summaryrefslogtreecommitdiff
path: root/compiler/hsSyn/Convert.lhs
blob: 8d2b14f3642f61b28fad78f87af657927d2f1b01 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%

This module converts Template Haskell syntax into HsSyn

\begin{code}
module Convert( convertToHsExpr, convertToHsDecls, 
                convertToHsType, thRdrName ) where

#include "HsVersions.h"

import HsSyn as Hs
import qualified Class
import RdrName
import qualified Name
import Module
import RdrHsSyn
import qualified OccName
import PackageConfig
import OccName
import SrcLoc
import Type
import TysWiredIn
import BasicTypes
import ForeignCall
import Char
import List
import Unique
import ErrUtils
import Bag
import FastString
import Outputable

import Language.Haskell.TH as TH hiding (sigP)
import Language.Haskell.TH.Syntax as TH

import GHC.Exts

-------------------------------------------------------------------
--		The external interface

convertToHsDecls :: SrcSpan -> [TH.Dec] -> Either Message [LHsDecl RdrName]
convertToHsDecls loc ds = initCvt loc (mapM cvtTop ds)

convertToHsExpr :: SrcSpan -> TH.Exp -> Either Message (LHsExpr RdrName)
convertToHsExpr loc e 
  = case initCvt loc (cvtl e) of
	Left msg  -> Left (msg $$ (ptext SLIT("When converting TH expression")
				    <+> text (show e)))
	Right res -> Right res

convertToHsType :: SrcSpan -> TH.Type -> Either Message (LHsType RdrName)
convertToHsType loc t = initCvt loc (cvtType t)


-------------------------------------------------------------------
newtype CvtM a = CvtM { unCvtM :: SrcSpan -> Either Message a }
	-- Push down the source location;
	-- Can fail, with a single error message

-- NB: If the conversion succeeds with (Right x), there should 
--     be no exception values hiding in x
-- Reason: so a (head []) in TH code doesn't subsequently
-- 	   make GHC crash when it tries to walk the generated tree

-- Use the loc everywhere, for lack of anything better
-- In particular, we want it on binding locations, so that variables bound in
-- the spliced-in declarations get a location that at least relates to the splice point

instance Monad CvtM where
  return x       = CvtM $ \loc -> Right x
  (CvtM m) >>= k = CvtM $ \loc -> case m loc of
				    Left err -> Left err
				    Right v  -> unCvtM (k v) loc

initCvt :: SrcSpan -> CvtM a -> Either Message a
initCvt loc (CvtM m) = m loc

force :: a -> CvtM a
force a = a `seq` return a

failWith :: Message -> CvtM a
failWith m = CvtM (\loc -> Left full_msg)
   where
     full_msg = m $$ ptext SLIT("When splicing generated code into the program")

returnL :: a -> CvtM (Located a)
returnL x = CvtM (\loc -> Right (L loc x))

wrapL :: CvtM a -> CvtM (Located a)
wrapL (CvtM m) = CvtM (\loc -> case m loc of
			  Left err -> Left err
			  Right v  -> Right (L loc v))

-------------------------------------------------------------------
cvtTop :: TH.Dec -> CvtM (LHsDecl RdrName)
cvtTop d@(TH.ValD _ _ _) = do { L loc d' <- cvtBind d; return (L loc $ Hs.ValD d') }
cvtTop d@(TH.FunD _ _)   = do { L loc d' <- cvtBind d; return (L loc $ Hs.ValD d') }
cvtTop (TH.SigD nm typ)  = do  { nm' <- vNameL nm
				; ty' <- cvtType typ
				; returnL $ Hs.SigD (TypeSig nm' ty') }

cvtTop (TySynD tc tvs rhs)
  = do	{ tc' <- tconNameL tc
	; tvs' <- cvtTvs tvs
	; rhs' <- cvtType rhs
	; returnL $ TyClD (TySynonym tc' tvs' Nothing rhs') }

cvtTop (DataD ctxt tc tvs constrs derivs)
  = do	{ stuff <- cvt_tycl_hdr ctxt tc tvs
	; cons' <- mapM cvtConstr constrs
	; derivs' <- cvtDerivs derivs
	; returnL $ TyClD (mkTyData DataType stuff Nothing cons' derivs') }


cvtTop (NewtypeD ctxt tc tvs constr derivs)
  = do	{ stuff <- cvt_tycl_hdr ctxt tc tvs
	; con' <- cvtConstr constr
	; derivs' <- cvtDerivs derivs
	; returnL $ TyClD (mkTyData NewType stuff Nothing [con'] derivs') }

cvtTop (ClassD ctxt cl tvs fds decs)
  = do	{ (cxt', tc', tvs', _) <- cvt_tycl_hdr ctxt cl tvs
	; fds'  <- mapM cvt_fundep fds
	; (binds', sigs') <- cvtBindsAndSigs decs
	; returnL $ TyClD $ mkClassDecl (cxt', tc', tvs') fds' sigs' binds' [] []
						    -- no ATs or docs in TH ^^ ^^
	}

cvtTop (InstanceD tys ty decs)
  = do 	{ (binds', sigs') <- cvtBindsAndSigs decs
	; ctxt' <- cvtContext tys
	; L loc pred' <- cvtPred ty
	; inst_ty' <- returnL $ mkImplicitHsForAllTy ctxt' (L loc (HsPredTy pred'))
	; returnL $ InstD (InstDecl inst_ty' binds' sigs' [])
						       -- ^^no ATs in TH
	}

cvtTop (ForeignD ford) = do { ford' <- cvtForD ford; returnL $ ForD ford' }

cvt_tycl_hdr cxt tc tvs
  = do	{ cxt' <- cvtContext cxt
	; tc'  <- tconNameL tc
	; tvs' <- cvtTvs tvs
	; return (cxt', tc', tvs', Nothing) }

---------------------------------------------------
-- 	Data types
-- Can't handle GADTs yet
---------------------------------------------------

cvtConstr (NormalC c strtys)
  = do	{ c'   <- cNameL c 
	; cxt' <- returnL []
	; tys' <- mapM cvt_arg strtys
	; returnL $ ConDecl c' Explicit noExistentials cxt' (PrefixCon tys') ResTyH98 Nothing }

cvtConstr (RecC c varstrtys)
  = do 	{ c'    <- cNameL c 
	; cxt'  <- returnL []
	; args' <- mapM cvt_id_arg varstrtys
	; returnL $ ConDecl c' Explicit noExistentials cxt' (RecCon args') ResTyH98 Nothing }

cvtConstr (InfixC st1 c st2)
  = do 	{ c' <- cNameL c 
	; cxt' <- returnL []
	; st1' <- cvt_arg st1
	; st2' <- cvt_arg st2
	; returnL $ ConDecl c' Explicit noExistentials cxt' (InfixCon st1' st2') ResTyH98 Nothing }

cvtConstr (ForallC tvs ctxt (ForallC tvs' ctxt' con'))
  = cvtConstr (ForallC (tvs ++ tvs') (ctxt ++ ctxt') con')

cvtConstr (ForallC tvs ctxt con)
  = do	{ L _ con' <- cvtConstr con
	; tvs'  <- cvtTvs tvs
	; ctxt' <- cvtContext ctxt
	; case con' of
	    ConDecl l _ [] (L _ []) x ResTyH98 _
	      -> returnL $ ConDecl l Explicit tvs' ctxt' x ResTyH98 Nothing
	    c -> panic "ForallC: Can't happen" }

cvt_arg (IsStrict, ty)  = do { ty' <- cvtType ty; returnL $ HsBangTy HsStrict ty' }
cvt_arg (NotStrict, ty) = cvtType ty

cvt_id_arg (i, str, ty) 
  = do	{ i' <- vNameL i
	; ty' <- cvt_arg (str,ty)
	; return (ConDeclField { cd_fld_name = i', cd_fld_type =  ty', cd_fld_doc = Nothing}) }

cvtDerivs [] = return Nothing
cvtDerivs cs = do { cs' <- mapM cvt_one cs
		  ; return (Just cs') }
	where
	  cvt_one c = do { c' <- tconName c
			 ; returnL $ HsPredTy $ HsClassP c' [] }

cvt_fundep :: FunDep -> CvtM (Located (Class.FunDep RdrName))
cvt_fundep (FunDep xs ys) = do { xs' <- mapM tName xs; ys' <- mapM tName ys; returnL (xs', ys') }

noExistentials = []

------------------------------------------
-- 	Foreign declarations
------------------------------------------

cvtForD :: Foreign -> CvtM (ForeignDecl RdrName)
cvtForD (ImportF callconv safety from nm ty)
  | Just (c_header, cis) <- parse_ccall_impent (TH.nameBase nm) from
  = do	{ nm' <- vNameL nm
	; ty' <- cvtType ty
	; let i = CImport (cvt_conv callconv) safety' c_header nilFS cis
	; return $ ForeignImport nm' ty' i }

  | otherwise
  = failWith $ text (show from)<+> ptext SLIT("is not a valid ccall impent")
  where 
    safety' = case safety of
                     Unsafe     -> PlayRisky
                     Safe       -> PlaySafe False
                     Threadsafe -> PlaySafe True

cvtForD (ExportF callconv as nm ty)
  = do	{ nm' <- vNameL nm
	; ty' <- cvtType ty
	; let e = CExport (CExportStatic (mkFastString as) (cvt_conv callconv))
 	; return $ ForeignExport nm' ty' e }

cvt_conv TH.CCall   = CCallConv
cvt_conv TH.StdCall = StdCallConv

parse_ccall_impent :: String -> String -> Maybe (FastString, CImportSpec)
parse_ccall_impent nm s
 = case lex_ccall_impent s of
       Just ["dynamic"] -> Just (nilFS, CFunction DynamicTarget)
       Just ["wrapper"] -> Just (nilFS, CWrapper)
       Just ("static":ts) -> parse_ccall_impent_static nm ts
       Just ts -> parse_ccall_impent_static nm ts
       Nothing -> Nothing

parse_ccall_impent_static :: String
                          -> [String]
                          -> Maybe (FastString, CImportSpec)
parse_ccall_impent_static nm ts
 = let ts' = case ts of
                 [       "&", cid] -> [       cid]
                 [fname, "&"     ] -> [fname     ]
                 [fname, "&", cid] -> [fname, cid]
                 _                 -> ts
   in case ts' of
          [       cid] | is_cid cid -> Just (nilFS,              mk_cid cid)
          [fname, cid] | is_cid cid -> Just (mkFastString fname, mk_cid cid)
          [          ]              -> Just (nilFS,              mk_cid nm)
          [fname     ]              -> Just (mkFastString fname, mk_cid nm)
          _                         -> Nothing
    where is_cid :: String -> Bool
          is_cid x = all (/= '.') x && (isAlpha (head x) || head x == '_')
          mk_cid :: String -> CImportSpec
          mk_cid  = CFunction . StaticTarget . mkFastString

lex_ccall_impent :: String -> Maybe [String]
lex_ccall_impent "" = Just []
lex_ccall_impent ('&':xs) = fmap ("&":) $ lex_ccall_impent xs
lex_ccall_impent (' ':xs) = lex_ccall_impent xs
lex_ccall_impent ('\t':xs) = lex_ccall_impent xs
lex_ccall_impent xs = case span is_valid xs of
                          ("", _) -> Nothing
                          (t, xs') -> fmap (t:) $ lex_ccall_impent xs'
    where is_valid :: Char -> Bool
          is_valid c = isAscii c && (isAlphaNum c || c `elem` "._")


---------------------------------------------------
--		Declarations
---------------------------------------------------

cvtDecs :: [TH.Dec] -> CvtM (HsLocalBinds RdrName)
cvtDecs [] = return EmptyLocalBinds
cvtDecs ds = do { (binds,sigs) <- cvtBindsAndSigs ds
		; return (HsValBinds (ValBindsIn binds sigs)) }

cvtBindsAndSigs ds 
  = do { binds' <- mapM cvtBind binds; sigs' <- mapM cvtSig sigs
       ; return (listToBag binds', sigs') }
  where 
    (sigs, binds) = partition is_sig ds

    is_sig (TH.SigD _ _) = True
    is_sig other	 = False

cvtSig (TH.SigD nm ty)
  = do { nm' <- vNameL nm; ty' <- cvtType ty; returnL (Hs.TypeSig nm' ty') }

cvtBind :: TH.Dec -> CvtM (LHsBind RdrName)
-- Used only for declarations in a 'let/where' clause,
-- not for top level decls
cvtBind (TH.ValD (TH.VarP s) body ds) 
  = do	{ s' <- vNameL s
	; cl' <- cvtClause (Clause [] body ds)
	; returnL $ mkFunBind s' [cl'] }

cvtBind (TH.FunD nm cls)
  = do	{ nm' <- vNameL nm
	; cls' <- mapM cvtClause cls
	; returnL $ mkFunBind nm' cls' }

cvtBind (TH.ValD p body ds)
  = do	{ p' <- cvtPat p
	; g' <- cvtGuard body
	; ds' <- cvtDecs ds
	; returnL $ PatBind { pat_lhs = p', pat_rhs = GRHSs g' ds', 
			      pat_rhs_ty = void, bind_fvs = placeHolderNames } }

cvtBind d 
  = failWith (sep [ptext SLIT("Illegal kind of declaration in where clause"),
		   nest 2 (text (TH.pprint d))])

cvtClause :: TH.Clause -> CvtM (Hs.LMatch RdrName)
cvtClause (Clause ps body wheres)
  = do	{ ps' <- cvtPats ps
	; g'  <- cvtGuard body
	; ds' <- cvtDecs wheres
	; returnL $ Hs.Match ps' Nothing (GRHSs g' ds') }


-------------------------------------------------------------------
--		Expressions
-------------------------------------------------------------------

cvtl :: TH.Exp -> CvtM (LHsExpr RdrName)
cvtl e = wrapL (cvt e)
  where
    cvt (VarE s) 	= do { s' <- vName s; return $ HsVar s' }
    cvt (ConE s) 	= do { s' <- cName s; return $ HsVar s' }
    cvt (LitE l) 
      | overloadedLit l = do { l' <- cvtOverLit l; return $ HsOverLit l' }
      | otherwise	= do { l' <- cvtLit l;     return $ HsLit l' }

    cvt (AppE x y)     = do { x' <- cvtl x; y' <- cvtl y; return $ HsApp x' y' }
    cvt (LamE ps e)    = do { ps' <- cvtPats ps; e' <- cvtl e 
			    ; return $ HsLam (mkMatchGroup [mkSimpleMatch ps' e']) }
    cvt (TupE [e])     = cvt e
    cvt (TupE es)      = do { es' <- mapM cvtl es; return $ ExplicitTuple es' Boxed }
    cvt (CondE x y z)  = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z
			    ; return $ HsIf x' y' z' }
    cvt (LetE ds e)    = do { ds' <- cvtDecs ds; e' <- cvtl e; return $ HsLet ds' e' }
    cvt (CaseE e ms)   = do { e' <- cvtl e; ms' <- mapM cvtMatch ms
			    ; return $ HsCase e' (mkMatchGroup ms') }
    cvt (DoE ss)       = cvtHsDo DoExpr ss
    cvt (CompE ss)     = cvtHsDo ListComp ss
    cvt (ArithSeqE dd) = do { dd' <- cvtDD dd; return $ ArithSeq noPostTcExpr dd' }
    cvt (ListE xs)     = do { xs' <- mapM cvtl xs; return $ ExplicitList void xs' }
    cvt (InfixE (Just x) s (Just y)) = do { x' <- cvtl x; s' <- cvtl s; y' <- cvtl y
					  ; e' <- returnL $ OpApp x' s' undefined y'
					  ; return $ HsPar e' }
    cvt (InfixE Nothing  s (Just y)) = do { s' <- cvtl s; y' <- cvtl y
					  ; return $ SectionR s' y' }
    cvt (InfixE (Just x) s Nothing ) = do { x' <- cvtl x; s' <- cvtl s
					  ; return $ SectionL x' s' }
    cvt (InfixE Nothing  s Nothing ) = cvt s	-- Can I indicate this is an infix thing?

    cvt (SigE e t)	 = do { e' <- cvtl e; t' <- cvtType t
			      ; return $ ExprWithTySig e' t' }
    cvt (RecConE c flds) = do { c' <- cNameL c
			      ; flds' <- mapM cvtFld flds
			      ; return $ RecordCon c' noPostTcExpr (HsRecFields flds' Nothing)}
    cvt (RecUpdE e flds) = do { e' <- cvtl e
			      ; flds' <- mapM cvtFld flds
			      ; return $ RecordUpd e' (HsRecFields flds' Nothing) [] [] [] }

cvtFld (v,e) 
  = do	{ v' <- vNameL v; e' <- cvtl e
	; return (HsRecField { hsRecFieldId = v', hsRecFieldArg = e', hsRecPun = False}) }

cvtDD :: Range -> CvtM (ArithSeqInfo RdrName)
cvtDD (FromR x) 	  = do { x' <- cvtl x; return $ From x' }
cvtDD (FromThenR x y)     = do { x' <- cvtl x; y' <- cvtl y; return $ FromThen x' y' }
cvtDD (FromToR x y)       = do { x' <- cvtl x; y' <- cvtl y; return $ FromTo x' y' }
cvtDD (FromThenToR x y z) = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z; return $ FromThenTo x' y' z' }

-------------------------------------
-- 	Do notation and statements
-------------------------------------

cvtHsDo do_or_lc stmts
  = do	{ stmts' <- cvtStmts stmts
	; let body = case last stmts' of
			L _ (ExprStmt body _ _) -> body
	; return $ HsDo do_or_lc (init stmts') body void }

cvtStmts = mapM cvtStmt 

cvtStmt :: TH.Stmt -> CvtM (Hs.LStmt RdrName)
cvtStmt (NoBindS e)    = do { e' <- cvtl e; returnL $ mkExprStmt e' }
cvtStmt (TH.BindS p e) = do { p' <- cvtPat p; e' <- cvtl e; returnL $ mkBindStmt p' e' }
cvtStmt (TH.LetS ds)   = do { ds' <- cvtDecs ds; returnL $ LetStmt ds' }
cvtStmt (TH.ParS dss)  = do { dss' <- mapM cvt_one dss; returnL $ ParStmt dss' }
		       where
			 cvt_one ds = do { ds' <- cvtStmts ds; return (ds', undefined) }

cvtMatch :: TH.Match -> CvtM (Hs.LMatch RdrName)
cvtMatch (TH.Match p body decs)
  = do 	{ p' <- cvtPat p
	; g' <- cvtGuard body
	; decs' <- cvtDecs decs
	; returnL $ Hs.Match [p'] Nothing (GRHSs g' decs') }

cvtGuard :: TH.Body -> CvtM [LGRHS RdrName]
cvtGuard (GuardedB pairs) = mapM cvtpair pairs
cvtGuard (NormalB e)      = do { e' <- cvtl e; g' <- returnL $ GRHS [] e'; return [g'] }

cvtpair :: (TH.Guard, TH.Exp) -> CvtM (LGRHS RdrName)
cvtpair (NormalG ge,rhs) = do { ge' <- cvtl ge; rhs' <- cvtl rhs
			      ; g' <- returnL $ mkBindStmt truePat ge'
			      ; returnL $ GRHS [g'] rhs' }
cvtpair (PatG gs,rhs)    = do { gs' <- cvtStmts gs; rhs' <- cvtl rhs
			      ; returnL $ GRHS gs' rhs' }

cvtOverLit :: Lit -> CvtM (HsOverLit RdrName)
cvtOverLit (IntegerL i)  = do { force i; return $ mkHsIntegral i }
cvtOverLit (RationalL r) = do { force r; return $ mkHsFractional r }
cvtOverLit (StringL s)   = do { let { s' = mkFastString s }; force s'; return $ mkHsIsString s' }
-- An Integer is like an an (overloaded) '3' in a Haskell source program
-- Similarly 3.5 for fractionals

cvtLit :: Lit -> CvtM HsLit
cvtLit (IntPrimL i)    = do { force i; return $ HsIntPrim i }
cvtLit (FloatPrimL f)  = do { force f; return $ HsFloatPrim f }
cvtLit (DoublePrimL f) = do { force f; return $ HsDoublePrim f }
cvtLit (CharL c)       = do { force c; return $ HsChar c }
cvtLit (StringL s)     = do { let { s' = mkFastString s }; force s'; return $ HsString s' }

cvtPats :: [TH.Pat] -> CvtM [Hs.LPat RdrName]
cvtPats pats = mapM cvtPat pats

cvtPat :: TH.Pat -> CvtM (Hs.LPat RdrName)
cvtPat pat = wrapL (cvtp pat)

cvtp :: TH.Pat -> CvtM (Hs.Pat RdrName)
cvtp (TH.LitP l)
  | overloadedLit l   = do { l' <- cvtOverLit l
		 	   ; return (mkNPat l' Nothing) }
		 		  -- Not right for negative patterns; 
		 		  -- need to think about that!
  | otherwise	      = do { l' <- cvtLit l; return $ Hs.LitPat l' }
cvtp (TH.VarP s)      = do { s' <- vName s; return $ Hs.VarPat s' }
cvtp (TupP [p])       = cvtp p
cvtp (TupP ps)        = do { ps' <- cvtPats ps; return $ TuplePat ps' Boxed void }
cvtp (ConP s ps)      = do { s' <- cNameL s; ps' <- cvtPats ps; return $ ConPatIn s' (PrefixCon ps') }
cvtp (InfixP p1 s p2) = do { s' <- cNameL s; p1' <- cvtPat p1; p2' <- cvtPat p2
			   ; return $ ConPatIn s' (InfixCon p1' p2') }
cvtp (TildeP p)       = do { p' <- cvtPat p; return $ LazyPat p' }
cvtp (TH.AsP s p)     = do { s' <- vNameL s; p' <- cvtPat p; return $ AsPat s' p' }
cvtp TH.WildP         = return $ WildPat void
cvtp (RecP c fs)      = do { c' <- cNameL c; fs' <- mapM cvtPatFld fs 
		  	   ; return $ ConPatIn c' $ Hs.RecCon (HsRecFields fs' Nothing) }
cvtp (ListP ps)       = do { ps' <- cvtPats ps; return $ ListPat ps' void }
cvtp (SigP p t)       = do { p' <- cvtPat p; t' <- cvtType t; return $ SigPatIn p' t' }

cvtPatFld (s,p)
  = do	{ s' <- vNameL s; p' <- cvtPat p
	; return (HsRecField { hsRecFieldId = s', hsRecFieldArg = p', hsRecPun = False}) }

-----------------------------------------------------------
--	Types and type variables

cvtTvs :: [TH.Name] -> CvtM [LHsTyVarBndr RdrName]
cvtTvs tvs = mapM cvt_tv tvs

cvt_tv tv = do { tv' <- tName tv; returnL $ UserTyVar tv' }

cvtContext :: Cxt -> CvtM (LHsContext RdrName)
cvtContext tys = do { preds' <- mapM cvtPred tys; returnL preds' }

cvtPred :: TH.Type -> CvtM (LHsPred RdrName)
cvtPred ty 
  = do	{ (head, tys') <- split_ty_app ty
	; case head of
	    ConT tc -> do { tc' <- tconName tc; returnL $ HsClassP tc' tys' }
	    VarT tv -> do { tv' <- tName tv;    returnL $ HsClassP tv' tys' }
	    other   -> failWith (ptext SLIT("Malformed predicate") <+> text (TH.pprint ty)) }

cvtType :: TH.Type -> CvtM (LHsType RdrName)
cvtType ty = do { (head, tys') <- split_ty_app ty
		; case head of
		    TupleT n | length tys' == n -> returnL (HsTupleTy Boxed tys')
		             | n == 0    -> mk_apps (HsTyVar (getRdrName unitTyCon)) tys'
		             | otherwise -> mk_apps (HsTyVar (getRdrName (tupleTyCon Boxed n))) tys'
		    ArrowT | [x',y'] <- tys' -> returnL (HsFunTy x' y')
		    ListT  | [x']    <- tys' -> returnL (HsListTy x')
		    VarT nm -> do { nm' <- tName nm;    mk_apps (HsTyVar nm') tys' }
		    ConT nm -> do { nm' <- tconName nm; mk_apps (HsTyVar nm') tys' }

		    ForallT tvs cxt ty | null tys' -> do { tvs' <- cvtTvs tvs
							 ; cxt' <- cvtContext cxt
							 ; ty'  <- cvtType ty
							 ; returnL $ mkExplicitHsForAllTy tvs' cxt' ty' }
		    otherwise -> failWith (ptext SLIT("Malformed type") <+> text (show ty))
	     }
  where
    mk_apps head []       = returnL head
    mk_apps head (ty:tys) = do { head' <- returnL head; mk_apps (HsAppTy head' ty) tys }

split_ty_app :: TH.Type -> CvtM (TH.Type, [LHsType RdrName])
split_ty_app ty = go ty []
  where
    go (AppT f a) as' = do { a' <- cvtType a; go f (a':as') }
    go f as 	      = return (f,as)

-----------------------------------------------------------


-----------------------------------------------------------
-- some useful things

truePat  = nlConPat (getRdrName trueDataCon)  []

overloadedLit :: Lit -> Bool
-- True for literals that Haskell treats as overloaded
overloadedLit (IntegerL  l) = True
overloadedLit (RationalL l) = True
overloadedLit l	            = False

void :: Type.Type
void = placeHolderType

--------------------------------------------------------------------
--	Turning Name back into RdrName
--------------------------------------------------------------------

-- variable names
vNameL, cNameL, tconNameL :: TH.Name -> CvtM (Located RdrName)
vName,  cName,  tName,  tconName  :: TH.Name -> CvtM RdrName

vNameL n = wrapL (vName n)
vName n = cvtName OccName.varName n

-- Constructor function names; this is Haskell source, hence srcDataName
cNameL n = wrapL (cName n)
cName n = cvtName OccName.dataName n 

-- Type variable names
tName n = cvtName OccName.tvName n

-- Type Constructor names
tconNameL n = wrapL (tconName n)
tconName n = cvtName OccName.tcClsName n

cvtName :: OccName.NameSpace -> TH.Name -> CvtM RdrName
cvtName ctxt_ns (TH.Name occ flavour)
  | not (okOcc ctxt_ns occ_str) = failWith (badOcc ctxt_ns occ_str)
  | otherwise 		        = force (thRdrName ctxt_ns occ_str flavour)
  where
    occ_str = TH.occString occ

okOcc :: OccName.NameSpace -> String -> Bool
okOcc _  []      = False
okOcc ns str@(c:_) 
  | OccName.isVarName ns = startsVarId c || startsVarSym c
  | otherwise 	 	 = startsConId c || startsConSym c || str == "[]"

badOcc :: OccName.NameSpace -> String -> SDoc
badOcc ctxt_ns occ 
  = ptext SLIT("Illegal") <+> pprNameSpace ctxt_ns
	<+> ptext SLIT("name:") <+> quotes (text occ)

thRdrName :: OccName.NameSpace -> String -> TH.NameFlavour -> RdrName
-- This turns a Name into a RdrName
-- The passed-in name space tells what the context is expecting;
--	use it unless the TH name knows what name-space it comes
-- 	from, in which case use the latter
--
-- ToDo: we may generate silly RdrNames, by passing a name space
--       that doesn't match the string, like VarName ":+", 
-- 	 which will give confusing error messages later
-- 
-- The strict applications ensure that any buried exceptions get forced
thRdrName ctxt_ns occ (TH.NameG th_ns pkg mod) = (mkOrig $! (mkModule (mk_pkg pkg) (mk_mod mod))) $! (mk_occ (mk_ghc_ns th_ns) occ)
thRdrName ctxt_ns occ (TH.NameL uniq)      = nameRdrName $! (((Name.mkInternalName $! (mk_uniq uniq)) $! (mk_occ ctxt_ns occ)) noSrcSpan)
thRdrName ctxt_ns occ (TH.NameQ mod)       = (mkRdrQual  $! (mk_mod mod)) $! (mk_occ ctxt_ns occ)
thRdrName ctxt_ns occ (TH.NameU uniq)      = mkRdrUnqual $! (mk_uniq_occ ctxt_ns occ uniq)
thRdrName ctxt_ns occ TH.NameS
  | Just name <- isBuiltInOcc ctxt_ns occ  = nameRdrName $! name
  | otherwise			           = mkRdrUnqual $! (mk_occ ctxt_ns occ)

isBuiltInOcc :: OccName.NameSpace -> String -> Maybe Name.Name
-- Built in syntax isn't "in scope" so an Unqual RdrName won't do
-- We must generate an Exact name, just as the parser does
isBuiltInOcc ctxt_ns occ
  = case occ of
	":" 		 -> Just (Name.getName consDataCon)
	"[]"		 -> Just (Name.getName nilDataCon)
	"()"		 -> Just (tup_name 0)
	'(' : ',' : rest -> go_tuple 2 rest
	other		 -> Nothing
  where
    go_tuple n ")" 	    = Just (tup_name n)
    go_tuple n (',' : rest) = go_tuple (n+1) rest
    go_tuple n other	    = Nothing

    tup_name n 
	| OccName.isTcClsName ctxt_ns = Name.getName (tupleTyCon Boxed n)
	| otherwise 		      = Name.getName (tupleCon Boxed n)

mk_uniq_occ :: OccName.NameSpace -> String -> Int# -> OccName.OccName
mk_uniq_occ ns occ uniq 
  = OccName.mkOccName ns (occ ++ '[' : shows (mk_uniq uniq) "]")
	-- The idea here is to make a name that 
	-- a) the user could not possibly write, and
	-- b) cannot clash with another NameU
	-- Previously I generated an Exact RdrName with mkInternalName.
	-- This works fine for local binders, but does not work at all for
	-- top-level binders, which must have External Names, since they are
	-- rapidly baked into data constructors and the like.  Baling out
	-- and generating an unqualified RdrName here is the simple solution

-- The packing and unpacking is rather turgid :-(
mk_occ :: OccName.NameSpace -> String -> OccName.OccName
mk_occ ns occ = OccName.mkOccNameFS ns (mkFastString occ)

mk_ghc_ns :: TH.NameSpace -> OccName.NameSpace
mk_ghc_ns TH.DataName  = OccName.dataName
mk_ghc_ns TH.TcClsName = OccName.tcClsName
mk_ghc_ns TH.VarName   = OccName.varName

mk_mod :: TH.ModName -> ModuleName
mk_mod mod = mkModuleName (TH.modString mod)

mk_pkg :: TH.ModName -> PackageId
mk_pkg pkg = stringToPackageId (TH.pkgString pkg)

mk_uniq :: Int# -> Unique
mk_uniq u = mkUniqueGrimily (I# u)
\end{code}