do { ps' <- cvtPats ps; return $ TuplePat ps' Unboxed [] }
cvtp (UnboxedSumP p alt arity)
                       = do { p' <- cvtPat p
                            ; unboxedSumChecks alt arity
                            ; return $ SumPat p' alt arity placeHolderType }
cvtp (ConP s ps)       = do { s' <- cNameL s; ps' <- cvtPats ps
                            ; pps <- mapM wrap_conpat ps'
                            ; return $ ConPatIn s' (PrefixCon pps) }
cvtp (InfixP p1 s p2)  = do { s' <- cNameL s; p1' <- cvtPat p1; p2' <- cvtPat p2
                            ; wrapParL ParPat $
                              ConPatIn s' (InfixCon (mkParPat p1') (mkParPat p2')) }
                            -- See Note [Operator association]
cvtp (UInfixP p1 s p2) = do { p1' <- cvtPat p1; cvtOpAppP p1' s p2 } -- Note [Converting UInfix]
cvtp (ParensP p)       = do { p' <- cvtPat p;
                            ; case p' of  -- may be wrapped ConPatIn
                                (L _ (ParPat {})) -> return $ unLoc p'
                                _                 -> return $ ParPat p' }
cvtp (TildeP p)        = do { p' <- cvtPat p; return $ LazyPat p' }
cvtp (BangP p)         = do { p' <- cvtPat p; return $ BangPat p' }
cvtp (TH.AsP s p)      = do { s' <- vNameL s; p' <- cvtPat p; return $ AsPat s' p' }
cvtp TH.WildP          = return $ WildPat placeHolderType
cvtp (RecP c fs)       = do { c' <- cNameL c; fs' <- mapM cvtPatFld fs
                            ; return $ ConPatIn c'
                                     $ Hs.RecCon (HsRecFields fs' Nothing) }
cvtp (ListP ps)        = do { ps' <- cvtPats ps
                            ; return $ ListPat ps' placeHolderType Nothing }
cvtp (SigP p t)        = do { p' <- cvtPat p; t' <- cvtType t
                            ; return $ SigPatIn p' (mkLHsSigWcType t') }
cvtp (ViewP e p)       = do { e' <- cvtl e; p' <- cvtPat p
                            ; return $ ViewPat e' p' placeHolderType }

cvtPatFld :: (TH.Name, TH.Pat) -> CvtM (LHsRecField GhcPs (LPat GhcPs))
cvtPatFld (s,p)
  = do  { L ls s' <- vNameL s; p' <- cvtPat p
        ; return (noLoc $ HsRecField { hsRecFieldLbl
                                         = L ls $ mkFieldOcc (L ls s')
                                     , hsRecFieldArg = p'
                                     , hsRecPun      = False}) }

wrap_conpat :: Hs.LPat GhcPs -> CvtM (Hs.LPat GhcPs)
wrap_conpat p@(L _ (ConPatIn _ (InfixCon{})))   = returnL $ ParPat p
wrap_conpat p@(L _ (ConPatIn _ (PrefixCon []))) = return p
wrap_conpat p@(L _ (ConPatIn _ (PrefixCon _)))  = returnL $ ParPat p
wrap_conpat p                                   = return p

{- | @cvtOpAppP x op y@ converts @op@ and @y@ and produces the operator application @x `op` y@.
The produced tree of infix patterns will be left-biased, provided @x@ is.

See the @cvtOpApp@ documentation for how this function works.
-}
cvtOpAppP :: Hs.LPat GhcPs -> TH.Name -> TH.Pat -> CvtM (Hs.Pat GhcPs)
cvtOpAppP x op1 (UInfixP y op2 z)
  = do { l <- wrapL $ cvtOpAppP x op1 y
       ; cvtOpAppP l op2 z }
cvtOpAppP x op y
  = do { op' <- cNameL op
       ; y' <- cvtPat y
       ; return (ConPatIn op' (InfixCon x y')) }

-----------------------------------------------------------
--      Types and type variables

cvtTvs :: [TH.TyVarBndr] -> CvtM (LHsQTyVars GhcPs)
cvtTvs tvs = do { tvs' <- mapM cvt_tv tvs; return (mkHsQTvs tvs') }

cvt_tv :: TH.TyVarBndr -> CvtM (LHsTyVarBndr GhcPs)
cvt_tv (TH.PlainTV nm)
  = do { nm' <- tNameL nm
       ; returnL $ UserTyVar nm' }
cvt_tv (TH.KindedTV nm ki)
  = do { nm' <- tNameL nm
       ; ki' <- cvtKind ki
       ; returnL $ KindedTyVar nm' ki' }

cvtRole :: TH.Role -> Maybe Coercion.Role
cvtRole TH.NominalR          = Just Coercion.Nominal
cvtRole TH.RepresentationalR = Just Coercion.Representational
cvtRole TH.PhantomR          = Just Coercion.Phantom
cvtRole TH.InferR            = Nothing

cvtContext :: TH.Cxt -> CvtM (LHsContext GhcPs)
cvtContext tys = do { preds' <- mapM cvtPred tys; returnL preds' }

cvtPred :: TH.Pred -> CvtM (LHsType GhcPs)
cvtPred = cvtType

cvtDerivClause :: TH.DerivClause
               -> CvtM (LHsDerivingClause GhcPs)
cvtDerivClause (TH.DerivClause ds ctxt)
  = do { ctxt'@(L loc _) <- fmap (map mkLHsSigType) <$> cvtContext ctxt
       ; let ds' = fmap (L loc . cvtDerivStrategy) ds
       ; returnL $ HsDerivingClause ds' ctxt' }

cvtDerivStrategy :: TH.DerivStrategy -> Hs.DerivStrategy
cvtDerivStrategy TH.StockStrategy    = Hs.StockStrategy
cvtDerivStrategy TH.AnyclassStrategy = Hs.AnyclassStrategy
cvtDerivStrategy TH.NewtypeStrategy  = Hs.NewtypeStrategy

cvtType :: TH.Type -> CvtM (LHsType GhcPs)
cvtType = cvtTypeKind "type"

cvtTypeKind :: String -> TH.Type -> CvtM (LHsType GhcPs)
cvtTypeKind ty_str ty
  = do { (head_ty, tys') <- split_ty_app ty
       ; case head_ty of
           TupleT n
             | tys' `lengthIs` n         -- Saturated
             -> if n==1 then return (head tys') -- Singleton tuples treated
                                                -- like nothing (ie just parens)
                        else returnL (HsTupleTy HsBoxedOrConstraintTuple tys')
             | n == 1
             -> failWith (ptext (sLit ("Illegal 1-tuple " ++ ty_str ++ " constructor")))
             | otherwise
             -> mk_apps (HsTyVar NotPromoted
                               (noLoc (getRdrName (tupleTyCon Boxed n)))) tys'
           UnboxedTupleT n
             | tys' `lengthIs` n         -- Saturated
             -> returnL (HsTupleTy HsUnboxedTuple tys')
             | otherwise
             -> mk_apps (HsTyVar NotPromoted
                             (noLoc (getRdrName (tupleTyCon Unboxed n)))) tys'
           UnboxedSumT n
             | n < 2
            -> failWith $
                   vcat [ text "Illegal sum arity:" <+> text (show n)
                        , nest 2 $
                            text "Sums must have an arity of at least 2" ]
             | tys' `lengthIs` n -- Saturated
             -> returnL (HsSumTy tys')
             | otherwise
             -> mk_apps (HsTyVar NotPromoted (noLoc (getRdrName (sumTyCon n))))
                        tys'
           ArrowT
             | [x',y'] <- tys' -> do
                 case x' of
                   (L _ HsFunTy{}) -> do { x'' <- returnL (HsParTy x')
                                         ; returnL (HsFunTy x'' y') }
                   _  -> returnL (HsFunTy x' y')
             | otherwise ->
                  mk_apps (HsTyVar NotPromoted (noLoc (getRdrName funTyCon)))
                          tys'
           ListT
             | [x']    <- tys' -> returnL (HsListTy x')
             | otherwise ->
                  mk_apps (HsTyVar NotPromoted (noLoc (getRdrName listTyCon)))
                           tys'
           VarT nm -> do { nm' <- tNameL nm
                         ; mk_apps (HsTyVar NotPromoted nm') tys' }
           ConT nm -> do { nm' <- tconName nm
                         ; mk_apps (HsTyVar NotPromoted (noLoc nm')) tys' }

           ForallT tvs cxt ty
             | null tys'
             -> do { tvs' <- cvtTvs tvs
                   ; cxt' <- cvtContext cxt
                   ; ty'  <- cvtType ty
                   ; loc <- getL
                   ; let hs_ty  = mkHsForAllTy tvs loc tvs' rho_ty
                         rho_ty = mkHsQualTy cxt loc cxt' ty'

                   ; return hs_ty }

           SigT ty ki
             -> do { ty' <- cvtType ty
                   ; ki' <- cvtKind ki
                   ; mk_apps (HsKindSig ty' ki') tys'
                   }

           LitT lit
             -> returnL (HsTyLit (cvtTyLit lit))

           WildCardT
             -> mk_apps mkAnonWildCardTy tys'

           InfixT t1 s t2
             -> do { s'  <- tconName s
                   ; t1' <- cvtType t1
                   ; t2' <- cvtType t2
                   ; mk_apps (HsTyVar NotPromoted (noLoc s')) [t1', t2']
                   }

           UInfixT t1 s t2
             -> do { t1' <- cvtType t1
                   ; t2' <- cvtType t2
                   ; s'  <- tconName s
                   ; return $ cvtOpAppT t1' s' t2'
                   } -- Note [Converting UInfix]

           ParensT t
             -> do { t' <- cvtType t
                   ; returnL $ HsParTy t'
                   }

           PromotedT nm -> do { nm' <- cName nm
                              ; mk_apps (HsTyVar NotPromoted (noLoc nm')) tys' }
                 -- Promoted data constructor; hence cName

           PromotedTupleT n
             | n == 1
             -> failWith (ptext (sLit ("Illegal promoted 1-tuple " ++ ty_str)))
             | m == n   -- Saturated
             -> do  { let kis = replicate m placeHolderKind
                    ; returnL (HsExplicitTupleTy kis tys')
                    }
             where
               m = length tys'

           PromotedNilT
             -> returnL (HsExplicitListTy Promoted placeHolderKind [])

           PromotedConsT  -- See Note [Representing concrete syntax in types]
                          -- in Language.Haskell.TH.Syntax
             | [ty1, L _ (HsExplicitListTy ip _ tys2)] <- tys'
             -> returnL (HsExplicitListTy ip placeHolderKind (ty1:tys2))
             | otherwise
             -> mk_apps (HsTyVar NotPromoted (noLoc (getRdrName consDataCon)))
                        tys'

           StarT
             -> returnL (HsTyVar NotPromoted (noLoc
                                              (getRdrName liftedTypeKindTyCon)))

           ConstraintT
             -> returnL (HsTyVar NotPromoted
                              (noLoc (getRdrName constraintKindTyCon)))

           EqualityT
             | [x',y'] <- tys' -> returnL (HsEqTy x' y')
             | otherwise ->
                   mk_apps (HsTyVar NotPromoted
                            (noLoc (getRdrName eqPrimTyCon))) tys'

           _ -> failWith (ptext (sLit ("Malformed " ++ ty_str)) <+> text (show ty))
    }

-- | Constructs an application of a type to arguments passed in a list.
mk_apps :: HsType GhcPs -> [LHsType GhcPs] -> CvtM (LHsType GhcPs)
mk_apps head_ty []       = returnL head_ty
mk_apps head_ty (ty:tys) =
  do { head_ty' <- returnL head_ty
     ; p_ty      <- add_parens ty
     ; mk_apps (HsAppTy head_ty' p_ty) tys }
  where
    add_parens t@(L _ HsAppTy{}) = returnL (HsParTy t)
    add_parens t@(L _ HsFunTy{}) = returnL (HsParTy t)
    add_parens t                 = return t

wrap_apps  :: LHsType GhcPs -> CvtM (LHsType GhcPs)
wrap_apps t@(L _ HsAppTy {}) = returnL (HsParTy t)
wrap_apps t                  = return t

-- | Constructs an arrow type with a specified return type
mk_arr_apps :: [LHsType GhcPs] -> HsType GhcPs -> CvtM (LHsType GhcPs)
mk_arr_apps tys return_ty = foldrM go return_ty tys >>= returnL
    where go :: LHsType GhcPs -> HsType GhcPs -> CvtM (HsType GhcPs)
          go arg ret_ty = do { ret_ty_l <- returnL ret_ty
                             ; return (HsFunTy arg ret_ty_l) }

split_ty_app :: TH.Type -> CvtM (TH.Type, [LHsType GhcPs])
split_ty_app ty = go ty []
  where
    go (AppT f a) as' = do { a' <- cvtType a; go f (a':as') }
    go f as           = return (f,as)

cvtTyLit :: TH.TyLit -> HsTyLit
cvtTyLit (TH.NumTyLit i) = HsNumTy NoSourceText i
cvtTyLit (TH.StrTyLit s) = HsStrTy NoSourceText (fsLit s)

{- | @cvtOpAppT x op y@ takes converted arguments and flattens any HsAppsTy
   structure in them.
-}
cvtOpAppT :: LHsType GhcPs -> RdrName -> LHsType GhcPs -> LHsType GhcPs
cvtOpAppT t1@(L loc1 _) op t2@(L loc2 _)
  = L (combineSrcSpans loc1 loc2) $
    HsAppsTy (t1' ++ [noLoc $ HsAppInfix (noLoc op)] ++ t2')
  where
    t1' | L _ (HsAppsTy t1s) <- t1
        = t1s
        | otherwise
        = [noLoc $ HsAppPrefix t1]

    t2' | L _ (HsAppsTy t2s) <- t2
        = t2s
        | otherwise
        = [noLoc $ HsAppPrefix t2]

cvtKind :: TH.Kind -> CvtM (LHsKind GhcPs)
cvtKind = cvtTypeKind "kind"

-- | Convert Maybe Kind to a type family result signature. Used with data
-- families where naming of the result is not possible (thus only kind or no
-- signature is possible).
cvtMaybeKindToFamilyResultSig :: Maybe TH.Kind
                              -> CvtM (LFamilyResultSig GhcPs)
cvtMaybeKindToFamilyResultSig Nothing   = returnL Hs.NoSig
cvtMaybeKindToFamilyResultSig (Just ki) = do { ki' <- cvtKind ki
                                             ; returnL (Hs.KindSig ki') }

-- | Convert type family result signature. Used with both open and closed type
-- families.
cvtFamilyResultSig :: TH.FamilyResultSig -> CvtM (Hs.LFamilyResultSig GhcPs)
cvtFamilyResultSig TH.NoSig           = returnL Hs.NoSig
cvtFamilyResultSig (TH.KindSig ki)    = do { ki' <- cvtKind ki
                                           ; returnL (Hs.KindSig ki') }
cvtFamilyResultSig (TH.TyVarSig bndr) = do { tv <- cvt_tv bndr
                                           ; returnL (Hs.TyVarSig tv) }

-- | Convert injectivity annotation of a type family.
cvtInjectivityAnnotation :: TH.InjectivityAnn
                         -> CvtM (Hs.LInjectivityAnn GhcPs)
cvtInjectivityAnnotation (TH.InjectivityAnn annLHS annRHS)
  = do { annLHS' <- tNameL annLHS
       ; annRHS' <- mapM tNameL annRHS
       ; returnL (Hs.InjectivityAnn annLHS' annRHS') }

cvtPatSynSigTy :: TH.Type -> CvtM (LHsType GhcPs)
-- pattern synonym types are of peculiar shapes, which is why we treat
-- them separately from regular types;
-- see Note [Pattern synonym type signatures and Template Haskell]
cvtPatSynSigTy (ForallT univs reqs (ForallT exis provs ty))
  | null exis, null provs = cvtType (ForallT univs reqs ty)
  | null univs, null reqs = do { l   <- getL
                               ; ty' <- cvtType (ForallT exis provs ty)
                               ; return $ L l (HsQualTy { hst_ctxt = L l []
                                                        , hst_body = ty' }) }
  | null reqs             = do { l      <- getL
                               ; univs' <- hsQTvExplicit <$> cvtTvs univs
                               ; ty'    <- cvtType (ForallT exis provs ty)
                               ; let forTy = HsForAllTy { hst_bndrs = univs'
                                                        , hst_body = L l cxtTy }
                                     cxtTy = HsQualTy { hst_ctxt = L l []
                                                      , hst_body = ty' }
                               ; return $ L l forTy }
  | otherwise             = cvtType (ForallT univs reqs (ForallT exis provs ty))
cvtPatSynSigTy ty         = cvtType ty

-----------------------------------------------------------
cvtFixity :: TH.Fixity -> Hs.Fixity
cvtFixity (TH.Fixity prec dir) = Hs.Fixity NoSourceText prec (cvt_dir dir)
   where
     cvt_dir TH.InfixL = Hs.InfixL
     cvt_dir TH.InfixR = Hs.InfixR
     cvt_dir TH.InfixN = Hs.InfixN

-----------------------------------------------------------


-----------------------------------------------------------
-- some useful things

overloadedLit :: Lit -> Bool
-- True for literals that Haskell treats as overloaded
overloadedLit (IntegerL  _) = True
overloadedLit (RationalL _) = True
overloadedLit _             = False

-- Checks that are performed when converting unboxed sum expressions and
-- patterns alike.
unboxedSumChecks :: TH.SumAlt -> TH.SumArity -> CvtM ()
unboxedSumChecks alt arity
    | alt > arity
    = failWith $ text "Sum alternative"    <+> text (show alt)
             <+> text "exceeds its arity," <+> text (show arity)
    | alt <= 0
    = failWith $ vcat [ text "Illegal sum alternative:" <+> text (show alt)
                      , nest 2 $ text "Sum alternatives must start from 1" ]
    | arity < 2
    = failWith $ vcat [ text "Illegal sum arity:" <+> text (show arity)
                      , nest 2 $ text "Sums must have an arity of at least 2" ]
    | otherwise
    = return ()

-- | If passed an empty list of 'TH.TyVarBndr's, this simply returns the
-- third argument (an 'LHsType'). Otherwise, return an 'HsForAllTy'
-- using the provided 'LHsQTyVars' and 'LHsType'.
mkHsForAllTy :: [TH.TyVarBndr]
             -- ^ The original Template Haskell type variable binders
             -> SrcSpan
             -- ^ The location of the returned 'LHsType' if it needs an
             --   explicit forall
             -> LHsQTyVars name
             -- ^ The converted type variable binders
             -> LHsType name
             -- ^ The converted rho type
             -> LHsType name
             -- ^ The complete type, quantified with a forall if necessary
mkHsForAllTy tvs loc tvs' rho_ty
  | null tvs  = rho_ty
  | otherwise = L loc $ HsForAllTy { hst_bndrs = hsQTvExplicit tvs'
                                   , hst_body = rho_ty }

-- | If passed an empty 'TH.Cxt', this simply returns the third argument
-- (an 'LHsType'). Otherwise, return an 'HsQualTy' using the provided
-- 'LHsContext' and 'LHsType'.

-- It's important that we don't build an HsQualTy if the context is empty,
-- as the pretty-printer for HsType _always_ prints contexts, even if
-- they're empty. See Trac #13183.
mkHsQualTy :: TH.Cxt
           -- ^ The original Template Haskell context
           -> SrcSpan
           -- ^ The location of the returned 'LHsType' if it needs an
           --   explicit context
           -> LHsContext name
           -- ^ The converted context
           -> LHsType name
           -- ^ The converted tau type
           -> LHsType name
           -- ^ The complete type, qualified with a context if necessary
mkHsQualTy ctxt loc ctxt' ty
  | null ctxt = ty
  | otherwise = L loc $ HsQualTy { hst_ctxt = ctxt', hst_body = ty }

--------------------------------------------------------------------
--      Turning Name back into RdrName
--------------------------------------------------------------------

-- variable names
vNameL, cNameL, vcNameL, tNameL, tconNameL :: TH.Name -> CvtM (Located RdrName)
vName,  cName,  vcName,  tName,  tconName  :: TH.Name -> CvtM RdrName

-- Variable names
vNameL n = wrapL (vName n)
vName n = cvtName OccName.varName n

-- Constructor function names; this is Haskell source, hence srcDataName
cNameL n = wrapL (cName n)
cName n = cvtName OccName.dataName n

-- Variable *or* constructor names; check by looking at the first char
vcNameL n = wrapL (vcName n)
vcName n = if isVarName n then vName n else cName n

-- Type variable names
tNameL n = wrapL (tName n)
tName n = cvtName OccName.tvName n

-- Type Constructor names
tconNameL n = wrapL (tconName n)
tconName n = cvtName OccName.tcClsName n

cvtName :: OccName.NameSpace -> TH.Name -> CvtM RdrName
cvtName ctxt_ns (TH.Name occ flavour)
  | not (okOcc ctxt_ns occ_str) = failWith (badOcc ctxt_ns occ_str)
  | otherwise
  = do { loc <- getL
       ; let rdr_name = thRdrName loc ctxt_ns occ_str flavour
       ; force rdr_name
       ; return rdr_name }
  where
    occ_str = TH.occString occ

okOcc :: OccName.NameSpace -> String -> Bool
okOcc ns str
  | OccName.isVarNameSpace ns     = okVarOcc str
  | OccName.isDataConNameSpace ns = okConOcc str
  | otherwise                     = okTcOcc  str

-- Determine the name space of a name in a type
--
isVarName :: TH.Name -> Bool
isVarName (TH.Name occ _)
  = case TH.occString occ of
      ""    -> False
      (c:_) -> startsVarId c || startsVarSym c

badOcc :: OccName.NameSpace -> String -> SDoc
badOcc ctxt_ns occ
  = text "Illegal" <+> pprNameSpace ctxt_ns
        <+> text "name:" <+> quotes (text occ)

thRdrName :: SrcSpan -> OccName.NameSpace -> String -> TH.NameFlavour -> RdrName
-- This turns a TH Name into a RdrName; used for both binders and occurrences
-- See Note [Binders in Template Haskell]
-- The passed-in name space tells what the context is expecting;
--      use it unless the TH name knows what name-space it comes
--      from, in which case use the latter
--
-- We pass in a SrcSpan (gotten from the monad) because this function
-- is used for *binders* and if we make an Exact Name we want it
-- to have a binding site inside it.  (cf Trac #5434)
--
-- ToDo: we may generate silly RdrNames, by passing a name space
--       that doesn't match the string, like VarName ":+",
--       which will give confusing error messages later
--
-- The strict applications ensure that any buried exceptions get forced
thRdrName loc ctxt_ns th_occ th_name
  = case th_name of
     TH.NameG th_ns pkg mod -> thOrigRdrName th_occ th_ns pkg mod
     TH.NameQ mod  -> (mkRdrQual  $! mk_mod mod) $! occ
     TH.NameL uniq -> nameRdrName $! (((Name.mkInternalName $! mk_uniq uniq) $! occ) loc)
     TH.NameU uniq -> nameRdrName $! (((Name.mkSystemNameAt $! mk_uniq uniq) $! occ) loc)
     TH.NameS | Just name <- isBuiltInOcc_maybe occ -> nameRdrName $! name
              | otherwise                           -> mkRdrUnqual $! occ
              -- We check for built-in syntax here, because the TH
              -- user might have written a (NameS "(,,)"), for example
  where
    occ :: OccName.OccName
    occ = mk_occ ctxt_ns th_occ

thOrigRdrName :: String -> TH.NameSpace -> PkgName -> ModName -> RdrName
thOrigRdrName occ th_ns pkg mod = (mkOrig $! (mkModule (mk_pkg pkg) (mk_mod mod))) $! (mk_occ (mk_ghc_ns th_ns) occ)

thRdrNameGuesses :: TH.Name -> [RdrName]
thRdrNameGuesses (TH.Name occ flavour)
  -- This special case for NameG ensures that we don't generate duplicates in the output list
  | TH.NameG th_ns pkg mod <- flavour = [ thOrigRdrName occ_str th_ns pkg mod]
  | otherwise                         = [ thRdrName noSrcSpan gns occ_str flavour
                                        | gns <- guessed_nss]
  where
    -- guessed_ns are the name spaces guessed from looking at the TH name
    guessed_nss | isLexCon (mkFastString occ_str) = [OccName.tcName,  OccName.dataName]
                | otherwise                       = [OccName.varName, OccName.tvName]
    occ_str = TH.occString occ

-- The packing and unpacking is rather turgid :-(
mk_occ :: OccName.NameSpace -> String -> OccName.OccName
mk_occ ns occ = OccName.mkOccName ns occ

mk_ghc_ns :: TH.NameSpace -> OccName.NameSpace
mk_ghc_ns TH.DataName  = OccName.dataName
mk_ghc_ns TH.TcClsName = OccName.tcClsName
mk_ghc_ns TH.VarName   = OccName.varName

mk_mod :: TH.ModName -> ModuleName
mk_mod mod = mkModuleName (TH.modString mod)

mk_pkg :: TH.PkgName -> UnitId
mk_pkg pkg = stringToUnitId (TH.pkgString pkg)

mk_uniq :: Int -> Unique
mk_uniq u = mkUniqueGrimily u

{-
Note [Binders in Template Haskell]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this TH term construction:
  do { x1 <- TH.newName "x"   -- newName :: String -> Q TH.Name
     ; x2 <- TH.newName "x"   -- Builds a NameU
     ; x3 <- TH.newName "x"

     ; let x = mkName "x"     -- mkName :: String -> TH.Name
                              -- Builds a NameS

     ; return (LamE (..pattern [x1,x2]..) $
               LamE (VarPat x3) $
               ..tuple (x1,x2,x3,x)) }

It represents the term   \[x1,x2]. \x3. (x1,x2,x3,x)

a) We don't want to complain about "x" being bound twice in
   the pattern [x1,x2]
b) We don't want x3 to shadow the x1,x2
c) We *do* want 'x' (dynamically bound with mkName) to bind
   to the innermost binding of "x", namely x3.
d) When pretty printing, we want to print a unique with x1,x2
   etc, else they'll all print as "x" which isn't very helpful

When we convert all this to HsSyn, the TH.Names are converted with
thRdrName.  To achieve (b) we want the binders to be Exact RdrNames.
Achieving (a) is a bit awkward, because
   - We must check for duplicate and shadowed names on Names,
     not RdrNames, *after* renaming.
     See Note [Collect binders only after renaming] in HsUtils

   - But to achieve (a) we must distinguish between the Exact
     RdrNames arising from TH and the Unqual RdrNames that would
     come from a user writing \[x,x] -> blah

So in Convert.thRdrName we translate
   TH Name                          RdrName
   --------------------------------------------------------
   NameU (arising from newName) --> Exact (Name{ System })
   NameS (arising from mkName)  --> Unqual

Notice that the NameUs generate *System* Names.  Then, when
figuring out shadowing and duplicates, we can filter out
System Names.

This use of System Names fits with other uses of System Names, eg for
temporary variables "a". Since there are lots of things called "a" we
usually want to print the name with the unique, and that is indeed
the way System Names are printed.

There's a small complication of course; see Note [Looking up Exact
RdrNames] in RnEnv.
-}

{-
Note [Pattern synonym type signatures and Template Haskell]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In general, the type signature of a pattern synonym

  pattern P x1 x2 .. xn = <some-pattern>

is of the form

   forall univs. reqs => forall exis. provs => t1 -> t2 -> ... -> tn -> t

with the following parts:

   1) the (possibly empty lists of) universally quantified type
      variables `univs` and required constraints `reqs` on them.
   2) the (possibly empty lists of) existentially quantified type
      variables `exis` and the provided constraints `provs` on them.
   3) the types `t1`, `t2`, .., `tn` of the pattern synonym's arguments x1,
      x2, .., xn, respectively
   4) the type `t` of <some-pattern>, mentioning only universals from `univs`.

Due to the two forall quantifiers and constraint contexts (either of
which might be empty), pattern synonym type signatures are treated
specially in `deSugar/DsMeta.hs`, `hsSyn/Convert.hs`, and
`typecheck/TcSplice.hs`:

   (a) When desugaring a pattern synonym from HsSyn to TH.Dec in
       `deSugar/DsMeta.hs`, we represent its *full* type signature in TH, i.e.:

           ForallT univs reqs (ForallT exis provs ty)
              (where ty is the AST representation of t1 -> t2 -> ... -> tn -> t)

   (b) When converting pattern synonyms from TH.Dec to HsSyn in
       `hsSyn/Convert.hs`, we convert their TH type signatures back to an
       appropriate Haskell pattern synonym type of the form

         forall univs. reqs => forall exis. provs => t1 -> t2 -> ... -> tn -> t

       where initial empty `univs` type variables or an empty `reqs`
       constraint context are represented *explicitly* as `() =>`.

   (c) When reifying a pattern synonym in `typecheck/TcSplice.hs`, we always
       return its *full* type, i.e.:

           ForallT univs reqs (ForallT exis provs ty)
              (where ty is the AST representation of t1 -> t2 -> ... -> tn -> t)

The key point is to always represent a pattern synonym's *full* type
in cases (a) and (c) to make it clear which of the two forall
quantifiers and/or constraint contexts are specified, and which are
not. See GHC's user's guide on pattern synonyms for more information
about pattern synonym type signatures.

-}