1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
|
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
HsExpr: Abstract Haskell syntax: expressions
\begin{code}
{-# OPTIONS_GHC -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
-- http://hackage.haskell.org/trac/ghc/wiki/WorkingConventions#Warnings
-- for details
module HsExpr where
#include "HsVersions.h"
-- friends:
import HsDecls
import HsPat
import HsLit
import HsTypes
import HsImpExp
import HsBinds
-- others:
import Var
import Name
import BasicTypes
import DataCon
import SrcLoc
import Outputable
import FastString
\end{code}
%************************************************************************
%* *
\subsection{Expressions proper}
%* *
%************************************************************************
\begin{code}
type LHsExpr id = Located (HsExpr id)
-------------------------
-- PostTcExpr is an evidence expression attached to the
-- syntax tree by the type checker (c.f. postTcType)
-- We use a PostTcTable where there are a bunch of pieces of
-- evidence, more than is convenient to keep individually
type PostTcExpr = HsExpr Id
type PostTcTable = [(Name, Id)]
noPostTcExpr :: PostTcExpr
noPostTcExpr = HsLit (HsString FSLIT("noPostTcExpr"))
noPostTcTable :: PostTcTable
noPostTcTable = []
-------------------------
-- SyntaxExpr is like PostTcExpr, but it's filled in a little earlier,
-- by the renamer. It's used for rebindable syntax.
-- E.g. (>>=) is filled in before the renamer by the appropriate Name
-- for (>>=), and then instantiated by the type checker with its
-- type args tec
type SyntaxExpr id = HsExpr id
noSyntaxExpr :: SyntaxExpr id -- Before renaming, and sometimes after,
-- (if the syntax slot makes no sense)
noSyntaxExpr = HsLit (HsString FSLIT("noSyntaxExpr"))
type SyntaxTable id = [(Name, SyntaxExpr id)]
-- *** Currently used only for CmdTop (sigh) ***
-- * Before the renamer, this list is noSyntaxTable
--
-- * After the renamer, it takes the form [(std_name, HsVar actual_name)]
-- For example, for the 'return' op of a monad
-- normal case: (GHC.Base.return, HsVar GHC.Base.return)
-- with rebindable syntax: (GHC.Base.return, return_22)
-- where return_22 is whatever "return" is in scope
--
-- * After the type checker, it takes the form [(std_name, <expression>)]
-- where <expression> is the evidence for the method
noSyntaxTable :: SyntaxTable id
noSyntaxTable = []
-------------------------
data HsExpr id
= HsVar id -- variable
| HsIPVar (IPName id) -- implicit parameter
| HsOverLit (HsOverLit id) -- Overloaded literals
| HsLit HsLit -- Simple (non-overloaded) literals
| HsLam (MatchGroup id) -- Currently always a single match
| HsApp (LHsExpr id) -- Application
(LHsExpr id)
-- Operator applications:
-- NB Bracketed ops such as (+) come out as Vars.
-- NB We need an expr for the operator in an OpApp/Section since
-- the typechecker may need to apply the operator to a few types.
| OpApp (LHsExpr id) -- left operand
(LHsExpr id) -- operator
Fixity -- Renamer adds fixity; bottom until then
(LHsExpr id) -- right operand
| NegApp (LHsExpr id) -- negated expr
(SyntaxExpr id) -- Name of 'negate'
| HsPar (LHsExpr id) -- parenthesised expr
| SectionL (LHsExpr id) -- operand
(LHsExpr id) -- operator
| SectionR (LHsExpr id) -- operator
(LHsExpr id) -- operand
| HsCase (LHsExpr id)
(MatchGroup id)
| HsIf (LHsExpr id) -- predicate
(LHsExpr id) -- then part
(LHsExpr id) -- else part
| HsLet (HsLocalBinds id) -- let(rec)
(LHsExpr id)
| HsDo (HsStmtContext Name) -- The parameterisation is unimportant
-- because in this context we never use
-- the PatGuard or ParStmt variant
[LStmt id] -- "do":one or more stmts
(LHsExpr id) -- The body; the last expression in the 'do'
-- of [ body | ... ] in a list comp
PostTcType -- Type of the whole expression
| ExplicitList -- syntactic list
PostTcType -- Gives type of components of list
[LHsExpr id]
| ExplicitPArr -- syntactic parallel array: [:e1, ..., en:]
PostTcType -- type of elements of the parallel array
[LHsExpr id]
| ExplicitTuple -- tuple
[LHsExpr id]
-- NB: Unit is ExplicitTuple []
-- for tuples, we can get the types
-- direct from the components
Boxity
-- Record construction
| RecordCon (Located id) -- The constructor. After type checking
-- it's the dataConWrapId of the constructor
PostTcExpr -- Data con Id applied to type args
(HsRecordBinds id)
-- Record update
| RecordUpd (LHsExpr id)
(HsRecordBinds id)
[DataCon] -- Filled in by the type checker to the *non-empty*
-- list of DataCons that have all the upd'd fields
[PostTcType] -- Argument types of *input* record type
[PostTcType] -- and *output* record type
-- For a type family, the arg types are of the *instance* tycon, not the family tycon
| ExprWithTySig -- e :: type
(LHsExpr id)
(LHsType id)
| ExprWithTySigOut -- TRANSLATION
(LHsExpr id)
(LHsType Name) -- Retain the signature for round-tripping purposes
| ArithSeq -- arithmetic sequence
PostTcExpr
(ArithSeqInfo id)
| PArrSeq -- arith. sequence for parallel array
PostTcExpr -- [:e1..e2:] or [:e1, e2..e3:]
(ArithSeqInfo id)
| HsSCC FastString -- "set cost centre" (_scc_) annotation
(LHsExpr id) -- expr whose cost is to be measured
| HsCoreAnn FastString -- hdaume: core annotation
(LHsExpr id)
-----------------------------------------------------------
-- MetaHaskell Extensions
| HsBracket (HsBracket id)
| HsBracketOut (HsBracket Name) -- Output of the type checker is the *original*
[PendingSplice] -- renamed expression, plus *typechecked* splices
-- to be pasted back in by the desugarer
| HsSpliceE (HsSplice id)
-----------------------------------------------------------
-- Arrow notation extension
| HsProc (LPat id) -- arrow abstraction, proc
(LHsCmdTop id) -- body of the abstraction
-- always has an empty stack
---------------------------------------
-- The following are commands, not expressions proper
| HsArrApp -- Arrow tail, or arrow application (f -< arg)
(LHsExpr id) -- arrow expression, f
(LHsExpr id) -- input expression, arg
PostTcType -- type of the arrow expressions f,
-- of the form a t t', where arg :: t
HsArrAppType -- higher-order (-<<) or first-order (-<)
Bool -- True => right-to-left (f -< arg)
-- False => left-to-right (arg >- f)
| HsArrForm -- Command formation, (| e cmd1 .. cmdn |)
(LHsExpr id) -- the operator
-- after type-checking, a type abstraction to be
-- applied to the type of the local environment tuple
(Maybe Fixity) -- fixity (filled in by the renamer), for forms that
-- were converted from OpApp's by the renamer
[LHsCmdTop id] -- argument commands
---------------------------------------
-- Haskell program coverage (Hpc) Support
| HsTick
Int -- module-local tick number
[id] -- variables in scope
(LHsExpr id) -- sub-expression
| HsBinTick
Int -- module-local tick number for True
Int -- module-local tick number for False
(LHsExpr id) -- sub-expression
| HsTickPragma -- A pragma introduced tick
(FastString,(Int,Int),(Int,Int)) -- external span for this tick
(LHsExpr id)
---------------------------------------
-- These constructors only appear temporarily in the parser.
-- The renamer translates them into the Right Thing.
| EWildPat -- wildcard
| EAsPat (Located id) -- as pattern
(LHsExpr id)
| ELazyPat (LHsExpr id) -- ~ pattern
| HsType (LHsType id) -- Explicit type argument; e.g f {| Int |} x y
---------------------------------------
-- Finally, HsWrap appears only in typechecker output
| HsWrap HsWrapper -- TRANSLATION
(HsExpr id)
type PendingSplice = (Name, LHsExpr Id) -- Typechecked splices, waiting to be
-- pasted back in by the desugarer
\end{code}
A @Dictionary@, unless of length 0 or 1, becomes a tuple. A
@ClassDictLam dictvars methods expr@ is, therefore:
\begin{verbatim}
\ x -> case x of ( dictvars-and-methods-tuple ) -> expr
\end{verbatim}
\begin{code}
instance OutputableBndr id => Outputable (HsExpr id) where
ppr expr = pprExpr expr
\end{code}
\begin{code}
-----------------------
-- pprExpr, pprLExpr, pprBinds call pprDeeper;
-- the underscore versions do not
pprLExpr :: OutputableBndr id => LHsExpr id -> SDoc
pprLExpr (L _ e) = pprExpr e
pprExpr :: OutputableBndr id => HsExpr id -> SDoc
pprExpr e | isAtomicHsExpr e || isQuietHsExpr e = ppr_expr e
| otherwise = pprDeeper (ppr_expr e)
isQuietHsExpr :: HsExpr id -> Bool
-- Parentheses do display something, but it gives little info and
-- if we go deeper when we go inside them then we get ugly things
-- like (...)
isQuietHsExpr (HsPar _) = True
-- applications don't display anything themselves
isQuietHsExpr (HsApp _ _) = True
isQuietHsExpr (OpApp _ _ _ _) = True
isQuietHsExpr _ = False
pprBinds :: OutputableBndr id => HsLocalBinds id -> SDoc
pprBinds b = pprDeeper (ppr b)
-----------------------
ppr_lexpr :: OutputableBndr id => LHsExpr id -> SDoc
ppr_lexpr e = ppr_expr (unLoc e)
ppr_expr (HsVar v) = pprHsVar v
ppr_expr (HsIPVar v) = ppr v
ppr_expr (HsLit lit) = ppr lit
ppr_expr (HsOverLit lit) = ppr lit
ppr_expr (HsPar e) = parens (ppr_lexpr e)
ppr_expr (HsCoreAnn s e)
= vcat [ptext SLIT("HsCoreAnn") <+> ftext s, ppr_lexpr e]
ppr_expr (HsApp e1 e2)
= let (fun, args) = collect_args e1 [e2] in
hang (ppr_lexpr fun) 2 (sep (map pprParendExpr args))
where
collect_args (L _ (HsApp fun arg)) args = collect_args fun (arg:args)
collect_args fun args = (fun, args)
ppr_expr (OpApp e1 op fixity e2)
= case unLoc op of
HsVar v -> pp_infixly v
_ -> pp_prefixly
where
pp_e1 = pprDebugParendExpr e1 -- In debug mode, add parens
pp_e2 = pprDebugParendExpr e2 -- to make precedence clear
pp_prefixly
= hang (ppr op) 2 (sep [pp_e1, pp_e2])
pp_infixly v
= sep [nest 2 pp_e1, pprInfix v, nest 2 pp_e2]
ppr_expr (NegApp e _) = char '-' <+> pprDebugParendExpr e
ppr_expr (SectionL expr op)
= case unLoc op of
HsVar v -> pp_infixly v
_ -> pp_prefixly
where
pp_expr = pprDebugParendExpr expr
pp_prefixly = hang (hsep [text " \\ x_ ->", ppr op])
4 (hsep [pp_expr, ptext SLIT("x_ )")])
pp_infixly v = parens (sep [pp_expr, pprInfix v])
ppr_expr (SectionR op expr)
= case unLoc op of
HsVar v -> pp_infixly v
_ -> pp_prefixly
where
pp_expr = pprDebugParendExpr expr
pp_prefixly = hang (hsep [text "( \\ x_ ->", ppr op, ptext SLIT("x_")])
4 ((<>) pp_expr rparen)
pp_infixly v
= parens (sep [pprInfix v, pp_expr])
ppr_expr (HsLam matches)
= pprMatches LambdaExpr matches
ppr_expr (HsCase expr matches)
= sep [ sep [ptext SLIT("case"), nest 4 (ppr expr), ptext SLIT("of")],
nest 2 (pprMatches CaseAlt matches) ]
ppr_expr (HsIf e1 e2 e3)
= sep [hsep [ptext SLIT("if"), nest 2 (ppr e1), ptext SLIT("then")],
nest 4 (ppr e2),
ptext SLIT("else"),
nest 4 (ppr e3)]
-- special case: let ... in let ...
ppr_expr (HsLet binds expr@(L _ (HsLet _ _)))
= sep [hang (ptext SLIT("let")) 2 (hsep [pprBinds binds, ptext SLIT("in")]),
ppr_lexpr expr]
ppr_expr (HsLet binds expr)
= sep [hang (ptext SLIT("let")) 2 (pprBinds binds),
hang (ptext SLIT("in")) 2 (ppr expr)]
ppr_expr (HsDo do_or_list_comp stmts body _) = pprDo do_or_list_comp stmts body
ppr_expr (ExplicitList _ exprs)
= brackets (pprDeeperList fsep (punctuate comma (map ppr_lexpr exprs)))
ppr_expr (ExplicitPArr _ exprs)
= pa_brackets (pprDeeperList fsep (punctuate comma (map ppr_lexpr exprs)))
ppr_expr (ExplicitTuple exprs boxity)
= tupleParens boxity (sep (punctuate comma (map ppr_lexpr exprs)))
ppr_expr (RecordCon con_id con_expr rbinds)
= hang (ppr con_id) 2 (ppr rbinds)
ppr_expr (RecordUpd aexp rbinds _ _ _)
= hang (pprParendExpr aexp) 2 (ppr rbinds)
ppr_expr (ExprWithTySig expr sig)
= hang (nest 2 (ppr_lexpr expr) <+> dcolon)
4 (ppr sig)
ppr_expr (ExprWithTySigOut expr sig)
= hang (nest 2 (ppr_lexpr expr) <+> dcolon)
4 (ppr sig)
ppr_expr (ArithSeq expr info) = brackets (ppr info)
ppr_expr (PArrSeq expr info) = pa_brackets (ppr info)
ppr_expr EWildPat = char '_'
ppr_expr (ELazyPat e) = char '~' <> pprParendExpr e
ppr_expr (EAsPat v e) = ppr v <> char '@' <> pprParendExpr e
ppr_expr (HsSCC lbl expr)
= sep [ ptext SLIT("_scc_") <+> doubleQuotes (ftext lbl), pprParendExpr expr ]
ppr_expr (HsWrap co_fn e) = pprHsWrapper (pprExpr e) co_fn
ppr_expr (HsType id) = ppr id
ppr_expr (HsSpliceE s) = pprSplice s
ppr_expr (HsBracket b) = pprHsBracket b
ppr_expr (HsBracketOut e []) = ppr e
ppr_expr (HsBracketOut e ps) = ppr e $$ ptext SLIT("pending") <+> ppr ps
ppr_expr (HsProc pat (L _ (HsCmdTop cmd _ _ _)))
= hsep [ptext SLIT("proc"), ppr pat, ptext SLIT("->"), ppr cmd]
ppr_expr (HsTick tickId vars exp)
= hcat [ptext SLIT("tick<"), ppr tickId,ptext SLIT(">("), hsep (map pprHsVar vars), ppr exp,ptext SLIT(")")]
ppr_expr (HsBinTick tickIdTrue tickIdFalse exp)
= hcat [ptext SLIT("bintick<"),
ppr tickIdTrue,
ptext SLIT(","),
ppr tickIdFalse,
ptext SLIT(">("),
ppr exp,ptext SLIT(")")]
ppr_expr (HsTickPragma externalSrcLoc exp)
= hcat [ptext SLIT("tickpragma<"), ppr externalSrcLoc,ptext SLIT(">("), ppr exp,ptext SLIT(")")]
ppr_expr (HsArrApp arrow arg _ HsFirstOrderApp True)
= hsep [ppr_lexpr arrow, ptext SLIT("-<"), ppr_lexpr arg]
ppr_expr (HsArrApp arrow arg _ HsFirstOrderApp False)
= hsep [ppr_lexpr arg, ptext SLIT(">-"), ppr_lexpr arrow]
ppr_expr (HsArrApp arrow arg _ HsHigherOrderApp True)
= hsep [ppr_lexpr arrow, ptext SLIT("-<<"), ppr_lexpr arg]
ppr_expr (HsArrApp arrow arg _ HsHigherOrderApp False)
= hsep [ppr_lexpr arg, ptext SLIT(">>-"), ppr_lexpr arrow]
ppr_expr (HsArrForm (L _ (HsVar v)) (Just _) [arg1, arg2])
= sep [pprCmdArg (unLoc arg1), hsep [pprInfix v, pprCmdArg (unLoc arg2)]]
ppr_expr (HsArrForm op _ args)
= hang (ptext SLIT("(|") <> ppr_lexpr op)
4 (sep (map (pprCmdArg.unLoc) args) <> ptext SLIT("|)"))
pprCmdArg :: OutputableBndr id => HsCmdTop id -> SDoc
pprCmdArg (HsCmdTop cmd@(L _ (HsArrForm _ Nothing [])) _ _ _)
= ppr_lexpr cmd
pprCmdArg (HsCmdTop cmd _ _ _)
= parens (ppr_lexpr cmd)
-- Put a var in backquotes if it's not an operator already
pprInfix :: Outputable name => name -> SDoc
pprInfix v | isOperator ppr_v = ppr_v
| otherwise = char '`' <> ppr_v <> char '`'
where
ppr_v = ppr v
-- add parallel array brackets around a document
--
pa_brackets :: SDoc -> SDoc
pa_brackets p = ptext SLIT("[:") <> p <> ptext SLIT(":]")
\end{code}
HsSyn records exactly where the user put parens, with HsPar.
So generally speaking we print without adding any parens.
However, some code is internally generated, and in some places
parens are absolutely required; so for these places we use
pprParendExpr (but don't print double parens of course).
For operator applications we don't add parens, because the oprerator
fixities should do the job, except in debug mode (-dppr-debug) so we
can see the structure of the parse tree.
\begin{code}
pprDebugParendExpr :: OutputableBndr id => LHsExpr id -> SDoc
pprDebugParendExpr expr
= getPprStyle (\sty ->
if debugStyle sty then pprParendExpr expr
else pprLExpr expr)
pprParendExpr :: OutputableBndr id => LHsExpr id -> SDoc
pprParendExpr expr
= let
pp_as_was = pprLExpr expr
-- Using pprLExpr makes sure that we go 'deeper'
-- I think that is usually (always?) right
in
case unLoc expr of
HsLit l -> pp_as_was
HsOverLit l -> pp_as_was
HsVar _ -> pp_as_was
HsIPVar _ -> pp_as_was
ExplicitList _ _ -> pp_as_was
ExplicitPArr _ _ -> pp_as_was
ExplicitTuple _ _ -> pp_as_was
HsPar _ -> pp_as_was
HsBracket _ -> pp_as_was
HsBracketOut _ [] -> pp_as_was
HsDo sc _ _ _
| isListCompExpr sc -> pp_as_was
_ -> parens pp_as_was
isAtomicHsExpr :: HsExpr id -> Bool -- A single token
isAtomicHsExpr (HsVar {}) = True
isAtomicHsExpr (HsLit {}) = True
isAtomicHsExpr (HsOverLit {}) = True
isAtomicHsExpr (HsIPVar {}) = True
isAtomicHsExpr (HsWrap _ e) = isAtomicHsExpr e
isAtomicHsExpr (HsPar e) = isAtomicHsExpr (unLoc e)
isAtomicHsExpr e = False
\end{code}
%************************************************************************
%* *
\subsection{Commands (in arrow abstractions)}
%* *
%************************************************************************
We re-use HsExpr to represent these.
\begin{code}
type HsCmd id = HsExpr id
type LHsCmd id = LHsExpr id
data HsArrAppType = HsHigherOrderApp | HsFirstOrderApp
\end{code}
The legal constructors for commands are:
= HsArrApp ... -- as above
| HsArrForm ... -- as above
| HsApp (HsCmd id)
(HsExpr id)
| HsLam (Match id) -- kappa
-- the renamer turns this one into HsArrForm
| OpApp (HsExpr id) -- left operand
(HsCmd id) -- operator
Fixity -- Renamer adds fixity; bottom until then
(HsCmd id) -- right operand
| HsPar (HsCmd id) -- parenthesised command
| HsCase (HsExpr id)
[Match id] -- bodies are HsCmd's
SrcLoc
| HsIf (HsExpr id) -- predicate
(HsCmd id) -- then part
(HsCmd id) -- else part
SrcLoc
| HsLet (HsLocalBinds id) -- let(rec)
(HsCmd id)
| HsDo (HsStmtContext Name) -- The parameterisation is unimportant
-- because in this context we never use
-- the PatGuard or ParStmt variant
[Stmt id] -- HsExpr's are really HsCmd's
PostTcType -- Type of the whole expression
SrcLoc
Top-level command, introducing a new arrow.
This may occur inside a proc (where the stack is empty) or as an
argument of a command-forming operator.
\begin{code}
type LHsCmdTop id = Located (HsCmdTop id)
data HsCmdTop id
= HsCmdTop (LHsCmd id)
[PostTcType] -- types of inputs on the command's stack
PostTcType -- return type of the command
(SyntaxTable id)
-- after type checking:
-- names used in the command's desugaring
\end{code}
%************************************************************************
%* *
\subsection{Record binds}
%* *
%************************************************************************
\begin{code}
type HsRecordBinds id = HsRecFields id (LHsExpr id)
\end{code}
%************************************************************************
%* *
\subsection{@Match@, @GRHSs@, and @GRHS@ datatypes}
%* *
%************************************************************************
@Match@es are sets of pattern bindings and right hand sides for
functions, patterns or case branches. For example, if a function @g@
is defined as:
\begin{verbatim}
g (x,y) = y
g ((x:ys),y) = y+1,
\end{verbatim}
then \tr{g} has two @Match@es: @(x,y) = y@ and @((x:ys),y) = y+1@.
It is always the case that each element of an @[Match]@ list has the
same number of @pats@s inside it. This corresponds to saying that
a function defined by pattern matching must have the same number of
patterns in each equation.
\begin{code}
data MatchGroup id
= MatchGroup
[LMatch id] -- The alternatives
PostTcType -- The type is the type of the entire group
-- t1 -> ... -> tn -> tr
-- where there are n patterns
type LMatch id = Located (Match id)
data Match id
= Match
[LPat id] -- The patterns
(Maybe (LHsType id)) -- A type signature for the result of the match
-- Nothing after typechecking
(GRHSs id)
matchGroupArity :: MatchGroup id -> Arity
matchGroupArity (MatchGroup [] _)
= panic "matchGroupArity" -- MatchGroup is never empty
matchGroupArity (MatchGroup (match:matches) _)
= ASSERT( all ((== n_pats) . length . hsLMatchPats) matches )
-- Assertion just checks that all the matches have the same number of pats
n_pats
where
n_pats = length (hsLMatchPats match)
hsLMatchPats :: LMatch id -> [LPat id]
hsLMatchPats (L _ (Match pats _ _)) = pats
-- GRHSs are used both for pattern bindings and for Matches
data GRHSs id
= GRHSs [LGRHS id] -- Guarded RHSs
(HsLocalBinds id) -- The where clause
type LGRHS id = Located (GRHS id)
data GRHS id = GRHS [LStmt id] -- Guards
(LHsExpr id) -- Right hand side
\end{code}
We know the list must have at least one @Match@ in it.
\begin{code}
pprMatches :: (OutputableBndr id) => HsMatchContext id -> MatchGroup id -> SDoc
pprMatches ctxt (MatchGroup matches ty) = vcat (map (pprMatch ctxt) (map unLoc matches))
-- Don't print the type; it's only
-- a place-holder before typechecking
-- Exported to HsBinds, which can't see the defn of HsMatchContext
pprFunBind :: (OutputableBndr id) => id -> Bool -> MatchGroup id -> SDoc
pprFunBind fun inf matches = pprMatches (FunRhs fun inf) matches
-- Exported to HsBinds, which can't see the defn of HsMatchContext
pprPatBind :: (OutputableBndr bndr, OutputableBndr id)
=> LPat bndr -> GRHSs id -> SDoc
pprPatBind pat grhss = sep [ppr pat, nest 4 (pprGRHSs PatBindRhs grhss)]
pprMatch :: OutputableBndr id => HsMatchContext id -> Match id -> SDoc
pprMatch ctxt (Match pats maybe_ty grhss)
= herald <+> sep [sep (map ppr other_pats),
ppr_maybe_ty,
nest 2 (pprGRHSs ctxt grhss)]
where
(herald, other_pats)
= case ctxt of
FunRhs fun is_infix
| not is_infix -> (ppr fun, pats)
-- f x y z = e
-- Not pprBndr; the AbsBinds will
-- have printed the signature
| null pats3 -> (pp_infix, [])
-- x &&& y = e
| otherwise -> (parens pp_infix, pats3)
-- (x &&& y) z = e
where
(pat1:pat2:pats3) = pats
pp_infix = ppr pat1 <+> ppr fun <+> ppr pat2
LambdaExpr -> (char '\\', pats)
other -> (empty, pats)
ppr_maybe_ty = case maybe_ty of
Just ty -> dcolon <+> ppr ty
Nothing -> empty
pprGRHSs :: OutputableBndr id => HsMatchContext id -> GRHSs id -> SDoc
pprGRHSs ctxt (GRHSs grhss binds)
= vcat (map (pprGRHS ctxt . unLoc) grhss)
$$ if isEmptyLocalBinds binds then empty
else text "where" $$ nest 4 (pprBinds binds)
pprGRHS :: OutputableBndr id => HsMatchContext id -> GRHS id -> SDoc
pprGRHS ctxt (GRHS [] expr)
= pp_rhs ctxt expr
pprGRHS ctxt (GRHS guards expr)
= sep [char '|' <+> interpp'SP guards, pp_rhs ctxt expr]
pp_rhs ctxt rhs = matchSeparator ctxt <+> pprDeeper (ppr rhs)
\end{code}
%************************************************************************
%* *
\subsection{Do stmts and list comprehensions}
%* *
%************************************************************************
\begin{code}
type LStmt id = Located (Stmt id)
-- The SyntaxExprs in here are used *only* for do-notation, which
-- has rebindable syntax. Otherwise they are unused.
data Stmt id
= BindStmt (LPat id)
(LHsExpr id)
(SyntaxExpr id) -- The (>>=) operator
(SyntaxExpr id) -- The fail operator
-- The fail operator is noSyntaxExpr
-- if the pattern match can't fail
| ExprStmt (LHsExpr id)
(SyntaxExpr id) -- The (>>) operator
PostTcType -- Element type of the RHS (used for arrows)
| LetStmt (HsLocalBinds id)
-- ParStmts only occur in a list comprehension
| ParStmt [([LStmt id], [id])] -- After renaming, the ids are the binders
-- bound by the stmts and used subsequently
-- Recursive statement (see Note [RecStmt] below)
| RecStmt [LStmt id]
--- The next two fields are only valid after renaming
[id] -- The ids are a subset of the variables bound by the stmts
-- that are used in stmts that follow the RecStmt
[id] -- Ditto, but these variables are the "recursive" ones, that
-- are used before they are bound in the stmts of the RecStmt
-- From a type-checking point of view, these ones have to be monomorphic
--- These fields are only valid after typechecking
[PostTcExpr] -- These expressions correspond
-- 1-to-1 with the "recursive" [id], and are the expresions that
-- should be returned by the recursion. They may not quite be the
-- Ids themselves, because the Id may be *polymorphic*, but
-- the returned thing has to be *monomorphic*.
(DictBinds id) -- Method bindings of Ids bound by the RecStmt,
-- and used afterwards
\end{code}
ExprStmts are a bit tricky, because what they mean
depends on the context. Consider the following contexts:
A do expression of type (m res_ty)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ExprStmt E any_ty: do { ....; E; ... }
E :: m any_ty
Translation: E >> ...
A list comprehensions of type [elt_ty]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ExprStmt E Bool: [ .. | .... E ]
[ .. | ..., E, ... ]
[ .. | .... | ..., E | ... ]
E :: Bool
Translation: if E then fail else ...
A guard list, guarding a RHS of type rhs_ty
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ExprStmt E Bool: f x | ..., E, ... = ...rhs...
E :: Bool
Translation: if E then fail else ...
Array comprehensions are handled like list comprehensions -=chak
Note [RecStmt]
~~~~~~~~~~~~~~
Example:
HsDo [ BindStmt x ex
, RecStmt [a::forall a. a -> a, b]
[a::Int -> Int, c]
[ BindStmt b (return x)
, LetStmt a = ea
, BindStmt c ec ]
, return (a b) ]
Here, the RecStmt binds a,b,c; but
- Only a,b are used in the stmts *following* the RecStmt,
This 'a' is *polymorphic'
- Only a,c are used in the stmts *inside* the RecStmt
*before* their bindings
This 'a' is monomorphic
Nota Bene: the two a's have different types, even though they
have the same Name.
\begin{code}
instance OutputableBndr id => Outputable (Stmt id) where
ppr stmt = pprStmt stmt
pprStmt (BindStmt pat expr _ _) = hsep [ppr pat, ptext SLIT("<-"), ppr expr]
pprStmt (LetStmt binds) = hsep [ptext SLIT("let"), pprBinds binds]
pprStmt (ExprStmt expr _ _) = ppr expr
pprStmt (ParStmt stmtss) = hsep (map (\stmts -> ptext SLIT("| ") <> ppr stmts) stmtss)
pprStmt (RecStmt segment _ _ _ _) = ptext SLIT("rec") <+> braces (vcat (map ppr segment))
pprDo :: OutputableBndr id => HsStmtContext any -> [LStmt id] -> LHsExpr id -> SDoc
pprDo DoExpr stmts body = ptext SLIT("do") <+> pprDeeperList vcat (map ppr stmts ++ [ppr body])
pprDo (MDoExpr _) stmts body = ptext SLIT("mdo") <+> pprDeeperList vcat (map ppr stmts ++ [ppr body])
pprDo ListComp stmts body = pprComp brackets stmts body
pprDo PArrComp stmts body = pprComp pa_brackets stmts body
pprDo other stmts body = panic "pprDo" -- PatGuard, ParStmtCxt
pprComp :: OutputableBndr id => (SDoc -> SDoc) -> [LStmt id] -> LHsExpr id -> SDoc
pprComp brack quals body
= brack $
hang (ppr body <+> char '|')
4 (interpp'SP quals)
\end{code}
%************************************************************************
%* *
Template Haskell quotation brackets
%* *
%************************************************************************
\begin{code}
data HsSplice id = HsSplice -- $z or $(f 4)
id -- The id is just a unique name to
(LHsExpr id) -- identify this splice point
instance OutputableBndr id => Outputable (HsSplice id) where
ppr = pprSplice
pprSplice :: OutputableBndr id => HsSplice id -> SDoc
pprSplice (HsSplice n e) = char '$' <> brackets (ppr n) <> pprParendExpr e
data HsBracket id = ExpBr (LHsExpr id) -- [| expr |]
| PatBr (LPat id) -- [p| pat |]
| DecBr (HsGroup id) -- [d| decls |]
| TypBr (LHsType id) -- [t| type |]
| VarBr id -- 'x, ''T
instance OutputableBndr id => Outputable (HsBracket id) where
ppr = pprHsBracket
pprHsBracket (ExpBr e) = thBrackets empty (ppr e)
pprHsBracket (PatBr p) = thBrackets (char 'p') (ppr p)
pprHsBracket (DecBr d) = thBrackets (char 'd') (ppr d)
pprHsBracket (TypBr t) = thBrackets (char 't') (ppr t)
pprHsBracket (VarBr n) = char '\'' <> ppr n
-- Infelicity: can't show ' vs '', because
-- we can't ask n what its OccName is, because the
-- pretty-printer for HsExpr doesn't ask for NamedThings
-- But the pretty-printer for names will show the OccName class
thBrackets pp_kind pp_body = char '[' <> pp_kind <> char '|' <+>
pp_body <+> ptext SLIT("|]")
\end{code}
%************************************************************************
%* *
\subsection{Enumerations and list comprehensions}
%* *
%************************************************************************
\begin{code}
data ArithSeqInfo id
= From (LHsExpr id)
| FromThen (LHsExpr id)
(LHsExpr id)
| FromTo (LHsExpr id)
(LHsExpr id)
| FromThenTo (LHsExpr id)
(LHsExpr id)
(LHsExpr id)
\end{code}
\begin{code}
instance OutputableBndr id => Outputable (ArithSeqInfo id) where
ppr (From e1) = hcat [ppr e1, pp_dotdot]
ppr (FromThen e1 e2) = hcat [ppr e1, comma, space, ppr e2, pp_dotdot]
ppr (FromTo e1 e3) = hcat [ppr e1, pp_dotdot, ppr e3]
ppr (FromThenTo e1 e2 e3)
= hcat [ppr e1, comma, space, ppr e2, pp_dotdot, ppr e3]
pp_dotdot = ptext SLIT(" .. ")
\end{code}
%************************************************************************
%* *
\subsection{HsMatchCtxt}
%* *
%************************************************************************
\begin{code}
data HsMatchContext id -- Context of a Match
= FunRhs id Bool -- Function binding for f; True <=> written infix
| CaseAlt -- Guard on a case alternative
| LambdaExpr -- Pattern of a lambda
| ProcExpr -- Pattern of a proc
| PatBindRhs -- Pattern binding
| RecUpd -- Record update [used only in DsExpr to tell matchWrapper
-- what sort of runtime error message to generate]
| StmtCtxt (HsStmtContext id) -- Pattern of a do-stmt or list comprehension
deriving ()
data HsStmtContext id
= ListComp
| DoExpr
| MDoExpr PostTcTable -- Recursive do-expression
-- (tiresomely, it needs table
-- of its return/bind ops)
| PArrComp -- Parallel array comprehension
| PatGuard (HsMatchContext id) -- Pattern guard for specified thing
| ParStmtCtxt (HsStmtContext id) -- A branch of a parallel stmt
\end{code}
\begin{code}
isDoExpr :: HsStmtContext id -> Bool
isDoExpr DoExpr = True
isDoExpr (MDoExpr _) = True
isDoExpr _ = False
isListCompExpr :: HsStmtContext id -> Bool
isListCompExpr ListComp = True
isListCompExpr PArrComp = True
isListCompExpr _ = False
\end{code}
\begin{code}
matchSeparator (FunRhs {}) = ptext SLIT("=")
matchSeparator CaseAlt = ptext SLIT("->")
matchSeparator LambdaExpr = ptext SLIT("->")
matchSeparator ProcExpr = ptext SLIT("->")
matchSeparator PatBindRhs = ptext SLIT("=")
matchSeparator (StmtCtxt _) = ptext SLIT("<-")
matchSeparator RecUpd = panic "unused"
\end{code}
\begin{code}
pprMatchContext (FunRhs fun _) = ptext SLIT("the definition of") <+> quotes (ppr fun)
pprMatchContext CaseAlt = ptext SLIT("a case alternative")
pprMatchContext RecUpd = ptext SLIT("a record-update construct")
pprMatchContext PatBindRhs = ptext SLIT("a pattern binding")
pprMatchContext LambdaExpr = ptext SLIT("a lambda abstraction")
pprMatchContext ProcExpr = ptext SLIT("an arrow abstraction")
pprMatchContext (StmtCtxt ctxt) = ptext SLIT("a pattern binding in") $$ pprStmtContext ctxt
pprStmtContext (ParStmtCtxt c) = sep [ptext SLIT("a parallel branch of"), pprStmtContext c]
pprStmtContext (PatGuard ctxt) = ptext SLIT("a pattern guard for") $$ pprMatchContext ctxt
pprStmtContext DoExpr = ptext SLIT("a 'do' expression")
pprStmtContext (MDoExpr _) = ptext SLIT("an 'mdo' expression")
pprStmtContext ListComp = ptext SLIT("a list comprehension")
pprStmtContext PArrComp = ptext SLIT("an array comprehension")
{-
pprMatchRhsContext (FunRhs fun) = ptext SLIT("a right-hand side of function") <+> quotes (ppr fun)
pprMatchRhsContext CaseAlt = ptext SLIT("the body of a case alternative")
pprMatchRhsContext PatBindRhs = ptext SLIT("the right-hand side of a pattern binding")
pprMatchRhsContext LambdaExpr = ptext SLIT("the body of a lambda")
pprMatchRhsContext ProcExpr = ptext SLIT("the body of a proc")
pprMatchRhsContext other = panic "pprMatchRhsContext" -- RecUpd, StmtCtxt
-- Used for the result statement of comprehension
-- e.g. the 'e' in [ e | ... ]
-- or the 'r' in f x = r
pprStmtResultContext (PatGuard ctxt) = pprMatchRhsContext ctxt
pprStmtResultContext other = ptext SLIT("the result of") <+> pprStmtContext other
-}
-- Used to generate the string for a *runtime* error message
matchContextErrString (FunRhs fun _) = "function " ++ showSDoc (ppr fun)
matchContextErrString CaseAlt = "case"
matchContextErrString PatBindRhs = "pattern binding"
matchContextErrString RecUpd = "record update"
matchContextErrString LambdaExpr = "lambda"
matchContextErrString ProcExpr = "proc"
matchContextErrString (StmtCtxt (ParStmtCtxt c)) = matchContextErrString (StmtCtxt c)
matchContextErrString (StmtCtxt (PatGuard _)) = "pattern guard"
matchContextErrString (StmtCtxt DoExpr) = "'do' expression"
matchContextErrString (StmtCtxt (MDoExpr _)) = "'mdo' expression"
matchContextErrString (StmtCtxt ListComp) = "list comprehension"
matchContextErrString (StmtCtxt PArrComp) = "array comprehension"
\end{code}
|