1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\begin{code}
module BuildTyCl (
buildSynTyCon,
buildAlgTyCon,
buildDataCon,
TcMethInfo, buildClass,
mkAbstractTyConRhs,
mkNewTyConRhs, mkDataTyConRhs,
newImplicitBinder
) where
#include "HsVersions.h"
import IfaceEnv
import DataCon
import Var
import VarSet
import BasicTypes
import Name
import MkId
import Class
import TyCon
import Type
import Coercion
import TcRnMonad
import Data.List ( partition )
import Outputable
\end{code}
\begin{code}
------------------------------------------------------
buildSynTyCon :: Name -> [TyVar]
-> SynTyConRhs
-> Kind -- ^ Kind of the RHS
-> TyConParent
-> Maybe (TyCon, [Type]) -- ^ family instance if applicable
-> TcRnIf m n TyCon
buildSynTyCon tc_name tvs rhs rhs_kind parent mb_family
| Just fam_inst_info <- mb_family
= ASSERT( isNoParent parent )
fixM $ \ tycon_rec -> do
{ fam_parent <- mkFamInstParentInfo tc_name tvs fam_inst_info tycon_rec
; return (mkSynTyCon tc_name kind tvs rhs fam_parent) }
| otherwise
= return (mkSynTyCon tc_name kind tvs rhs parent)
where
kind = mkArrowKinds (map tyVarKind tvs) rhs_kind
------------------------------------------------------
buildAlgTyCon :: Name -> [TyVar]
-> ThetaType -- ^ Stupid theta
-> AlgTyConRhs
-> RecFlag
-> Bool -- ^ True <=> was declared in GADT syntax
-> TyConParent
-> Maybe (TyCon, [Type]) -- ^ family instance if applicable
-> TcRnIf m n TyCon
buildAlgTyCon tc_name tvs stupid_theta rhs is_rec gadt_syn
parent mb_family
| Just fam_inst_info <- mb_family
= -- We need to tie a knot as the coercion of a data instance depends
-- on the instance representation tycon and vice versa.
ASSERT( isNoParent parent )
fixM $ \ tycon_rec -> do
{ fam_parent <- mkFamInstParentInfo tc_name tvs fam_inst_info tycon_rec
; return (mkAlgTyCon tc_name kind tvs stupid_theta rhs
fam_parent is_rec gadt_syn) }
| otherwise
= return (mkAlgTyCon tc_name kind tvs stupid_theta rhs
parent is_rec gadt_syn)
where
kind = mkArrowKinds (map tyVarKind tvs) liftedTypeKind
-- | If a family tycon with instance types is given, the current tycon is an
-- instance of that family and we need to
--
-- (1) create a coercion that identifies the family instance type and the
-- representation type from Step (1); ie, it is of the form
-- `Co tvs :: F ts ~ R tvs', where `Co' is the name of the coercion,
-- `F' the family tycon and `R' the (derived) representation tycon,
-- and
-- (2) produce a `TyConParent' value containing the parent and coercion
-- information.
--
mkFamInstParentInfo :: Name -> [TyVar]
-> (TyCon, [Type])
-> TyCon
-> TcRnIf m n TyConParent
mkFamInstParentInfo tc_name tvs (family, instTys) rep_tycon
= do { -- Create the coercion
; co_tycon_name <- newImplicitBinder tc_name mkInstTyCoOcc
; let co_tycon = mkFamInstCo co_tycon_name tvs
family instTys rep_tycon
; return $ FamInstTyCon family instTys co_tycon }
------------------------------------------------------
mkAbstractTyConRhs :: AlgTyConRhs
mkAbstractTyConRhs = AbstractTyCon
mkDataTyConRhs :: [DataCon] -> AlgTyConRhs
mkDataTyConRhs cons
= DataTyCon {
data_cons = cons,
is_enum = not (null cons) && all is_enum_con cons
-- See Note [Enumeration types] in TyCon
}
where
is_enum_con con
| (_tvs, theta, arg_tys, _res) <- dataConSig con
= null theta && null arg_tys
mkNewTyConRhs :: Name -> TyCon -> DataCon -> TcRnIf m n AlgTyConRhs
-- ^ Monadic because it makes a Name for the coercion TyCon
-- We pass the Name of the parent TyCon, as well as the TyCon itself,
-- because the latter is part of a knot, whereas the former is not.
mkNewTyConRhs tycon_name tycon con
= do { co_tycon_name <- newImplicitBinder tycon_name mkNewTyCoOcc
; let co_tycon = mkNewTypeCo co_tycon_name tycon etad_tvs etad_rhs
; traceIf (text "mkNewTyConRhs" <+> ppr co_tycon)
; return (NewTyCon { data_con = con,
nt_rhs = rhs_ty,
nt_etad_rhs = (etad_tvs, etad_rhs),
nt_co = co_tycon } ) }
-- Coreview looks through newtypes with a Nothing
-- for nt_co, or uses explicit coercions otherwise
where
tvs = tyConTyVars tycon
inst_con_ty = applyTys (dataConUserType con) (mkTyVarTys tvs)
rhs_ty = ASSERT( isFunTy inst_con_ty ) funArgTy inst_con_ty
-- Instantiate the data con with the
-- type variables from the tycon
-- NB: a newtype DataCon has a type that must look like
-- forall tvs. <arg-ty> -> T tvs
-- Note that we *can't* use dataConInstOrigArgTys here because
-- the newtype arising from class Foo a => Bar a where {}
-- has a single argument (Foo a) that is a *type class*, so
-- dataConInstOrigArgTys returns [].
etad_tvs :: [TyVar] -- Matched lazily, so that mkNewTypeCo can
etad_rhs :: Type -- return a TyCon without pulling on rhs_ty
-- See Note [Tricky iface loop] in LoadIface
(etad_tvs, etad_rhs) = eta_reduce (reverse tvs) rhs_ty
eta_reduce :: [TyVar] -- Reversed
-> Type -- Rhs type
-> ([TyVar], Type) -- Eta-reduced version (tyvars in normal order)
eta_reduce (a:as) ty | Just (fun, arg) <- splitAppTy_maybe ty,
Just tv <- getTyVar_maybe arg,
tv == a,
not (a `elemVarSet` tyVarsOfType fun)
= eta_reduce as fun
eta_reduce tvs ty = (reverse tvs, ty)
------------------------------------------------------
buildDataCon :: Name -> Bool
-> [HsBang]
-> [Name] -- Field labels
-> [TyVar] -> [TyVar] -- Univ and ext
-> [(TyVar,Type)] -- Equality spec
-> ThetaType -- Does not include the "stupid theta"
-- or the GADT equalities
-> [Type] -> Type -- Argument and result types
-> TyCon -- Rep tycon
-> TcRnIf m n DataCon
-- A wrapper for DataCon.mkDataCon that
-- a) makes the worker Id
-- b) makes the wrapper Id if necessary, including
-- allocating its unique (hence monadic)
buildDataCon src_name declared_infix arg_stricts field_lbls
univ_tvs ex_tvs eq_spec ctxt arg_tys res_ty rep_tycon
= do { wrap_name <- newImplicitBinder src_name mkDataConWrapperOcc
; work_name <- newImplicitBinder src_name mkDataConWorkerOcc
-- This last one takes the name of the data constructor in the source
-- code, which (for Haskell source anyway) will be in the DataName name
-- space, and puts it into the VarName name space
; let
stupid_ctxt = mkDataConStupidTheta rep_tycon arg_tys univ_tvs
data_con = mkDataCon src_name declared_infix
arg_stricts field_lbls
univ_tvs ex_tvs eq_spec ctxt
arg_tys res_ty rep_tycon
stupid_ctxt dc_ids
dc_ids = mkDataConIds wrap_name work_name data_con
; return data_con }
-- The stupid context for a data constructor should be limited to
-- the type variables mentioned in the arg_tys
-- ToDo: Or functionally dependent on?
-- This whole stupid theta thing is, well, stupid.
mkDataConStupidTheta :: TyCon -> [Type] -> [TyVar] -> [PredType]
mkDataConStupidTheta tycon arg_tys univ_tvs
| null stupid_theta = [] -- The common case
| otherwise = filter in_arg_tys stupid_theta
where
tc_subst = zipTopTvSubst (tyConTyVars tycon) (mkTyVarTys univ_tvs)
stupid_theta = substTheta tc_subst (tyConStupidTheta tycon)
-- Start by instantiating the master copy of the
-- stupid theta, taken from the TyCon
arg_tyvars = tyVarsOfTypes arg_tys
in_arg_tys pred = not $ isEmptyVarSet $
tyVarsOfPred pred `intersectVarSet` arg_tyvars
\end{code}
------------------------------------------------------
\begin{code}
type TcMethInfo = (Name, DefMethSpec, Type)
-- A temporary intermediate, to communicate between
-- tcClassSigs and buildClass.
buildClass :: Bool -- True <=> do not include unfoldings
-- on dict selectors
-- Used when importing a class without -O
-> Name -> [TyVar] -> ThetaType
-> [FunDep TyVar] -- Functional dependencies
-> [TyThing] -- Associated types
-> [TcMethInfo] -- Method info
-> RecFlag -- Info for type constructor
-> TcRnIf m n Class
buildClass no_unf class_name tvs sc_theta fds ats sig_stuff tc_isrec
= do { traceIf (text "buildClass")
; tycon_name <- newImplicitBinder class_name mkClassTyConOcc
; datacon_name <- newImplicitBinder class_name mkClassDataConOcc
-- The class name is the 'parent' for this datacon, not its tycon,
-- because one should import the class to get the binding for
-- the datacon
; fixM (\ rec_clas -> do { -- Only name generation inside loop
; op_items <- mapM (mk_op_item rec_clas) sig_stuff
-- Build the selector id and default method id
; let (eq_theta, dict_theta) = partition isEqPred sc_theta
-- We only make selectors for the *value* superclasses,
-- not equality predicates
; sc_sel_names <- mapM (newImplicitBinder class_name . mkSuperDictSelOcc)
[1..length dict_theta]
; let sc_sel_ids = [ mkDictSelId no_unf sc_name rec_clas
| sc_name <- sc_sel_names]
-- We number off the Dict superclass selectors, 1, 2, 3 etc so that we
-- can construct names for the selectors. Thus
-- class (C a, C b) => D a b where ...
-- gives superclass selectors
-- D_sc1, D_sc2
-- (We used to call them D_C, but now we can have two different
-- superclasses both called C!)
; let use_newtype = null eq_theta && (length dict_theta + length sig_stuff == 1)
-- Use a newtype if the data constructor has
-- (a) exactly one value field
-- (b) no existential or equality-predicate fields
-- i.e. exactly one operation or superclass taken together
-- See note [Class newtypes and equality predicates]
-- We play a bit fast and loose by treating the dictionary
-- superclasses as ordinary arguments. That means that in
-- the case of
-- class C a => D a
-- we don't get a newtype with no arguments!
args = sc_sel_names ++ op_names
op_tys = [ty | (_,_,ty) <- sig_stuff]
op_names = [op | (op,_,_) <- sig_stuff]
arg_tys = map mkPredTy dict_theta ++ op_tys
rec_tycon = classTyCon rec_clas
; dict_con <- buildDataCon datacon_name
False -- Not declared infix
(map (const HsNoBang) args)
[{- No fields -}]
tvs [{- no existentials -}]
[{- No GADT equalities -}]
eq_theta
arg_tys
(mkTyConApp rec_tycon (mkTyVarTys tvs))
rec_tycon
; rhs <- if use_newtype
then mkNewTyConRhs tycon_name rec_tycon dict_con
else return (mkDataTyConRhs [dict_con])
; let { clas_kind = mkArrowKinds (map tyVarKind tvs) liftedTypeKind
; tycon = mkClassTyCon tycon_name clas_kind tvs
rhs rec_clas tc_isrec
-- A class can be recursive, and in the case of newtypes
-- this matters. For example
-- class C a where { op :: C b => a -> b -> Int }
-- Because C has only one operation, it is represented by
-- a newtype, and it should be a *recursive* newtype.
-- [If we don't make it a recursive newtype, we'll expand the
-- newtype like a synonym, but that will lead to an infinite
-- type]
; atTyCons = [tycon | ATyCon tycon <- ats]
; result = mkClass class_name tvs fds
(eq_theta ++ dict_theta) -- Equalities first
(length eq_theta) -- Number of equalities
sc_sel_ids atTyCons
op_items tycon
}
; traceIf (text "buildClass" <+> ppr tycon)
; return result
})}
where
mk_op_item :: Class -> TcMethInfo -> TcRnIf n m ClassOpItem
mk_op_item rec_clas (op_name, dm_spec, _)
= do { dm_info <- case dm_spec of
NoDM -> return NoDefMeth
GenericDM -> do { dm_name <- newImplicitBinder op_name mkGenDefMethodOcc
; return (GenDefMeth dm_name) }
VanillaDM -> do { dm_name <- newImplicitBinder op_name mkDefaultMethodOcc
; return (DefMeth dm_name) }
; return (mkDictSelId no_unf op_name rec_clas, dm_info) }
\end{code}
Note [Class newtypes and equality predicates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
class (a ~ F b) => C a b where
op :: a -> b
We cannot represent this by a newtype, even though it's not
existential, and there's only one value field, because we do
capture an equality predicate:
data C a b where
MkC :: forall a b. (a ~ F b) => (a->b) -> C a b
We need to access this equality predicate when we get passes a C
dictionary. See Trac #2238
|