1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
|
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\begin{code}
{-# LANGUAGE DeriveDataTypeable #-}
-- | Abstract Haskell syntax for expressions.
module HsExpr where
#include "HsVersions.h"
-- friends:
import HsDecls
import HsPat
import HsLit
import HsTypes
import HsBinds
-- others:
import Var
import Name
import BasicTypes
import DataCon
import SrcLoc
import Outputable
import FastString
-- libraries:
import Data.Data hiding (Fixity)
\end{code}
%************************************************************************
%* *
\subsection{Expressions proper}
%* *
%************************************************************************
\begin{code}
-- * Expressions proper
type LHsExpr id = Located (HsExpr id)
-------------------------
-- | PostTcExpr is an evidence expression attached to the syntax tree by the
-- type checker (c.f. postTcType).
type PostTcExpr = HsExpr Id
-- | We use a PostTcTable where there are a bunch of pieces of evidence, more
-- than is convenient to keep individually.
type PostTcTable = [(Name, PostTcExpr)]
noPostTcExpr :: PostTcExpr
noPostTcExpr = HsLit (HsString (fsLit "noPostTcExpr"))
noPostTcTable :: PostTcTable
noPostTcTable = []
-------------------------
-- | SyntaxExpr is like 'PostTcExpr', but it's filled in a little earlier,
-- by the renamer. It's used for rebindable syntax.
--
-- E.g. @(>>=)@ is filled in before the renamer by the appropriate 'Name' for
-- @(>>=)@, and then instantiated by the type checker with its type args
-- etc
type SyntaxExpr id = HsExpr id
noSyntaxExpr :: SyntaxExpr id -- Before renaming, and sometimes after,
-- (if the syntax slot makes no sense)
noSyntaxExpr = HsLit (HsString (fsLit "noSyntaxExpr"))
type SyntaxTable id = [(Name, SyntaxExpr id)]
-- ^ Currently used only for 'CmdTop' (sigh)
--
-- * Before the renamer, this list is 'noSyntaxTable'
--
-- * After the renamer, it takes the form @[(std_name, HsVar actual_name)]@
-- For example, for the 'return' op of a monad
--
-- * normal case: @(GHC.Base.return, HsVar GHC.Base.return)@
--
-- * with rebindable syntax: @(GHC.Base.return, return_22)@
-- where @return_22@ is whatever @return@ is in scope
--
-- * After the type checker, it takes the form @[(std_name, <expression>)]@
-- where @<expression>@ is the evidence for the method
noSyntaxTable :: SyntaxTable id
noSyntaxTable = []
-------------------------
-- | A Haskell expression.
data HsExpr id
= HsVar id -- ^ variable
| HsIPVar (IPName id) -- ^ implicit parameter
| HsOverLit (HsOverLit id) -- ^ Overloaded literals
| HsLit HsLit -- ^ Simple (non-overloaded) literals
| HsLam (MatchGroup id) -- Currently always a single match
| HsApp (LHsExpr id) (LHsExpr id) -- Application
-- Operator applications:
-- NB Bracketed ops such as (+) come out as Vars.
-- NB We need an expr for the operator in an OpApp/Section since
-- the typechecker may need to apply the operator to a few types.
| OpApp (LHsExpr id) -- left operand
(LHsExpr id) -- operator
Fixity -- Renamer adds fixity; bottom until then
(LHsExpr id) -- right operand
| NegApp (LHsExpr id) -- negated expr
(SyntaxExpr id) -- Name of 'negate'
| HsPar (LHsExpr id) -- parenthesised expr
| SectionL (LHsExpr id) -- operand
(LHsExpr id) -- operator
| SectionR (LHsExpr id) -- operator
(LHsExpr id) -- operand
| ExplicitTuple -- Used for explicit tuples and sections thereof
[HsTupArg id]
Boxity
| HsCase (LHsExpr id)
(MatchGroup id)
| HsIf (Maybe (SyntaxExpr id)) -- cond function
-- Nothing => use the built-in 'if'
-- See Note [Rebindable if]
(LHsExpr id) -- predicate
(LHsExpr id) -- then part
(LHsExpr id) -- else part
| HsLet (HsLocalBinds id) -- let(rec)
(LHsExpr id)
| HsDo (HsStmtContext Name) -- The parameterisation is unimportant
-- because in this context we never use
-- the PatGuard or ParStmt variant
[LStmt id] -- "do":one or more stmts
(LHsExpr id) -- The body; the last expression in the
-- 'do' of [ body | ... ] in a list comp
(SyntaxExpr id) -- The 'return' function, see Note
-- [Monad Comprehensions]
PostTcType -- Type of the whole expression
| ExplicitList -- syntactic list
PostTcType -- Gives type of components of list
[LHsExpr id]
| ExplicitPArr -- syntactic parallel array: [:e1, ..., en:]
PostTcType -- type of elements of the parallel array
[LHsExpr id]
-- Record construction
| RecordCon (Located id) -- The constructor. After type checking
-- it's the dataConWrapId of the constructor
PostTcExpr -- Data con Id applied to type args
(HsRecordBinds id)
-- Record update
| RecordUpd (LHsExpr id)
(HsRecordBinds id)
-- (HsMatchGroup Id) -- Filled in by the type checker to be
-- -- a match that does the job
[DataCon] -- Filled in by the type checker to the
-- _non-empty_ list of DataCons that have
-- all the upd'd fields
[PostTcType] -- Argument types of *input* record type
[PostTcType] -- and *output* record type
-- For a type family, the arg types are of the *instance* tycon,
-- not the family tycon
| ExprWithTySig -- e :: type
(LHsExpr id)
(LHsType id)
| ExprWithTySigOut -- TRANSLATION
(LHsExpr id)
(LHsType Name) -- Retain the signature for
-- round-tripping purposes
| ArithSeq -- arithmetic sequence
PostTcExpr
(ArithSeqInfo id)
| PArrSeq -- arith. sequence for parallel array
PostTcExpr -- [:e1..e2:] or [:e1, e2..e3:]
(ArithSeqInfo id)
| HsSCC FastString -- "set cost centre" SCC pragma
(LHsExpr id) -- expr whose cost is to be measured
| HsCoreAnn FastString -- hdaume: core annotation
(LHsExpr id)
-----------------------------------------------------------
-- MetaHaskell Extensions
| HsBracket (HsBracket id)
| HsBracketOut (HsBracket Name) -- Output of the type checker is
-- the *original*
[PendingSplice] -- renamed expression, plus
-- _typechecked_ splices to be
-- pasted back in by the desugarer
| HsSpliceE (HsSplice id)
| HsQuasiQuoteE (HsQuasiQuote id)
-- See Note [Quasi-quote overview] in TcSplice
-----------------------------------------------------------
-- Arrow notation extension
| HsProc (LPat id) -- arrow abstraction, proc
(LHsCmdTop id) -- body of the abstraction
-- always has an empty stack
---------------------------------------
-- The following are commands, not expressions proper
| HsArrApp -- Arrow tail, or arrow application (f -< arg)
(LHsExpr id) -- arrow expression, f
(LHsExpr id) -- input expression, arg
PostTcType -- type of the arrow expressions f,
-- of the form a t t', where arg :: t
HsArrAppType -- higher-order (-<<) or first-order (-<)
Bool -- True => right-to-left (f -< arg)
-- False => left-to-right (arg >- f)
| HsArrForm -- Command formation, (| e cmd1 .. cmdn |)
(LHsExpr id) -- the operator
-- after type-checking, a type abstraction to be
-- applied to the type of the local environment tuple
(Maybe Fixity) -- fixity (filled in by the renamer), for forms that
-- were converted from OpApp's by the renamer
[LHsCmdTop id] -- argument commands
---------------------------------------
-- Haskell program coverage (Hpc) Support
| HsTick
Int -- module-local tick number
[id] -- variables in scope
(LHsExpr id) -- sub-expression
| HsBinTick
Int -- module-local tick number for True
Int -- module-local tick number for False
(LHsExpr id) -- sub-expression
| HsTickPragma -- A pragma introduced tick
(FastString,(Int,Int),(Int,Int)) -- external span for this tick
(LHsExpr id)
---------------------------------------
-- These constructors only appear temporarily in the parser.
-- The renamer translates them into the Right Thing.
| EWildPat -- wildcard
| EAsPat (Located id) -- as pattern
(LHsExpr id)
| EViewPat (LHsExpr id) -- view pattern
(LHsExpr id)
| ELazyPat (LHsExpr id) -- ~ pattern
| HsType (LHsType id) -- Explicit type argument; e.g f {| Int |} x y
---------------------------------------
-- Finally, HsWrap appears only in typechecker output
| HsWrap HsWrapper -- TRANSLATION
(HsExpr id)
deriving (Data, Typeable)
-- HsTupArg is used for tuple sections
-- (,a,) is represented by ExplicitTuple [Mising ty1, Present a, Missing ty3]
-- Which in turn stands for (\x:ty1 \y:ty2. (x,a,y))
data HsTupArg id
= Present (LHsExpr id) -- The argument
| Missing PostTcType -- The argument is missing, but this is its type
deriving (Data, Typeable)
tupArgPresent :: HsTupArg id -> Bool
tupArgPresent (Present {}) = True
tupArgPresent (Missing {}) = False
type PendingSplice = (Name, LHsExpr Id) -- Typechecked splices, waiting to be
-- pasted back in by the desugarer
\end{code}
Note [Rebindable if]
~~~~~~~~~~~~~~~~~~~~
The rebindable syntax for 'if' is a bit special, because when
rebindable syntax is *off* we do not want to treat
(if c then t else e)
as if it was an application (ifThenElse c t e). Why not?
Because we allow an 'if' to return *unboxed* results, thus
if blah then 3# else 4#
whereas that would not be possible using a all to a polymorphic function
(because you can't call a polymorphic function at an unboxed type).
So we use Nothing to mean "use the old built-in typing rule".
\begin{code}
instance OutputableBndr id => Outputable (HsExpr id) where
ppr expr = pprExpr expr
\end{code}
\begin{code}
-----------------------
-- pprExpr, pprLExpr, pprBinds call pprDeeper;
-- the underscore versions do not
pprLExpr :: OutputableBndr id => LHsExpr id -> SDoc
pprLExpr (L _ e) = pprExpr e
pprExpr :: OutputableBndr id => HsExpr id -> SDoc
pprExpr e | isAtomicHsExpr e || isQuietHsExpr e = ppr_expr e
| otherwise = pprDeeper (ppr_expr e)
isQuietHsExpr :: HsExpr id -> Bool
-- Parentheses do display something, but it gives little info and
-- if we go deeper when we go inside them then we get ugly things
-- like (...)
isQuietHsExpr (HsPar _) = True
-- applications don't display anything themselves
isQuietHsExpr (HsApp _ _) = True
isQuietHsExpr (OpApp _ _ _ _) = True
isQuietHsExpr _ = False
pprBinds :: (OutputableBndr idL, OutputableBndr idR)
=> HsLocalBindsLR idL idR -> SDoc
pprBinds b = pprDeeper (ppr b)
-----------------------
ppr_lexpr :: OutputableBndr id => LHsExpr id -> SDoc
ppr_lexpr e = ppr_expr (unLoc e)
ppr_expr :: OutputableBndr id => HsExpr id -> SDoc
ppr_expr (HsVar v) = pprHsVar v
ppr_expr (HsIPVar v) = ppr v
ppr_expr (HsLit lit) = ppr lit
ppr_expr (HsOverLit lit) = ppr lit
ppr_expr (HsPar e) = parens (ppr_lexpr e)
ppr_expr (HsCoreAnn s e)
= vcat [ptext (sLit "HsCoreAnn") <+> ftext s, ppr_lexpr e]
ppr_expr (HsApp e1 e2)
= let (fun, args) = collect_args e1 [e2] in
hang (ppr_lexpr fun) 2 (sep (map pprParendExpr args))
where
collect_args (L _ (HsApp fun arg)) args = collect_args fun (arg:args)
collect_args fun args = (fun, args)
ppr_expr (OpApp e1 op _ e2)
= case unLoc op of
HsVar v -> pp_infixly v
_ -> pp_prefixly
where
pp_e1 = pprDebugParendExpr e1 -- In debug mode, add parens
pp_e2 = pprDebugParendExpr e2 -- to make precedence clear
pp_prefixly
= hang (ppr op) 2 (sep [pp_e1, pp_e2])
pp_infixly v
= sep [nest 2 pp_e1, pprHsInfix v, nest 2 pp_e2]
ppr_expr (NegApp e _) = char '-' <+> pprDebugParendExpr e
ppr_expr (SectionL expr op)
= case unLoc op of
HsVar v -> pp_infixly v
_ -> pp_prefixly
where
pp_expr = pprDebugParendExpr expr
pp_prefixly = hang (hsep [text " \\ x_ ->", ppr op])
4 (hsep [pp_expr, ptext (sLit "x_ )")])
pp_infixly v = (sep [pp_expr, pprHsInfix v])
ppr_expr (SectionR op expr)
= case unLoc op of
HsVar v -> pp_infixly v
_ -> pp_prefixly
where
pp_expr = pprDebugParendExpr expr
pp_prefixly = hang (hsep [text "( \\ x_ ->", ppr op, ptext (sLit "x_")])
4 ((<>) pp_expr rparen)
pp_infixly v
= (sep [pprHsInfix v, pp_expr])
ppr_expr (ExplicitTuple exprs boxity)
= tupleParens boxity (fcat (ppr_tup_args exprs))
where
ppr_tup_args [] = []
ppr_tup_args (Present e : es) = (ppr_lexpr e <> punc es) : ppr_tup_args es
ppr_tup_args (Missing _ : es) = punc es : ppr_tup_args es
punc (Present {} : _) = comma <> space
punc (Missing {} : _) = comma
punc [] = empty
--avoid using PatternSignatures for stage1 code portability
ppr_expr exprType@(HsLam matches)
= pprMatches (LambdaExpr `asTypeOf` idType exprType) matches
where idType :: HsExpr id -> HsMatchContext id; idType = undefined
ppr_expr exprType@(HsCase expr matches)
= sep [ sep [ptext (sLit "case"), nest 4 (ppr expr), ptext (sLit "of {")],
nest 2 (pprMatches (CaseAlt `asTypeOf` idType exprType) matches <+> char '}') ]
where idType :: HsExpr id -> HsMatchContext id; idType = undefined
ppr_expr (HsIf _ e1 e2 e3)
= sep [hsep [ptext (sLit "if"), nest 2 (ppr e1), ptext (sLit "then")],
nest 4 (ppr e2),
ptext (sLit "else"),
nest 4 (ppr e3)]
-- special case: let ... in let ...
ppr_expr (HsLet binds expr@(L _ (HsLet _ _)))
= sep [hang (ptext (sLit "let")) 2 (hsep [pprBinds binds, ptext (sLit "in")]),
ppr_lexpr expr]
ppr_expr (HsLet binds expr)
= sep [hang (ptext (sLit "let")) 2 (pprBinds binds),
hang (ptext (sLit "in")) 2 (ppr expr)]
ppr_expr (HsDo do_or_list_comp stmts body _ _) = pprDo do_or_list_comp stmts body
ppr_expr (ExplicitList _ exprs)
= brackets (pprDeeperList fsep (punctuate comma (map ppr_lexpr exprs)))
ppr_expr (ExplicitPArr _ exprs)
= pa_brackets (pprDeeperList fsep (punctuate comma (map ppr_lexpr exprs)))
ppr_expr (RecordCon con_id _ rbinds)
= hang (ppr con_id) 2 (ppr rbinds)
ppr_expr (RecordUpd aexp rbinds _ _ _)
= hang (pprParendExpr aexp) 2 (ppr rbinds)
ppr_expr (ExprWithTySig expr sig)
= hang (nest 2 (ppr_lexpr expr) <+> dcolon)
4 (ppr sig)
ppr_expr (ExprWithTySigOut expr sig)
= hang (nest 2 (ppr_lexpr expr) <+> dcolon)
4 (ppr sig)
ppr_expr (ArithSeq _ info) = brackets (ppr info)
ppr_expr (PArrSeq _ info) = pa_brackets (ppr info)
ppr_expr EWildPat = char '_'
ppr_expr (ELazyPat e) = char '~' <> pprParendExpr e
ppr_expr (EAsPat v e) = ppr v <> char '@' <> pprParendExpr e
ppr_expr (EViewPat p e) = ppr p <+> ptext (sLit "->") <+> ppr e
ppr_expr (HsSCC lbl expr)
= sep [ ptext (sLit "_scc_") <+> doubleQuotes (ftext lbl),
pprParendExpr expr ]
ppr_expr (HsWrap co_fn e) = pprHsWrapper (pprExpr e) co_fn
ppr_expr (HsType id) = ppr id
ppr_expr (HsSpliceE s) = pprSplice s
ppr_expr (HsBracket b) = pprHsBracket b
ppr_expr (HsBracketOut e []) = ppr e
ppr_expr (HsBracketOut e ps) = ppr e $$ ptext (sLit "pending") <+> ppr ps
ppr_expr (HsQuasiQuoteE qq) = ppr qq
ppr_expr (HsProc pat (L _ (HsCmdTop cmd _ _ _)))
= hsep [ptext (sLit "proc"), ppr pat, ptext (sLit "->"), ppr cmd]
ppr_expr (HsTick tickId vars exp)
= pprTicks (ppr exp) $
hcat [ptext (sLit "tick<"),
ppr tickId,
ptext (sLit ">("),
hsep (map pprHsVar vars),
ppr exp,
ptext (sLit ")")]
ppr_expr (HsBinTick tickIdTrue tickIdFalse exp)
= pprTicks (ppr exp) $
hcat [ptext (sLit "bintick<"),
ppr tickIdTrue,
ptext (sLit ","),
ppr tickIdFalse,
ptext (sLit ">("),
ppr exp,ptext (sLit ")")]
ppr_expr (HsTickPragma externalSrcLoc exp)
= pprTicks (ppr exp) $
hcat [ptext (sLit "tickpragma<"),
ppr externalSrcLoc,
ptext (sLit ">("),
ppr exp,
ptext (sLit ")")]
ppr_expr (HsArrApp arrow arg _ HsFirstOrderApp True)
= hsep [ppr_lexpr arrow, ptext (sLit "-<"), ppr_lexpr arg]
ppr_expr (HsArrApp arrow arg _ HsFirstOrderApp False)
= hsep [ppr_lexpr arg, ptext (sLit ">-"), ppr_lexpr arrow]
ppr_expr (HsArrApp arrow arg _ HsHigherOrderApp True)
= hsep [ppr_lexpr arrow, ptext (sLit "-<<"), ppr_lexpr arg]
ppr_expr (HsArrApp arrow arg _ HsHigherOrderApp False)
= hsep [ppr_lexpr arg, ptext (sLit ">>-"), ppr_lexpr arrow]
ppr_expr (HsArrForm (L _ (HsVar v)) (Just _) [arg1, arg2])
= sep [pprCmdArg (unLoc arg1), hsep [pprHsInfix v, pprCmdArg (unLoc arg2)]]
ppr_expr (HsArrForm op _ args)
= hang (ptext (sLit "(|") <> ppr_lexpr op)
4 (sep (map (pprCmdArg.unLoc) args) <> ptext (sLit "|)"))
pprCmdArg :: OutputableBndr id => HsCmdTop id -> SDoc
pprCmdArg (HsCmdTop cmd@(L _ (HsArrForm _ Nothing [])) _ _ _)
= ppr_lexpr cmd
pprCmdArg (HsCmdTop cmd _ _ _)
= parens (ppr_lexpr cmd)
instance OutputableBndr id => Outputable (HsCmdTop id) where
ppr = pprCmdArg
-- add parallel array brackets around a document
--
pa_brackets :: SDoc -> SDoc
pa_brackets p = ptext (sLit "[:") <> p <> ptext (sLit ":]")
\end{code}
HsSyn records exactly where the user put parens, with HsPar.
So generally speaking we print without adding any parens.
However, some code is internally generated, and in some places
parens are absolutely required; so for these places we use
pprParendExpr (but don't print double parens of course).
For operator applications we don't add parens, because the oprerator
fixities should do the job, except in debug mode (-dppr-debug) so we
can see the structure of the parse tree.
\begin{code}
pprDebugParendExpr :: OutputableBndr id => LHsExpr id -> SDoc
pprDebugParendExpr expr
= getPprStyle (\sty ->
if debugStyle sty then pprParendExpr expr
else pprLExpr expr)
pprParendExpr :: OutputableBndr id => LHsExpr id -> SDoc
pprParendExpr expr
= let
pp_as_was = pprLExpr expr
-- Using pprLExpr makes sure that we go 'deeper'
-- I think that is usually (always?) right
in
case unLoc expr of
ArithSeq {} -> pp_as_was
PArrSeq {} -> pp_as_was
HsLit {} -> pp_as_was
HsOverLit {} -> pp_as_was
HsVar {} -> pp_as_was
HsIPVar {} -> pp_as_was
ExplicitTuple {} -> pp_as_was
ExplicitList {} -> pp_as_was
ExplicitPArr {} -> pp_as_was
HsPar {} -> pp_as_was
HsBracket {} -> pp_as_was
HsBracketOut _ [] -> pp_as_was
HsDo sc _ _ _ _
| isListCompExpr sc -> pp_as_was
_ -> parens pp_as_was
isAtomicHsExpr :: HsExpr id -> Bool -- A single token
isAtomicHsExpr (HsVar {}) = True
isAtomicHsExpr (HsLit {}) = True
isAtomicHsExpr (HsOverLit {}) = True
isAtomicHsExpr (HsIPVar {}) = True
isAtomicHsExpr (HsWrap _ e) = isAtomicHsExpr e
isAtomicHsExpr (HsPar e) = isAtomicHsExpr (unLoc e)
isAtomicHsExpr _ = False
\end{code}
%************************************************************************
%* *
\subsection{Commands (in arrow abstractions)}
%* *
%************************************************************************
We re-use HsExpr to represent these.
\begin{code}
type HsCmd id = HsExpr id
type LHsCmd id = LHsExpr id
data HsArrAppType = HsHigherOrderApp | HsFirstOrderApp
deriving (Data, Typeable)
\end{code}
The legal constructors for commands are:
= HsArrApp ... -- as above
| HsArrForm ... -- as above
| HsApp (HsCmd id)
(HsExpr id)
| HsLam (Match id) -- kappa
-- the renamer turns this one into HsArrForm
| OpApp (HsExpr id) -- left operand
(HsCmd id) -- operator
Fixity -- Renamer adds fixity; bottom until then
(HsCmd id) -- right operand
| HsPar (HsCmd id) -- parenthesised command
| HsCase (HsExpr id)
[Match id] -- bodies are HsCmd's
SrcLoc
| HsIf (Maybe (SyntaxExpr id)) -- cond function
(HsExpr id) -- predicate
(HsCmd id) -- then part
(HsCmd id) -- else part
SrcLoc
| HsLet (HsLocalBinds id) -- let(rec)
(HsCmd id)
| HsDo (HsStmtContext Name) -- The parameterisation is unimportant
-- because in this context we never use
-- the PatGuard or ParStmt variant
[Stmt id] -- HsExpr's are really HsCmd's
PostTcType -- Type of the whole expression
SrcLoc
Top-level command, introducing a new arrow.
This may occur inside a proc (where the stack is empty) or as an
argument of a command-forming operator.
\begin{code}
type LHsCmdTop id = Located (HsCmdTop id)
data HsCmdTop id
= HsCmdTop (LHsCmd id)
[PostTcType] -- types of inputs on the command's stack
PostTcType -- return type of the command
(SyntaxTable id) -- after type checking:
-- names used in the command's desugaring
deriving (Data, Typeable)
\end{code}
%************************************************************************
%* *
\subsection{Record binds}
%* *
%************************************************************************
\begin{code}
type HsRecordBinds id = HsRecFields id (LHsExpr id)
\end{code}
%************************************************************************
%* *
\subsection{@Match@, @GRHSs@, and @GRHS@ datatypes}
%* *
%************************************************************************
@Match@es are sets of pattern bindings and right hand sides for
functions, patterns or case branches. For example, if a function @g@
is defined as:
\begin{verbatim}
g (x,y) = y
g ((x:ys),y) = y+1,
\end{verbatim}
then \tr{g} has two @Match@es: @(x,y) = y@ and @((x:ys),y) = y+1@.
It is always the case that each element of an @[Match]@ list has the
same number of @pats@s inside it. This corresponds to saying that
a function defined by pattern matching must have the same number of
patterns in each equation.
\begin{code}
data MatchGroup id
= MatchGroup
[LMatch id] -- The alternatives
PostTcType -- The type is the type of the entire group
-- t1 -> ... -> tn -> tr
-- where there are n patterns
deriving (Data, Typeable)
type LMatch id = Located (Match id)
data Match id
= Match
[LPat id] -- The patterns
(Maybe (LHsType id)) -- A type signature for the result of the match
-- Nothing after typechecking
(GRHSs id)
deriving (Data, Typeable)
isEmptyMatchGroup :: MatchGroup id -> Bool
isEmptyMatchGroup (MatchGroup ms _) = null ms
matchGroupArity :: MatchGroup id -> Arity
matchGroupArity (MatchGroup [] _)
= panic "matchGroupArity" -- Precondition: MatchGroup is non-empty
matchGroupArity (MatchGroup (match:matches) _)
= ASSERT( all ((== n_pats) . length . hsLMatchPats) matches )
-- Assertion just checks that all the matches have the same number of pats
n_pats
where
n_pats = length (hsLMatchPats match)
hsLMatchPats :: LMatch id -> [LPat id]
hsLMatchPats (L _ (Match pats _ _)) = pats
-- | GRHSs are used both for pattern bindings and for Matches
data GRHSs id
= GRHSs {
grhssGRHSs :: [LGRHS id], -- ^ Guarded RHSs
grhssLocalBinds :: (HsLocalBinds id) -- ^ The where clause
} deriving (Data, Typeable)
type LGRHS id = Located (GRHS id)
-- | Guarded Right Hand Side.
data GRHS id = GRHS [LStmt id] -- Guards
(LHsExpr id) -- Right hand side
deriving (Data, Typeable)
\end{code}
We know the list must have at least one @Match@ in it.
\begin{code}
pprMatches :: (OutputableBndr idL, OutputableBndr idR) => HsMatchContext idL -> MatchGroup idR -> SDoc
pprMatches ctxt (MatchGroup matches _)
= vcat (map (pprMatch ctxt) (map unLoc matches))
-- Don't print the type; it's only a place-holder before typechecking
-- Exported to HsBinds, which can't see the defn of HsMatchContext
pprFunBind :: (OutputableBndr idL, OutputableBndr idR) => idL -> Bool -> MatchGroup idR -> SDoc
pprFunBind fun inf matches = pprMatches (FunRhs fun inf) matches
-- Exported to HsBinds, which can't see the defn of HsMatchContext
pprPatBind :: (OutputableBndr bndr, OutputableBndr id)
=> LPat bndr -> GRHSs id -> SDoc
pprPatBind pat ty@(grhss)
= sep [ppr pat, nest 2 (pprGRHSs (PatBindRhs `asTypeOf` idType ty) grhss)]
--avoid using PatternSignatures for stage1 code portability
where idType :: GRHSs id -> HsMatchContext id; idType = undefined
pprMatch :: (OutputableBndr idL, OutputableBndr idR) => HsMatchContext idL -> Match idR -> SDoc
pprMatch ctxt (Match pats maybe_ty grhss)
= sep [ sep (herald : map (nest 2 . pprParendLPat) other_pats)
, nest 2 ppr_maybe_ty
, nest 2 (pprGRHSs ctxt grhss) ]
where
(herald, other_pats)
= case ctxt of
FunRhs fun is_infix
| not is_infix -> (ppr fun, pats)
-- f x y z = e
-- Not pprBndr; the AbsBinds will
-- have printed the signature
| null pats2 -> (pp_infix, [])
-- x &&& y = e
| otherwise -> (parens pp_infix, pats2)
-- (x &&& y) z = e
where
pp_infix = pprParendLPat pat1 <+> ppr fun <+> pprParendLPat pat2
LambdaExpr -> (char '\\', pats)
_ -> ASSERT( null pats1 )
(ppr pat1, []) -- No parens around the single pat
(pat1:pats1) = pats
(pat2:pats2) = pats1
ppr_maybe_ty = case maybe_ty of
Just ty -> dcolon <+> ppr ty
Nothing -> empty
pprGRHSs :: (OutputableBndr idL, OutputableBndr idR)
=> HsMatchContext idL -> GRHSs idR -> SDoc
pprGRHSs ctxt (GRHSs grhss binds)
= vcat (map (pprGRHS ctxt . unLoc) grhss)
$$ ppUnless (isEmptyLocalBinds binds)
(text "where" $$ nest 4 (pprBinds binds))
pprGRHS :: (OutputableBndr idL, OutputableBndr idR)
=> HsMatchContext idL -> GRHS idR -> SDoc
pprGRHS ctxt (GRHS [] expr)
= pp_rhs ctxt expr
pprGRHS ctxt (GRHS guards expr)
= sep [char '|' <+> interpp'SP guards, pp_rhs ctxt expr]
pp_rhs :: OutputableBndr idR => HsMatchContext idL -> LHsExpr idR -> SDoc
pp_rhs ctxt rhs = matchSeparator ctxt <+> pprDeeper (ppr rhs)
\end{code}
%************************************************************************
%* *
\subsection{Do stmts and list comprehensions}
%* *
%************************************************************************
\begin{code}
type LStmt id = Located (StmtLR id id)
type LStmtLR idL idR = Located (StmtLR idL idR)
type Stmt id = StmtLR id id
-- The SyntaxExprs in here are used *only* for do-notation and monad
-- comprehensions, which have rebindable syntax. Otherwise they are unused.
data StmtLR idL idR
= BindStmt (LPat idL)
(LHsExpr idR)
(SyntaxExpr idR) -- The (>>=) operator
(SyntaxExpr idR) -- The fail operator
-- The fail operator is noSyntaxExpr
-- if the pattern match can't fail
| ExprStmt (LHsExpr idR) -- See Note [ExprStmt]
(SyntaxExpr idR) -- The (>>) operator
(SyntaxExpr idR) -- The `guard` operator
-- See notes [Monad Comprehensions]
PostTcType -- Element type of the RHS (used for arrows)
| LetStmt (HsLocalBindsLR idL idR)
-- ParStmts only occur in a list/monad comprehension
| ParStmt [([LStmt idL], [idR])]
(SyntaxExpr idR) -- polymorphic `mzip` for monad comprehensions
(SyntaxExpr idR) -- The `>>=` operator
(SyntaxExpr idR) -- polymorphic `return` operator
-- See notes [Monad Comprehensions]
-- After renaming, the ids are the binders bound by the stmts and used
-- after them
-- "qs, then f by e" ==> TransformStmt qs binders f (Just e) (return) (>>=)
-- "qs, then f" ==> TransformStmt qs binders f Nothing (return) (>>=)
| TransformStmt
[LStmt idL] -- Stmts are the ones to the left of the 'then'
[idR] -- After renaming, the IDs are the binders occurring
-- within this transform statement that are used after it
(LHsExpr idR) -- "then f"
(Maybe (LHsExpr idR)) -- "by e" (optional)
(SyntaxExpr idR) -- The 'return' function for inner monad
-- comprehensions
(SyntaxExpr idR) -- The '(>>=)' operator.
-- See Note [Monad Comprehensions]
| GroupStmt
[LStmt idL] -- Stmts to the *left* of the 'group'
-- which generates the tuples to be grouped
[(idR, idR)] -- See Note [GroupStmt binder map]
(Maybe (LHsExpr idR)) -- "by e" (optional)
(Either -- "using f"
(LHsExpr idR) -- Left f => explicit "using f"
(SyntaxExpr idR)) -- Right f => implicit; filled in with 'groupWith'
-- (list comprehensions) or 'groupM' (monad
-- comprehensions)
(SyntaxExpr idR) -- The 'return' function for inner monad
-- comprehensions
(SyntaxExpr idR) -- The '(>>=)' operator
(SyntaxExpr idR) -- The 'liftM' function from Control.Monad for desugaring
-- See Note [Monad Comprehensions]
-- Recursive statement (see Note [How RecStmt works] below)
| RecStmt
{ recS_stmts :: [LStmtLR idL idR]
-- The next two fields are only valid after renaming
, recS_later_ids :: [idR] -- The ids are a subset of the variables bound by the
-- stmts that are used in stmts that follow the RecStmt
, recS_rec_ids :: [idR] -- Ditto, but these variables are the "recursive" ones,
-- that are used before they are bound in the stmts of
-- the RecStmt.
-- An Id can be in both groups
-- Both sets of Ids are (now) treated monomorphically
-- See Note [How RecStmt works] for why they are separate
-- Rebindable syntax
, recS_bind_fn :: SyntaxExpr idR -- The bind function
, recS_ret_fn :: SyntaxExpr idR -- The return function
, recS_mfix_fn :: SyntaxExpr idR -- The mfix function
-- These fields are only valid after typechecking
, recS_rec_rets :: [PostTcExpr] -- These expressions correspond 1-to-1 with
-- recS_rec_ids, and are the
-- expressions that should be returned by
-- the recursion.
-- They may not quite be the Ids themselves,
-- because the Id may be *polymorphic*, but
-- the returned thing has to be *monomorphic*,
-- so they may be type applications
}
deriving (Data, Typeable)
\end{code}
Note [GroupStmt binder map]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The [(idR,idR)] in a GroupStmt behaves as follows:
* Before renaming: []
* After renaming:
[ (x27,x27), ..., (z35,z35) ]
These are the variables
bound by the stmts to the left of the 'group'
and used either in the 'by' clause,
or in the stmts following the 'group'
Each item is a pair of identical variables.
* After typechecking:
[ (x27:Int, x27:[Int]), ..., (z35:Bool, z35:[Bool]) ]
Each pair has the same unique, but different *types*.
Note [ExprStmt]
~~~~~~~~~~~~~~~
ExprStmts are a bit tricky, because what they mean
depends on the context. Consider the following contexts:
A do expression of type (m res_ty)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ExprStmt E any_ty: do { ....; E; ... }
E :: m any_ty
Translation: E >> ...
A list comprehensions of type [elt_ty]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ExprStmt E Bool: [ .. | .... E ]
[ .. | ..., E, ... ]
[ .. | .... | ..., E | ... ]
E :: Bool
Translation: if E then fail else ...
A guard list, guarding a RHS of type rhs_ty
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ExprStmt E Bool: f x | ..., E, ... = ...rhs...
E :: Bool
Translation: if E then fail else ...
A monad comprehension of type (m res_ty)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ExprStmt E Bool: [ .. | .... E ]
E :: Bool
Translation: guard E >> ...
Array comprehensions are handled like list comprehensions -=chak
Note [How RecStmt works]
~~~~~~~~~~~~~~~~~~~~~~~~
Example:
HsDo [ BindStmt x ex
, RecStmt { recS_rec_ids = [a, c]
, recS_stmts = [ BindStmt b (return (a,c))
, LetStmt a = ...b...
, BindStmt c ec ]
, recS_later_ids = [a, b]
, return (a b) ]
Here, the RecStmt binds a,b,c; but
- Only a,b are used in the stmts *following* the RecStmt,
- Only a,c are used in the stmts *inside* the RecStmt
*before* their bindings
Why do we need *both* rec_ids and later_ids? For monads they could be
combined into a single set of variables, but not for arrows. That
follows from the types of the respective feedback operators:
mfix :: MonadFix m => (a -> m a) -> m a
loop :: ArrowLoop a => a (b,d) (c,d) -> a b c
* For mfix, the 'a' covers the union of the later_ids and the rec_ids
* For 'loop', 'c' is the later_ids and 'd' is the rec_ids
Note [Typing a RecStmt]
~~~~~~~~~~~~~~~~~~~~~~~
A (RecStmt stmts) types as if you had written
(v1,..,vn, _, ..., _) <- mfix (\~(_, ..., _, r1, ..., rm) ->
do { stmts
; return (v1,..vn, r1, ..., rm) })
where v1..vn are the later_ids
r1..rm are the rec_ids
Note [Monad Comprehensions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Monad comprehensions require seperate functions like 'return' and '>>=' for
desugaring. These functions are stored in the 'HsDo' expression and the
statements used in monad comprehensions. For example, the 'return' of the
'HsDo' expression is used to lift the body of the monad comprehension:
[ body | stmts ]
=>
stmts >>= \bndrs -> return body
In transform and grouping statements ('then ..' and 'then group ..') the
'return' function is required for nested monad comprehensions, for example:
[ body | stmts, then f, rest ]
=>
f [ env | stmts ] >>= \bndrs -> [ body | rest ]
Normal expressions require the 'Control.Monad.guard' function for boolean
expressions:
[ body | exp, stmts ]
=>
guard exp >> [ body | stmts ]
Grouping/parallel statements require the 'Control.Monad.Group.groupM' and
'Control.Monad.Zip.mzip' functions:
[ body | stmts, then group by e, rest]
=>
groupM [ body | stmts ] >>= \bndrs -> [ body | rest ]
[ body | stmts1 | stmts2 | .. ]
=>
mzip stmts1 (mzip stmts2 (..)) >>= \(bndrs1, (bndrs2, ..)) -> return body
In any other context than 'MonadComp', the fields for most of these
'SyntaxExpr's stay bottom.
\begin{code}
instance (OutputableBndr idL, OutputableBndr idR) => Outputable (StmtLR idL idR) where
ppr stmt = pprStmt stmt
pprStmt :: (OutputableBndr idL, OutputableBndr idR) => (StmtLR idL idR) -> SDoc
pprStmt (BindStmt pat expr _ _) = hsep [ppr pat, ptext (sLit "<-"), ppr expr]
pprStmt (LetStmt binds) = hsep [ptext (sLit "let"), pprBinds binds]
pprStmt (ExprStmt expr _ _ _) = ppr expr
pprStmt (ParStmt stmtss _ _ _) = hsep (map doStmts stmtss)
where doStmts stmts = ptext (sLit "| ") <> ppr stmts
pprStmt (TransformStmt stmts bndrs using by _ _)
= sep (ppr_lc_stmts stmts ++ [pprTransformStmt bndrs using by])
pprStmt (GroupStmt stmts _ by using _ _ _)
= sep (ppr_lc_stmts stmts ++ [pprGroupStmt by using])
pprStmt (RecStmt { recS_stmts = segment, recS_rec_ids = rec_ids
, recS_later_ids = later_ids })
= ptext (sLit "rec") <+>
vcat [ braces (vcat (map ppr segment))
, ifPprDebug (vcat [ ptext (sLit "rec_ids=") <> ppr rec_ids
, ptext (sLit "later_ids=") <> ppr later_ids])]
pprTransformStmt :: OutputableBndr id => [id] -> LHsExpr id -> Maybe (LHsExpr id) -> SDoc
pprTransformStmt bndrs using by
= sep [ ptext (sLit "then") <+> ifPprDebug (braces (ppr bndrs))
, nest 2 (ppr using)
, nest 2 (pprBy by)]
pprGroupStmt :: OutputableBndr id => Maybe (LHsExpr id)
-> Either (LHsExpr id) (SyntaxExpr is)
-> SDoc
pprGroupStmt by using
= sep [ ptext (sLit "then group"), nest 2 (pprBy by), nest 2 (ppr_using using)]
where
ppr_using (Right _) = empty
ppr_using (Left e) = ptext (sLit "using") <+> ppr e
pprBy :: OutputableBndr id => Maybe (LHsExpr id) -> SDoc
pprBy Nothing = empty
pprBy (Just e) = ptext (sLit "by") <+> ppr e
pprDo :: OutputableBndr id => HsStmtContext any -> [LStmt id] -> LHsExpr id -> SDoc
pprDo DoExpr stmts body = ptext (sLit "do") <+> ppr_do_stmts stmts body
pprDo GhciStmt stmts body = ptext (sLit "do") <+> ppr_do_stmts stmts body
pprDo MDoExpr stmts body = ptext (sLit "mdo") <+> ppr_do_stmts stmts body
pprDo ListComp stmts body = brackets $ pprComp stmts body
pprDo PArrComp stmts body = pa_brackets $ pprComp stmts body
pprDo MonadComp stmts body = brackets $ pprComp stmts body
pprDo _ _ _ = panic "pprDo" -- PatGuard, ParStmtCxt
ppr_do_stmts :: OutputableBndr id => [LStmt id] -> LHsExpr id -> SDoc
-- Print a bunch of do stmts, with explicit braces and semicolons,
-- so that we are not vulnerable to layout bugs
ppr_do_stmts stmts body
= lbrace <+> pprDeeperList vcat ([ppr s <> semi | s <- stmts] ++ [ppr body])
<+> rbrace
ppr_lc_stmts :: OutputableBndr id => [LStmt id] -> [SDoc]
ppr_lc_stmts stmts = [ppr s <> comma | s <- stmts]
pprComp :: OutputableBndr id => [LStmt id] -> LHsExpr id -> SDoc
pprComp quals body -- Prints: body | qual1, ..., qualn
= hang (ppr body <+> char '|') 2 (interpp'SP quals)
\end{code}
%************************************************************************
%* *
Template Haskell quotation brackets
%* *
%************************************************************************
\begin{code}
data HsSplice id = HsSplice -- $z or $(f 4)
id -- The id is just a unique name to
(LHsExpr id) -- identify this splice point
deriving (Data, Typeable)
instance OutputableBndr id => Outputable (HsSplice id) where
ppr = pprSplice
pprSplice :: OutputableBndr id => HsSplice id -> SDoc
pprSplice (HsSplice n e)
= char '$' <> ifPprDebug (brackets (ppr n)) <> eDoc
where
-- We use pprLExpr to match pprParendExpr:
-- Using pprLExpr makes sure that we go 'deeper'
-- I think that is usually (always?) right
pp_as_was = pprLExpr e
eDoc = case unLoc e of
HsPar _ -> pp_as_was
HsVar _ -> pp_as_was
_ -> parens pp_as_was
data HsBracket id = ExpBr (LHsExpr id) -- [| expr |]
| PatBr (LPat id) -- [p| pat |]
| DecBrL [LHsDecl id] -- [d| decls |]; result of parser
| DecBrG (HsGroup id) -- [d| decls |]; result of renamer
| TypBr (LHsType id) -- [t| type |]
| VarBr id -- 'x, ''T
deriving (Data, Typeable)
instance OutputableBndr id => Outputable (HsBracket id) where
ppr = pprHsBracket
pprHsBracket :: OutputableBndr id => HsBracket id -> SDoc
pprHsBracket (ExpBr e) = thBrackets empty (ppr e)
pprHsBracket (PatBr p) = thBrackets (char 'p') (ppr p)
pprHsBracket (DecBrG gp) = thBrackets (char 'd') (ppr gp)
pprHsBracket (DecBrL ds) = thBrackets (char 'd') (vcat (map ppr ds))
pprHsBracket (TypBr t) = thBrackets (char 't') (ppr t)
pprHsBracket (VarBr n) = char '\'' <> ppr n
-- Infelicity: can't show ' vs '', because
-- we can't ask n what its OccName is, because the
-- pretty-printer for HsExpr doesn't ask for NamedThings
-- But the pretty-printer for names will show the OccName class
thBrackets :: SDoc -> SDoc -> SDoc
thBrackets pp_kind pp_body = char '[' <> pp_kind <> char '|' <+>
pp_body <+> ptext (sLit "|]")
\end{code}
%************************************************************************
%* *
\subsection{Enumerations and list comprehensions}
%* *
%************************************************************************
\begin{code}
data ArithSeqInfo id
= From (LHsExpr id)
| FromThen (LHsExpr id)
(LHsExpr id)
| FromTo (LHsExpr id)
(LHsExpr id)
| FromThenTo (LHsExpr id)
(LHsExpr id)
(LHsExpr id)
deriving (Data, Typeable)
\end{code}
\begin{code}
instance OutputableBndr id => Outputable (ArithSeqInfo id) where
ppr (From e1) = hcat [ppr e1, pp_dotdot]
ppr (FromThen e1 e2) = hcat [ppr e1, comma, space, ppr e2, pp_dotdot]
ppr (FromTo e1 e3) = hcat [ppr e1, pp_dotdot, ppr e3]
ppr (FromThenTo e1 e2 e3)
= hcat [ppr e1, comma, space, ppr e2, pp_dotdot, ppr e3]
pp_dotdot :: SDoc
pp_dotdot = ptext (sLit " .. ")
\end{code}
%************************************************************************
%* *
\subsection{HsMatchCtxt}
%* *
%************************************************************************
\begin{code}
data HsMatchContext id -- Context of a Match
= FunRhs id Bool -- Function binding for f; True <=> written infix
| LambdaExpr -- Patterns of a lambda
| CaseAlt -- Patterns and guards on a case alternative
| ProcExpr -- Patterns of a proc
| PatBindRhs -- A pattern binding eg [y] <- e = e
| RecUpd -- Record update [used only in DsExpr to
-- tell matchWrapper what sort of
-- runtime error message to generate]
| StmtCtxt (HsStmtContext id) -- Pattern of a do-stmt, list comprehension,
-- pattern guard, etc
| ThPatQuote -- A Template Haskell pattern quotation [p| (a,b) |]
deriving (Data, Typeable)
data HsStmtContext id
= ListComp
| DoExpr
| GhciStmt -- A command-line Stmt in GHCi pat <- rhs
| MDoExpr -- Recursive do-expression
| MonadComp
| PArrComp -- Parallel array comprehension
| PatGuard (HsMatchContext id) -- Pattern guard for specified thing
| ParStmtCtxt (HsStmtContext id) -- A branch of a parallel stmt
| TransformStmtCtxt (HsStmtContext id) -- A branch of a transform stmt
deriving (Data, Typeable)
\end{code}
\begin{code}
isDoExpr :: HsStmtContext id -> Bool
isDoExpr DoExpr = True
isDoExpr MDoExpr = True
isDoExpr _ = False
isListCompExpr :: HsStmtContext id -> Bool
isListCompExpr ListComp = True
isListCompExpr PArrComp = True
isListCompExpr MonadComp = True
isListCompExpr _ = False
isMonadCompExpr :: HsStmtContext id -> Bool
isMonadCompExpr MonadComp = True
isMonadCompExpr (ParStmtCtxt ctxt) = isMonadCompExpr ctxt
isMonadCompExpr (TransformStmtCtxt ctxt) = isMonadCompExpr ctxt
isMonadCompExpr _ = False
\end{code}
\begin{code}
matchSeparator :: HsMatchContext id -> SDoc
matchSeparator (FunRhs {}) = ptext (sLit "=")
matchSeparator CaseAlt = ptext (sLit "->")
matchSeparator LambdaExpr = ptext (sLit "->")
matchSeparator ProcExpr = ptext (sLit "->")
matchSeparator PatBindRhs = ptext (sLit "=")
matchSeparator (StmtCtxt _) = ptext (sLit "<-")
matchSeparator RecUpd = panic "unused"
matchSeparator ThPatQuote = panic "unused"
\end{code}
\begin{code}
pprMatchContext :: Outputable id => HsMatchContext id -> SDoc
pprMatchContext ctxt
| want_an ctxt = ptext (sLit "an") <+> pprMatchContextNoun ctxt
| otherwise = ptext (sLit "a") <+> pprMatchContextNoun ctxt
where
want_an (FunRhs {}) = True -- Use "an" in front
want_an ProcExpr = True
want_an _ = False
pprMatchContextNoun :: Outputable id => HsMatchContext id -> SDoc
pprMatchContextNoun (FunRhs fun _) = ptext (sLit "equation for")
<+> quotes (ppr fun)
pprMatchContextNoun CaseAlt = ptext (sLit "case alternative")
pprMatchContextNoun RecUpd = ptext (sLit "record-update construct")
pprMatchContextNoun ThPatQuote = ptext (sLit "Template Haskell pattern quotation")
pprMatchContextNoun PatBindRhs = ptext (sLit "pattern binding")
pprMatchContextNoun LambdaExpr = ptext (sLit "lambda abstraction")
pprMatchContextNoun ProcExpr = ptext (sLit "arrow abstraction")
pprMatchContextNoun (StmtCtxt ctxt) = ptext (sLit "pattern binding in")
$$ pprStmtContext ctxt
pprStmtContext :: Outputable id => HsStmtContext id -> SDoc
pprStmtContext (ParStmtCtxt c)
= sep [ptext (sLit "a parallel branch of"), pprStmtContext c]
pprStmtContext (TransformStmtCtxt c)
= sep [ptext (sLit "a transformed branch of"), pprStmtContext c]
pprStmtContext (PatGuard ctxt)
= ptext (sLit "a pattern guard for") $$ pprMatchContext ctxt
pprStmtContext GhciStmt = ptext (sLit "an interactive GHCi command")
pprStmtContext DoExpr = ptext (sLit "a 'do' expression")
pprStmtContext MDoExpr = ptext (sLit "an 'mdo' expression")
pprStmtContext ListComp = ptext (sLit "a list comprehension")
pprStmtContext MonadComp = ptext (sLit "a monad comprehension")
pprStmtContext PArrComp = ptext (sLit "an array comprehension")
{-
pprMatchRhsContext (FunRhs fun) = ptext (sLit "a right-hand side of function") <+> quotes (ppr fun)
pprMatchRhsContext CaseAlt = ptext (sLit "the body of a case alternative")
pprMatchRhsContext PatBindRhs = ptext (sLit "the right-hand side of a pattern binding")
pprMatchRhsContext LambdaExpr = ptext (sLit "the body of a lambda")
pprMatchRhsContext ProcExpr = ptext (sLit "the body of a proc")
pprMatchRhsContext other = panic "pprMatchRhsContext" -- RecUpd, StmtCtxt
-- Used for the result statement of comprehension
-- e.g. the 'e' in [ e | ... ]
-- or the 'r' in f x = r
pprStmtResultContext (PatGuard ctxt) = pprMatchRhsContext ctxt
pprStmtResultContext other = ptext (sLit "the result of") <+> pprStmtContext other
-}
-- Used to generate the string for a *runtime* error message
matchContextErrString :: Outputable id => HsMatchContext id -> SDoc
matchContextErrString (FunRhs fun _) = ptext (sLit "function") <+> ppr fun
matchContextErrString CaseAlt = ptext (sLit "case")
matchContextErrString PatBindRhs = ptext (sLit "pattern binding")
matchContextErrString RecUpd = ptext (sLit "record update")
matchContextErrString LambdaExpr = ptext (sLit "lambda")
matchContextErrString ProcExpr = ptext (sLit "proc")
matchContextErrString ThPatQuote = panic "matchContextErrString" -- Not used at runtime
matchContextErrString (StmtCtxt (ParStmtCtxt c)) = matchContextErrString (StmtCtxt c)
matchContextErrString (StmtCtxt (TransformStmtCtxt c)) = matchContextErrString (StmtCtxt c)
matchContextErrString (StmtCtxt (PatGuard _)) = ptext (sLit "pattern guard")
matchContextErrString (StmtCtxt GhciStmt) = ptext (sLit "interactive GHCi command")
matchContextErrString (StmtCtxt DoExpr) = ptext (sLit "'do' expression")
matchContextErrString (StmtCtxt MDoExpr) = ptext (sLit "'mdo' expression")
matchContextErrString (StmtCtxt ListComp) = ptext (sLit "list comprehension")
matchContextErrString (StmtCtxt MonadComp) = ptext (sLit "monad comprehension")
matchContextErrString (StmtCtxt PArrComp) = ptext (sLit "array comprehension")
\end{code}
\begin{code}
pprMatchInCtxt :: (OutputableBndr idL, OutputableBndr idR)
=> HsMatchContext idL -> Match idR -> SDoc
pprMatchInCtxt ctxt match = hang (ptext (sLit "In") <+> pprMatchContext ctxt <> colon)
4 (pprMatch ctxt match)
pprStmtInCtxt :: (OutputableBndr idL, OutputableBndr idR)
=> HsStmtContext idL -> StmtLR idL idR -> SDoc
pprStmtInCtxt ctxt stmt = hang (ptext (sLit "In a stmt of") <+> pprStmtContext ctxt <> colon)
4 (ppr_stmt stmt)
where
-- For Group and Transform Stmts, don't print the nested stmts!
ppr_stmt (GroupStmt _ _ by using _ _ _) = pprGroupStmt by using
ppr_stmt (TransformStmt _ bndrs using by _ _) = pprTransformStmt bndrs using by
ppr_stmt stmt = pprStmt stmt
\end{code}
|