1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section[HsLit]{Abstract syntax: source-language literals}
-}
{-# LANGUAGE CPP, DeriveDataTypeable #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE UndecidableInstances #-} -- Note [Pass sensitive types]
-- in module PlaceHolder
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE TypeFamilies #-}
module HsLit where
#include "HsVersions.h"
import GhcPrelude
import {-# SOURCE #-} HsExpr( HsExpr, pprExpr )
import BasicTypes ( IntegralLit(..),FractionalLit(..),negateIntegralLit,
negateFractionalLit,SourceText(..),pprWithSourceText )
import Type ( Type )
import Outputable
import FastString
import HsExtension
import Data.ByteString (ByteString)
import Data.Data hiding ( Fixity )
{-
************************************************************************
* *
\subsection[HsLit]{Literals}
* *
************************************************************************
-}
-- Note [Literal source text] in BasicTypes for SourceText fields in
-- the following
-- Note [Trees that grow] in HsExtension for the Xxxxx fields in the following
-- | Haskell Literal
data HsLit x
= HsChar (XHsChar x) {- SourceText -} Char
-- ^ Character
| HsCharPrim (XHsCharPrim x) {- SourceText -} Char
-- ^ Unboxed character
| HsString (XHsString x) {- SourceText -} FastString
-- ^ String
| HsStringPrim (XHsStringPrim x) {- SourceText -} ByteString
-- ^ Packed bytes
| HsInt (XHsInt x) IntegralLit
-- ^ Genuinely an Int; arises from
-- @TcGenDeriv@, and from TRANSLATION
| HsIntPrim (XHsIntPrim x) {- SourceText -} Integer
-- ^ literal @Int#@
| HsWordPrim (XHsWordPrim x) {- SourceText -} Integer
-- ^ literal @Word#@
| HsInt64Prim (XHsInt64Prim x) {- SourceText -} Integer
-- ^ literal @Int64#@
| HsWord64Prim (XHsWord64Prim x) {- SourceText -} Integer
-- ^ literal @Word64#@
| HsInteger (XHsInteger x) {- SourceText -} Integer Type
-- ^ Genuinely an integer; arises only
-- from TRANSLATION (overloaded
-- literals are done with HsOverLit)
| HsRat (XHsRat x) FractionalLit Type
-- ^ Genuinely a rational; arises only from
-- TRANSLATION (overloaded literals are
-- done with HsOverLit)
| HsFloatPrim (XHsFloatPrim x) FractionalLit
-- ^ Unboxed Float
| HsDoublePrim (XHsDoublePrim x) FractionalLit
-- ^ Unboxed Double
deriving instance (DataId x) => Data (HsLit x)
instance Eq (HsLit x) where
(HsChar _ x1) == (HsChar _ x2) = x1==x2
(HsCharPrim _ x1) == (HsCharPrim _ x2) = x1==x2
(HsString _ x1) == (HsString _ x2) = x1==x2
(HsStringPrim _ x1) == (HsStringPrim _ x2) = x1==x2
(HsInt _ x1) == (HsInt _ x2) = x1==x2
(HsIntPrim _ x1) == (HsIntPrim _ x2) = x1==x2
(HsWordPrim _ x1) == (HsWordPrim _ x2) = x1==x2
(HsInt64Prim _ x1) == (HsInt64Prim _ x2) = x1==x2
(HsWord64Prim _ x1) == (HsWord64Prim _ x2) = x1==x2
(HsInteger _ x1 _) == (HsInteger _ x2 _) = x1==x2
(HsRat _ x1 _) == (HsRat _ x2 _) = x1==x2
(HsFloatPrim _ x1) == (HsFloatPrim _ x2) = x1==x2
(HsDoublePrim _ x1) == (HsDoublePrim _ x2) = x1==x2
_ == _ = False
-- | Haskell Overloaded Literal
data HsOverLit p
= OverLit {
ol_val :: OverLitVal,
ol_rebindable :: PostRn p Bool, -- Note [ol_rebindable]
ol_witness :: HsExpr p, -- Note [Overloaded literal witnesses]
ol_type :: PostTc p Type }
deriving instance (DataId p) => Data (HsOverLit p)
-- Note [Literal source text] in BasicTypes for SourceText fields in
-- the following
-- | Overloaded Literal Value
data OverLitVal
= HsIntegral !IntegralLit -- ^ Integer-looking literals;
| HsFractional !FractionalLit -- ^ Frac-looking literals
| HsIsString !SourceText !FastString -- ^ String-looking literals
deriving Data
negateOverLitVal :: OverLitVal -> OverLitVal
negateOverLitVal (HsIntegral i) = HsIntegral (negateIntegralLit i)
negateOverLitVal (HsFractional f) = HsFractional (negateFractionalLit f)
negateOverLitVal _ = panic "negateOverLitVal: argument is not a number"
overLitType :: HsOverLit p -> PostTc p Type
overLitType = ol_type
-- | Convert a literal from one index type to another, updating the annotations
-- according to the relevant 'Convertable' instance
convertLit :: (ConvertIdX a b) => HsLit a -> HsLit b
convertLit (HsChar a x) = (HsChar (convert a) x)
convertLit (HsCharPrim a x) = (HsCharPrim (convert a) x)
convertLit (HsString a x) = (HsString (convert a) x)
convertLit (HsStringPrim a x) = (HsStringPrim (convert a) x)
convertLit (HsInt a x) = (HsInt (convert a) x)
convertLit (HsIntPrim a x) = (HsIntPrim (convert a) x)
convertLit (HsWordPrim a x) = (HsWordPrim (convert a) x)
convertLit (HsInt64Prim a x) = (HsInt64Prim (convert a) x)
convertLit (HsWord64Prim a x) = (HsWord64Prim (convert a) x)
convertLit (HsInteger a x b) = (HsInteger (convert a) x b)
convertLit (HsRat a x b) = (HsRat (convert a) x b)
convertLit (HsFloatPrim a x) = (HsFloatPrim (convert a) x)
convertLit (HsDoublePrim a x) = (HsDoublePrim (convert a) x)
{-
Note [ol_rebindable]
~~~~~~~~~~~~~~~~~~~~
The ol_rebindable field is True if this literal is actually
using rebindable syntax. Specifically:
False iff ol_witness is the standard one
True iff ol_witness is non-standard
Equivalently it's True if
a) RebindableSyntax is on
b) the witness for fromInteger/fromRational/fromString
that happens to be in scope isn't the standard one
Note [Overloaded literal witnesses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*Before* type checking, the HsExpr in an HsOverLit is the
name of the coercion function, 'fromInteger' or 'fromRational'.
*After* type checking, it is a witness for the literal, such as
(fromInteger 3) or lit_78
This witness should replace the literal.
This dual role is unusual, because we're replacing 'fromInteger' with
a call to fromInteger. Reason: it allows commoning up of the fromInteger
calls, which wouldn't be possible if the desugarer made the application.
The PostTcType in each branch records the type the overload literal is
found to have.
-}
-- Comparison operations are needed when grouping literals
-- for compiling pattern-matching (module MatchLit)
instance Eq (HsOverLit p) where
(OverLit {ol_val = val1}) == (OverLit {ol_val=val2}) = val1 == val2
instance Eq OverLitVal where
(HsIntegral i1) == (HsIntegral i2) = i1 == i2
(HsFractional f1) == (HsFractional f2) = f1 == f2
(HsIsString _ s1) == (HsIsString _ s2) = s1 == s2
_ == _ = False
instance Ord (HsOverLit p) where
compare (OverLit {ol_val=val1}) (OverLit {ol_val=val2}) = val1 `compare` val2
instance Ord OverLitVal where
compare (HsIntegral i1) (HsIntegral i2) = i1 `compare` i2
compare (HsIntegral _) (HsFractional _) = LT
compare (HsIntegral _) (HsIsString _ _) = LT
compare (HsFractional f1) (HsFractional f2) = f1 `compare` f2
compare (HsFractional _) (HsIntegral _) = GT
compare (HsFractional _) (HsIsString _ _) = LT
compare (HsIsString _ s1) (HsIsString _ s2) = s1 `compare` s2
compare (HsIsString _ _) (HsIntegral _) = GT
compare (HsIsString _ _) (HsFractional _) = GT
-- Instance specific to GhcPs, need the SourceText
instance (SourceTextX x) => Outputable (HsLit x) where
ppr (HsChar st c) = pprWithSourceText (getSourceText st) (pprHsChar c)
ppr (HsCharPrim st c)
= pp_st_suffix (getSourceText st) primCharSuffix (pprPrimChar c)
ppr (HsString st s)
= pprWithSourceText (getSourceText st) (pprHsString s)
ppr (HsStringPrim st s)
= pprWithSourceText (getSourceText st) (pprHsBytes s)
ppr (HsInt _ i)
= pprWithSourceText (il_text i) (integer (il_value i))
ppr (HsInteger st i _) = pprWithSourceText (getSourceText st) (integer i)
ppr (HsRat _ f _) = ppr f
ppr (HsFloatPrim _ f) = ppr f <> primFloatSuffix
ppr (HsDoublePrim _ d) = ppr d <> primDoubleSuffix
ppr (HsIntPrim st i)
= pprWithSourceText (getSourceText st) (pprPrimInt i)
ppr (HsWordPrim st w)
= pprWithSourceText (getSourceText st) (pprPrimWord w)
ppr (HsInt64Prim st i)
= pp_st_suffix (getSourceText st) primInt64Suffix (pprPrimInt64 i)
ppr (HsWord64Prim st w)
= pp_st_suffix (getSourceText st) primWord64Suffix (pprPrimWord64 w)
pp_st_suffix :: SourceText -> SDoc -> SDoc -> SDoc
pp_st_suffix NoSourceText _ doc = doc
pp_st_suffix (SourceText st) suffix _ = text st <> suffix
-- in debug mode, print the expression that it's resolved to, too
instance (SourceTextX p, OutputableBndrId p)
=> Outputable (HsOverLit p) where
ppr (OverLit {ol_val=val, ol_witness=witness})
= ppr val <+> (whenPprDebug (parens (pprExpr witness)))
instance Outputable OverLitVal where
ppr (HsIntegral i) = pprWithSourceText (il_text i) (integer (il_value i))
ppr (HsFractional f) = ppr f
ppr (HsIsString st s) = pprWithSourceText st (pprHsString s)
-- | pmPprHsLit pretty prints literals and is used when pretty printing pattern
-- match warnings. All are printed the same (i.e., without hashes if they are
-- primitive and not wrapped in constructors if they are boxed). This happens
-- mainly for too reasons:
-- * We do not want to expose their internal representation
-- * The warnings become too messy
pmPprHsLit :: (SourceTextX x) => HsLit x -> SDoc
pmPprHsLit (HsChar _ c) = pprHsChar c
pmPprHsLit (HsCharPrim _ c) = pprHsChar c
pmPprHsLit (HsString st s) = pprWithSourceText (getSourceText st)
(pprHsString s)
pmPprHsLit (HsStringPrim _ s) = pprHsBytes s
pmPprHsLit (HsInt _ i) = integer (il_value i)
pmPprHsLit (HsIntPrim _ i) = integer i
pmPprHsLit (HsWordPrim _ w) = integer w
pmPprHsLit (HsInt64Prim _ i) = integer i
pmPprHsLit (HsWord64Prim _ w) = integer w
pmPprHsLit (HsInteger _ i _) = integer i
pmPprHsLit (HsRat _ f _) = ppr f
pmPprHsLit (HsFloatPrim _ f) = ppr f
pmPprHsLit (HsDoublePrim _ d) = ppr d
-- | Returns 'True' for compound literals that will need parentheses.
isCompoundHsLit :: HsLit x -> Bool
isCompoundHsLit (HsChar {}) = False
isCompoundHsLit (HsCharPrim {}) = False
isCompoundHsLit (HsString {}) = False
isCompoundHsLit (HsStringPrim {}) = False
isCompoundHsLit (HsInt _ x) = il_neg x
isCompoundHsLit (HsIntPrim _ x) = x < 0
isCompoundHsLit (HsWordPrim _ x) = x < 0
isCompoundHsLit (HsInt64Prim _ x) = x < 0
isCompoundHsLit (HsWord64Prim _ x) = x < 0
isCompoundHsLit (HsInteger _ x _) = x < 0
isCompoundHsLit (HsRat _ x _) = fl_neg x
isCompoundHsLit (HsFloatPrim _ x) = fl_neg x
isCompoundHsLit (HsDoublePrim _ x) = fl_neg x
-- | Returns 'True' for compound overloaded literals that will need
-- parentheses when used in an argument position.
isCompoundHsOverLit :: HsOverLit x -> Bool
isCompoundHsOverLit (OverLit { ol_val = olv }) = compound_ol_val olv
where
compound_ol_val :: OverLitVal -> Bool
compound_ol_val (HsIntegral x) = il_neg x
compound_ol_val (HsFractional x) = fl_neg x
compound_ol_val (HsIsString {}) = False
|