1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
|
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
Type checking of type signatures in interface files
\begin{code}
module TcIface (
tcImportDecl, checkWiredInTyCon, tcHiBootIface, typecheckIface,
tcIfaceDecl, tcIfaceInst, tcIfaceFamInst, tcIfaceRules, tcIfaceGlobal,
tcExtCoreBindings
) where
#include "HsVersions.h"
import IfaceSyn
import LoadIface
import IfaceEnv
import BuildTyCl
import TcRnMonad
import Type
import TypeRep
import HscTypes
import InstEnv
import FamInstEnv
import CoreSyn
import CoreUtils
import CoreUnfold
import CoreLint
import WorkWrap
import Id
import MkId
import IdInfo
import Class
import TyCon
import DataCon
import TysWiredIn
import Var ( TyVar )
import qualified Var
import Name
import NameEnv
import OccName
import Module
import UniqFM
import UniqSupply
import Outputable
import ErrUtils
import Maybes
import SrcLoc
import Util
import DynFlags
import Control.Monad
import Data.List
import Data.Maybe
\end{code}
This module takes
IfaceDecl -> TyThing
IfaceType -> Type
etc
An IfaceDecl is populated with RdrNames, and these are not renamed to
Names before typechecking, because there should be no scope errors etc.
-- For (b) consider: f = $(...h....)
-- where h is imported, and calls f via an hi-boot file.
-- This is bad! But it is not seen as a staging error, because h
-- is indeed imported. We don't want the type-checker to black-hole
-- when simplifying and compiling the splice!
--
-- Simple solution: discard any unfolding that mentions a variable
-- bound in this module (and hence not yet processed).
-- The discarding happens when forkM finds a type error.
%************************************************************************
%* *
%* tcImportDecl is the key function for "faulting in" *
%* imported things
%* *
%************************************************************************
The main idea is this. We are chugging along type-checking source code, and
find a reference to GHC.Base.map. We call tcLookupGlobal, which doesn't find
it in the EPS type envt. So it
1 loads GHC.Base.hi
2 gets the decl for GHC.Base.map
3 typechecks it via tcIfaceDecl
4 and adds it to the type env in the EPS
Note that DURING STEP 4, we may find that map's type mentions a type
constructor that also
Notice that for imported things we read the current version from the EPS
mutable variable. This is important in situations like
...$(e1)...$(e2)...
where the code that e1 expands to might import some defns that
also turn out to be needed by the code that e2 expands to.
\begin{code}
tcImportDecl :: Name -> TcM TyThing
-- Entry point for *source-code* uses of importDecl
tcImportDecl name
| Just thing <- wiredInNameTyThing_maybe name
= do { initIfaceTcRn (loadWiredInHomeIface name)
; return thing }
| otherwise
= do { traceIf (text "tcImportDecl" <+> ppr name)
; mb_thing <- initIfaceTcRn (importDecl name)
; case mb_thing of
Succeeded thing -> return thing
Failed err -> failWithTc err }
checkWiredInTyCon :: TyCon -> TcM ()
-- Ensure that the home module of the TyCon (and hence its instances)
-- are loaded. It might not be a wired-in tycon (see the calls in TcUnify),
-- in which case this is a no-op.
checkWiredInTyCon tc
| not (isWiredInName tc_name)
= return ()
| otherwise
= do { mod <- getModule
; unless (mod == nameModule tc_name)
(initIfaceTcRn (loadWiredInHomeIface tc_name))
-- Don't look for (non-existent) Float.hi when
-- compiling Float.lhs, which mentions Float of course
-- A bit yukky to call initIfaceTcRn here
}
where
tc_name = tyConName tc
importDecl :: Name -> IfM lcl (MaybeErr Message TyThing)
-- Get the TyThing for this Name from an interface file
-- It's not a wired-in thing -- the caller caught that
importDecl name
= ASSERT( not (isWiredInName name) )
do { traceIf nd_doc
-- Load the interface, which should populate the PTE
; mb_iface <- loadInterface nd_doc (nameModule name) ImportBySystem
; case mb_iface of {
Failed err_msg -> return (Failed err_msg) ;
Succeeded iface -> do
-- Now look it up again; this time we should find it
{ eps <- getEps
; case lookupTypeEnv (eps_PTE eps) name of
Just thing -> return (Succeeded thing)
Nothing -> return (Failed not_found_msg)
}}}
where
nd_doc = ptext SLIT("Need decl for") <+> ppr name
not_found_msg = hang (ptext SLIT("Can't find interface-file declaration for") <+>
pprNameSpace (occNameSpace (nameOccName name)) <+> ppr name)
2 (vcat [ptext SLIT("Probable cause: bug in .hi-boot file, or inconsistent .hi file"),
ptext SLIT("Use -ddump-if-trace to get an idea of which file caused the error")])
\end{code}
%************************************************************************
%* *
Type-checking a complete interface
%* *
%************************************************************************
Suppose we discover we don't need to recompile. Then we must type
check the old interface file. This is a bit different to the
incremental type checking we do as we suck in interface files. Instead
we do things similarly as when we are typechecking source decls: we
bring into scope the type envt for the interface all at once, using a
knot. Remember, the decls aren't necessarily in dependency order --
and even if they were, the type decls might be mutually recursive.
\begin{code}
typecheckIface :: ModIface -- Get the decls from here
-> TcRnIf gbl lcl ModDetails
typecheckIface iface
= initIfaceTc iface $ \ tc_env_var -> do
-- The tc_env_var is freshly allocated, private to
-- type-checking this particular interface
{ -- Get the right set of decls and rules. If we are compiling without -O
-- we discard pragmas before typechecking, so that we don't "see"
-- information that we shouldn't. From a versioning point of view
-- It's not actually *wrong* to do so, but in fact GHCi is unable
-- to handle unboxed tuples, so it must not see unfoldings.
ignore_prags <- doptM Opt_IgnoreInterfacePragmas
-- Typecheck the decls. This is done lazily, so that the knot-tying
-- within this single module work out right. In the If monad there is
-- no global envt for the current interface; instead, the knot is tied
-- through the if_rec_types field of IfGblEnv
; names_w_things <- loadDecls ignore_prags (mi_decls iface)
; let type_env = mkNameEnv names_w_things
; writeMutVar tc_env_var type_env
-- Now do those rules and instances
; insts <- mapM tcIfaceInst (mi_insts iface)
; fam_insts <- mapM tcIfaceFamInst (mi_fam_insts iface)
; rules <- tcIfaceRules ignore_prags (mi_rules iface)
-- Exports
; exports <- ifaceExportNames (mi_exports iface)
-- Finished
; traceIf (vcat [text "Finished typechecking interface for" <+> ppr (mi_module iface),
text "Type envt:" <+> ppr type_env])
; return $ ModDetails { md_types = type_env
, md_insts = insts
, md_fam_insts = fam_insts
, md_rules = rules
, md_exports = exports
}
}
\end{code}
%************************************************************************
%* *
Type and class declarations
%* *
%************************************************************************
\begin{code}
tcHiBootIface :: Module -> TcRn ModDetails
-- Load the hi-boot iface for the module being compiled,
-- if it indeed exists in the transitive closure of imports
-- Return the ModDetails, empty if no hi-boot iface
tcHiBootIface mod
= do { traceIf (text "loadHiBootInterface" <+> ppr mod)
; mode <- getGhcMode
; if not (isOneShot mode)
-- In --make and interactive mode, if this module has an hs-boot file
-- we'll have compiled it already, and it'll be in the HPT
--
-- We check wheher the interface is a *boot* interface.
-- It can happen (when using GHC from Visual Studio) that we
-- compile a module in TypecheckOnly mode, with a stable,
-- fully-populated HPT. In that case the boot interface isn't there
-- (it's been replaced by the mother module) so we can't check it.
-- And that's fine, because if M's ModInfo is in the HPT, then
-- it's been compiled once, and we don't need to check the boot iface
then do { hpt <- getHpt
; case lookupUFM hpt (moduleName mod) of
Just info | mi_boot (hm_iface info)
-> return (hm_details info)
other -> return emptyModDetails }
else do
-- OK, so we're in one-shot mode.
-- In that case, we're read all the direct imports by now,
-- so eps_is_boot will record if any of our imports mention us by
-- way of hi-boot file
{ eps <- getEps
; case lookupUFM (eps_is_boot eps) (moduleName mod) of {
Nothing -> return emptyModDetails ; -- The typical case
Just (_, False) -> failWithTc moduleLoop ;
-- Someone below us imported us!
-- This is a loop with no hi-boot in the way
Just (_mod, True) -> -- There's a hi-boot interface below us
do { read_result <- findAndReadIface
need mod
True -- Hi-boot file
; case read_result of
Failed err -> failWithTc (elaborate err)
Succeeded (iface, _path) -> typecheckIface iface
}}}}
where
need = ptext SLIT("Need the hi-boot interface for") <+> ppr mod
<+> ptext SLIT("to compare against the Real Thing")
moduleLoop = ptext SLIT("Circular imports: module") <+> quotes (ppr mod)
<+> ptext SLIT("depends on itself")
elaborate err = hang (ptext SLIT("Could not find hi-boot interface for") <+>
quotes (ppr mod) <> colon) 4 err
\end{code}
%************************************************************************
%* *
Type and class declarations
%* *
%************************************************************************
When typechecking a data type decl, we *lazily* (via forkM) typecheck
the constructor argument types. This is in the hope that we may never
poke on those argument types, and hence may never need to load the
interface files for types mentioned in the arg types.
E.g.
data Foo.S = MkS Baz.T
Mabye we can get away without even loading the interface for Baz!
This is not just a performance thing. Suppose we have
data Foo.S = MkS Baz.T
data Baz.T = MkT Foo.S
(in different interface files, of course).
Now, first we load and typecheck Foo.S, and add it to the type envt.
If we do explore MkS's argument, we'll load and typecheck Baz.T.
If we explore MkT's argument we'll find Foo.S already in the envt.
If we typechecked constructor args eagerly, when loading Foo.S we'd try to
typecheck the type Baz.T. So we'd fault in Baz.T... and then need Foo.S...
which isn't done yet.
All very cunning. However, there is a rather subtle gotcha which bit
me when developing this stuff. When we typecheck the decl for S, we
extend the type envt with S, MkS, and all its implicit Ids. Suppose
(a bug, but it happened) that the list of implicit Ids depended in
turn on the constructor arg types. Then the following sequence of
events takes place:
* we build a thunk <t> for the constructor arg tys
* we build a thunk for the extended type environment (depends on <t>)
* we write the extended type envt into the global EPS mutvar
Now we look something up in the type envt
* that pulls on <t>
* which reads the global type envt out of the global EPS mutvar
* but that depends in turn on <t>
It's subtle, because, it'd work fine if we typechecked the constructor args
eagerly -- they don't need the extended type envt. They just get the extended
type envt by accident, because they look at it later.
What this means is that the implicitTyThings MUST NOT DEPEND on any of
the forkM stuff.
\begin{code}
tcIfaceDecl :: Bool -- True <=> discard IdInfo on IfaceId bindings
-> IfaceDecl
-> IfL TyThing
tcIfaceDecl ignore_prags (IfaceId {ifName = occ_name, ifType = iface_type, ifIdInfo = info})
= do { name <- lookupIfaceTop occ_name
; ty <- tcIfaceType iface_type
; info <- tcIdInfo ignore_prags name ty info
; return (AnId (mkVanillaGlobal name ty info)) }
tcIfaceDecl ignore_prags
(IfaceData {ifName = occ_name,
ifTyVars = tv_bndrs,
ifCtxt = ctxt, ifGadtSyntax = gadt_syn,
ifCons = rdr_cons,
ifRec = is_rec,
ifGeneric = want_generic,
ifFamInst = mb_family })
= do { tc_name <- lookupIfaceTop occ_name
; bindIfaceTyVars tv_bndrs $ \ tyvars -> do
{ tycon <- fixM ( \ tycon -> do
{ stupid_theta <- tcIfaceCtxt ctxt
; famInst <-
case mb_family of
Nothing -> return Nothing
Just (fam, tys) ->
do { famTyCon <- tcIfaceTyCon fam
; insttys <- mapM tcIfaceType tys
; return $ Just (famTyCon, insttys)
}
; cons <- tcIfaceDataCons tc_name tycon tyvars rdr_cons
; buildAlgTyCon tc_name tyvars stupid_theta
cons is_rec want_generic gadt_syn famInst
})
; traceIf (text "tcIfaceDecl4" <+> ppr tycon)
; return (ATyCon tycon)
}}
tcIfaceDecl ignore_prags
(IfaceSyn {ifName = occ_name, ifTyVars = tv_bndrs,
ifOpenSyn = isOpen, ifSynRhs = rdr_rhs_ty})
= bindIfaceTyVars tv_bndrs $ \ tyvars -> do
{ tc_name <- lookupIfaceTop occ_name
; rhs_tyki <- tcIfaceType rdr_rhs_ty
; let rhs = if isOpen then OpenSynTyCon rhs_tyki
else SynonymTyCon rhs_tyki
; return (ATyCon (buildSynTyCon tc_name tyvars rhs))
}
tcIfaceDecl ignore_prags
(IfaceClass {ifCtxt = rdr_ctxt, ifName = occ_name,
ifTyVars = tv_bndrs, ifFDs = rdr_fds,
ifATs = rdr_ats, ifSigs = rdr_sigs,
ifRec = tc_isrec })
-- ToDo: in hs-boot files we should really treat abstract classes specially,
-- as we do abstract tycons
= bindIfaceTyVars tv_bndrs $ \ tyvars -> do
{ cls_name <- lookupIfaceTop occ_name
; ctxt <- tcIfaceCtxt rdr_ctxt
; sigs <- mappM tc_sig rdr_sigs
; fds <- mappM tc_fd rdr_fds
; ats' <- mappM (tcIfaceDecl ignore_prags) rdr_ats
; let ats = zipWith setTyThingPoss ats' (map ifTyVars rdr_ats)
; cls <- buildClass cls_name tyvars ctxt fds ats sigs tc_isrec
; return (AClass cls) }
where
tc_sig (IfaceClassOp occ dm rdr_ty)
= do { op_name <- lookupIfaceTop occ
; op_ty <- forkM (mk_doc op_name rdr_ty) (tcIfaceType rdr_ty)
-- Must be done lazily for just the same reason as the
-- context of a data decl: the type sig might mention the
-- class being defined
; return (op_name, dm, op_ty) }
mk_doc op_name op_ty = ptext SLIT("Class op") <+> sep [ppr op_name, ppr op_ty]
tc_fd (tvs1, tvs2) = do { tvs1' <- mappM tcIfaceTyVar tvs1
; tvs2' <- mappM tcIfaceTyVar tvs2
; return (tvs1', tvs2') }
-- For each AT argument compute the position of the corresponding class
-- parameter in the class head. This will later serve as a permutation
-- vector when checking the validity of instance declarations.
setTyThingPoss (ATyCon tycon) atTyVars =
let classTyVars = map fst tv_bndrs
poss = catMaybes
. map ((`elemIndex` classTyVars) . fst)
$ atTyVars
-- There will be no Nothing, as we already passed renaming
in
ATyCon (setTyConArgPoss tycon poss)
setTyThingPoss _ _ = panic "TcIface.setTyThingPoss"
tcIfaceDecl ignore_prags (IfaceForeign {ifName = rdr_name, ifExtName = ext_name})
= do { name <- lookupIfaceTop rdr_name
; return (ATyCon (mkForeignTyCon name ext_name
liftedTypeKind 0)) }
tcIfaceDataCons tycon_name tycon tc_tyvars if_cons
= case if_cons of
IfAbstractTyCon -> return mkAbstractTyConRhs
IfOpenDataTyCon -> return mkOpenDataTyConRhs
IfOpenNewTyCon -> return mkOpenNewTyConRhs
IfDataTyCon cons -> do { data_cons <- mappM tc_con_decl cons
; return (mkDataTyConRhs data_cons) }
IfNewTyCon con -> do { data_con <- tc_con_decl con
; mkNewTyConRhs tycon_name tycon data_con }
where
tc_con_decl (IfCon { ifConInfix = is_infix,
ifConUnivTvs = univ_tvs, ifConExTvs = ex_tvs,
ifConOcc = occ, ifConCtxt = ctxt, ifConEqSpec = spec,
ifConArgTys = args, ifConFields = field_lbls,
ifConStricts = stricts})
= bindIfaceTyVars univ_tvs $ \ univ_tyvars -> do
bindIfaceTyVars ex_tvs $ \ ex_tyvars -> do
{ name <- lookupIfaceTop occ
; eq_spec <- tcIfaceEqSpec spec
; theta <- tcIfaceCtxt ctxt -- Laziness seems not worth the bother here
-- At one stage I thought that this context checking *had*
-- to be lazy, because of possible mutual recursion between the
-- type and the classe:
-- E.g.
-- class Real a where { toRat :: a -> Ratio Integer }
-- data (Real a) => Ratio a = ...
-- But now I think that the laziness in checking class ops breaks
-- the loop, so no laziness needed
-- Read the argument types, but lazily to avoid faulting in
-- the component types unless they are really needed
; arg_tys <- forkM (mk_doc name) (mappM tcIfaceType args)
; lbl_names <- mappM lookupIfaceTop field_lbls
; buildDataCon name is_infix {- Not infix -}
stricts lbl_names
univ_tyvars ex_tyvars
eq_spec theta
arg_tys tycon
}
mk_doc con_name = ptext SLIT("Constructor") <+> ppr con_name
tcIfaceEqSpec spec
= mapM do_item spec
where
do_item (occ, if_ty) = do { tv <- tcIfaceTyVar (occNameFS occ)
; ty <- tcIfaceType if_ty
; return (tv,ty) }
\end{code}
%************************************************************************
%* *
Instances
%* *
%************************************************************************
\begin{code}
tcIfaceInst :: IfaceInst -> IfL Instance
tcIfaceInst (IfaceInst { ifDFun = dfun_occ, ifOFlag = oflag,
ifInstCls = cls, ifInstTys = mb_tcs,
ifInstOrph = orph })
= do { dfun <- forkM (ptext SLIT("Dict fun") <+> ppr dfun_occ) $
tcIfaceExtId dfun_occ
; let mb_tcs' = map (fmap ifaceTyConName) mb_tcs
; return (mkImportedInstance cls mb_tcs' orph dfun oflag) }
tcIfaceFamInst :: IfaceFamInst -> IfL FamInst
tcIfaceFamInst (IfaceFamInst { ifFamInstTyCon = tycon,
ifFamInstFam = fam, ifFamInstTys = mb_tcs })
-- = do { tycon' <- forkM (ptext SLIT("Inst tycon") <+> ppr tycon) $
-- ^^^this line doesn't work, but vvv this does => CPP in Haskell = evil!
= do { tycon' <- forkM (text ("Inst tycon") <+> ppr tycon) $
tcIfaceTyCon tycon
; let mb_tcs' = map (fmap ifaceTyConName) mb_tcs
; return (mkImportedFamInst fam mb_tcs' tycon') }
\end{code}
%************************************************************************
%* *
Rules
%* *
%************************************************************************
We move a IfaceRule from eps_rules to eps_rule_base when all its LHS free vars
are in the type environment. However, remember that typechecking a Rule may
(as a side effect) augment the type envt, and so we may need to iterate the process.
\begin{code}
tcIfaceRules :: Bool -- True <=> ignore rules
-> [IfaceRule]
-> IfL [CoreRule]
tcIfaceRules ignore_prags if_rules
| ignore_prags = return []
| otherwise = mapM tcIfaceRule if_rules
tcIfaceRule :: IfaceRule -> IfL CoreRule
tcIfaceRule (IfaceRule {ifRuleName = name, ifActivation = act, ifRuleBndrs = bndrs,
ifRuleHead = fn, ifRuleArgs = args, ifRuleRhs = rhs,
ifRuleOrph = orph })
= do { ~(bndrs', args', rhs') <-
-- Typecheck the payload lazily, in the hope it'll never be looked at
forkM (ptext SLIT("Rule") <+> ftext name) $
bindIfaceBndrs bndrs $ \ bndrs' ->
do { args' <- mappM tcIfaceExpr args
; rhs' <- tcIfaceExpr rhs
; return (bndrs', args', rhs') }
; let mb_tcs = map ifTopFreeName args
; lcl <- getLclEnv
; let this_module = if_mod lcl
; returnM (Rule { ru_name = name, ru_fn = fn, ru_act = act,
ru_bndrs = bndrs', ru_args = args',
ru_rhs = rhs', ru_orph = orph,
ru_rough = mb_tcs,
ru_local = nameModule fn == this_module }) }
where
-- This function *must* mirror exactly what Rules.topFreeName does
-- We could have stored the ru_rough field in the iface file
-- but that would be redundant, I think.
-- The only wrinkle is that we must not be deceived by
-- type syononyms at the top of a type arg. Since
-- we can't tell at this point, we are careful not
-- to write them out in coreRuleToIfaceRule
ifTopFreeName :: IfaceExpr -> Maybe Name
ifTopFreeName (IfaceType (IfaceTyConApp tc _ )) = Just (ifaceTyConName tc)
ifTopFreeName (IfaceApp f a) = ifTopFreeName f
ifTopFreeName (IfaceExt n) = Just n
ifTopFreeName other = Nothing
\end{code}
%************************************************************************
%* *
Types
%* *
%************************************************************************
\begin{code}
tcIfaceType :: IfaceType -> IfL Type
tcIfaceType (IfaceTyVar n) = do { tv <- tcIfaceTyVar n; return (TyVarTy tv) }
tcIfaceType (IfaceAppTy t1 t2) = do { t1' <- tcIfaceType t1; t2' <- tcIfaceType t2; return (AppTy t1' t2') }
tcIfaceType (IfaceFunTy t1 t2) = do { t1' <- tcIfaceType t1; t2' <- tcIfaceType t2; return (FunTy t1' t2') }
tcIfaceType (IfaceTyConApp tc ts) = do { tc' <- tcIfaceTyCon tc; ts' <- tcIfaceTypes ts; return (mkTyConApp tc' ts') }
tcIfaceType (IfaceForAllTy tv t) = bindIfaceTyVar tv $ \ tv' -> do { t' <- tcIfaceType t; return (ForAllTy tv' t') }
tcIfaceType (IfacePredTy st) = do { st' <- tcIfacePredType st; return (PredTy st') }
tcIfaceTypes tys = mapM tcIfaceType tys
-----------------------------------------
tcIfacePredType :: IfacePredType -> IfL PredType
tcIfacePredType (IfaceClassP cls ts) = do { cls' <- tcIfaceClass cls; ts' <- tcIfaceTypes ts; return (ClassP cls' ts') }
tcIfacePredType (IfaceIParam ip t) = do { ip' <- newIPName ip; t' <- tcIfaceType t; return (IParam ip' t') }
tcIfacePredType (IfaceEqPred t1 t2) = do { t1' <- tcIfaceType t1; t2' <- tcIfaceType t2; return (EqPred t1' t2') }
-----------------------------------------
tcIfaceCtxt :: IfaceContext -> IfL ThetaType
tcIfaceCtxt sts = mappM tcIfacePredType sts
\end{code}
%************************************************************************
%* *
Core
%* *
%************************************************************************
\begin{code}
tcIfaceExpr :: IfaceExpr -> IfL CoreExpr
tcIfaceExpr (IfaceType ty)
= tcIfaceType ty `thenM` \ ty' ->
returnM (Type ty')
tcIfaceExpr (IfaceLcl name)
= tcIfaceLclId name `thenM` \ id ->
returnM (Var id)
tcIfaceExpr (IfaceExt gbl)
= tcIfaceExtId gbl `thenM` \ id ->
returnM (Var id)
tcIfaceExpr (IfaceLit lit)
= returnM (Lit lit)
tcIfaceExpr (IfaceFCall cc ty)
= tcIfaceType ty `thenM` \ ty' ->
newUnique `thenM` \ u ->
returnM (Var (mkFCallId u cc ty'))
tcIfaceExpr (IfaceTuple boxity args)
= mappM tcIfaceExpr args `thenM` \ args' ->
let
-- Put the missing type arguments back in
con_args = map (Type . exprType) args' ++ args'
in
returnM (mkApps (Var con_id) con_args)
where
arity = length args
con_id = dataConWorkId (tupleCon boxity arity)
tcIfaceExpr (IfaceLam bndr body)
= bindIfaceBndr bndr $ \ bndr' ->
tcIfaceExpr body `thenM` \ body' ->
returnM (Lam bndr' body')
tcIfaceExpr (IfaceApp fun arg)
= tcIfaceExpr fun `thenM` \ fun' ->
tcIfaceExpr arg `thenM` \ arg' ->
returnM (App fun' arg')
tcIfaceExpr (IfaceCase scrut case_bndr ty alts)
= tcIfaceExpr scrut `thenM` \ scrut' ->
newIfaceName (mkVarOccFS case_bndr) `thenM` \ case_bndr_name ->
let
scrut_ty = exprType scrut'
case_bndr' = mkLocalId case_bndr_name scrut_ty
tc_app = splitTyConApp scrut_ty
-- NB: Won't always succeed (polymoprhic case)
-- but won't be demanded in those cases
-- NB: not tcSplitTyConApp; we are looking at Core here
-- look through non-rec newtypes to find the tycon that
-- corresponds to the datacon in this case alternative
in
extendIfaceIdEnv [case_bndr'] $
mappM (tcIfaceAlt tc_app) alts `thenM` \ alts' ->
tcIfaceType ty `thenM` \ ty' ->
returnM (Case scrut' case_bndr' ty' alts')
tcIfaceExpr (IfaceLet (IfaceNonRec bndr rhs) body)
= tcIfaceExpr rhs `thenM` \ rhs' ->
bindIfaceId bndr $ \ bndr' ->
tcIfaceExpr body `thenM` \ body' ->
returnM (Let (NonRec bndr' rhs') body')
tcIfaceExpr (IfaceLet (IfaceRec pairs) body)
= bindIfaceIds bndrs $ \ bndrs' ->
mappM tcIfaceExpr rhss `thenM` \ rhss' ->
tcIfaceExpr body `thenM` \ body' ->
returnM (Let (Rec (bndrs' `zip` rhss')) body')
where
(bndrs, rhss) = unzip pairs
tcIfaceExpr (IfaceCast expr co) = do
expr' <- tcIfaceExpr expr
co' <- tcIfaceType co
returnM (Cast expr' co')
tcIfaceExpr (IfaceNote note expr)
= tcIfaceExpr expr `thenM` \ expr' ->
case note of
IfaceInlineMe -> returnM (Note InlineMe expr')
IfaceSCC cc -> returnM (Note (SCC cc) expr')
IfaceCoreNote n -> returnM (Note (CoreNote n) expr')
IfaceTickBox m n -> returnM (Note (TickBox m n) expr')
IfaceBinaryTickBox m t e -> returnM (Note (BinaryTickBox m t e) expr')
-------------------------
tcIfaceAlt _ (IfaceDefault, names, rhs)
= ASSERT( null names )
tcIfaceExpr rhs `thenM` \ rhs' ->
returnM (DEFAULT, [], rhs')
tcIfaceAlt _ (IfaceLitAlt lit, names, rhs)
= ASSERT( null names )
tcIfaceExpr rhs `thenM` \ rhs' ->
returnM (LitAlt lit, [], rhs')
-- A case alternative is made quite a bit more complicated
-- by the fact that we omit type annotations because we can
-- work them out. True enough, but its not that easy!
tcIfaceAlt (tycon, inst_tys) (IfaceDataAlt data_occ, arg_strs, rhs)
= do { con <- tcIfaceDataCon data_occ
; ASSERT2( con `elem` tyConDataCons tycon,
ppr con $$ ppr tycon $$ ppr (tyConDataCons tycon) )
tcIfaceDataAlt con inst_tys arg_strs rhs }
tcIfaceAlt (tycon, inst_tys) (IfaceTupleAlt boxity, arg_occs, rhs)
= ASSERT( isTupleTyCon tycon )
do { let [data_con] = tyConDataCons tycon
; tcIfaceDataAlt data_con inst_tys arg_occs rhs }
tcIfaceDataAlt con inst_tys arg_strs rhs
= do { us <- newUniqueSupply
; let uniqs = uniqsFromSupply us
; let (ex_tvs, co_tvs, arg_ids)
= dataConRepFSInstPat arg_strs uniqs con inst_tys
all_tvs = ex_tvs ++ co_tvs
; rhs' <- extendIfaceTyVarEnv all_tvs $
extendIfaceIdEnv arg_ids $
tcIfaceExpr rhs
; return (DataAlt con, all_tvs ++ arg_ids, rhs') }
\end{code}
\begin{code}
tcExtCoreBindings :: [IfaceBinding] -> IfL [CoreBind] -- Used for external core
tcExtCoreBindings [] = return []
tcExtCoreBindings (b:bs) = do_one b (tcExtCoreBindings bs)
do_one :: IfaceBinding -> IfL [CoreBind] -> IfL [CoreBind]
do_one (IfaceNonRec bndr rhs) thing_inside
= do { rhs' <- tcIfaceExpr rhs
; bndr' <- newExtCoreBndr bndr
; extendIfaceIdEnv [bndr'] $ do
{ core_binds <- thing_inside
; return (NonRec bndr' rhs' : core_binds) }}
do_one (IfaceRec pairs) thing_inside
= do { bndrs' <- mappM newExtCoreBndr bndrs
; extendIfaceIdEnv bndrs' $ do
{ rhss' <- mappM tcIfaceExpr rhss
; core_binds <- thing_inside
; return (Rec (bndrs' `zip` rhss') : core_binds) }}
where
(bndrs,rhss) = unzip pairs
\end{code}
%************************************************************************
%* *
IdInfo
%* *
%************************************************************************
\begin{code}
tcIdInfo :: Bool -> Name -> Type -> IfaceIdInfo -> IfL IdInfo
tcIdInfo ignore_prags name ty info
| ignore_prags = return vanillaIdInfo
| otherwise = case info of
NoInfo -> return vanillaIdInfo
HasInfo info -> foldlM tcPrag init_info info
where
-- Set the CgInfo to something sensible but uninformative before
-- we start; default assumption is that it has CAFs
init_info = vanillaIdInfo
tcPrag info HsNoCafRefs = returnM (info `setCafInfo` NoCafRefs)
tcPrag info (HsArity arity) = returnM (info `setArityInfo` arity)
tcPrag info (HsStrictness str) = returnM (info `setAllStrictnessInfo` Just str)
-- The next two are lazy, so they don't transitively suck stuff in
tcPrag info (HsWorker nm arity) = tcWorkerInfo ty info nm arity
tcPrag info (HsInline inline_prag) = returnM (info `setInlinePragInfo` inline_prag)
tcPrag info (HsUnfold expr)
= tcPragExpr name expr `thenM` \ maybe_expr' ->
let
-- maybe_expr' doesn't get looked at if the unfolding
-- is never inspected; so the typecheck doesn't even happen
unfold_info = case maybe_expr' of
Nothing -> noUnfolding
Just expr' -> mkTopUnfolding expr'
in
returnM (info `setUnfoldingInfoLazily` unfold_info)
\end{code}
\begin{code}
tcWorkerInfo ty info wkr arity
= do { mb_wkr_id <- forkM_maybe doc (tcIfaceExtId wkr)
-- We return without testing maybe_wkr_id, but as soon as info is
-- looked at we will test it. That's ok, because its outside the
-- knot; and there seems no big reason to further defer the
-- tcIfaceId lookup. (Contrast with tcPragExpr, where postponing walking
-- over the unfolding until it's actually used does seem worth while.)
; us <- newUniqueSupply
; returnM (case mb_wkr_id of
Nothing -> info
Just wkr_id -> add_wkr_info us wkr_id info) }
where
doc = text "Worker for" <+> ppr wkr
add_wkr_info us wkr_id info
= info `setUnfoldingInfoLazily` mk_unfolding us wkr_id
`setWorkerInfo` HasWorker wkr_id arity
mk_unfolding us wkr_id = mkTopUnfolding (initUs_ us (mkWrapper ty strict_sig) wkr_id)
-- We are relying here on strictness info always appearing
-- before worker info, fingers crossed ....
strict_sig = case newStrictnessInfo info of
Just sig -> sig
Nothing -> pprPanic "Worker info but no strictness for" (ppr wkr)
\end{code}
For unfoldings we try to do the job lazily, so that we never type check
an unfolding that isn't going to be looked at.
\begin{code}
tcPragExpr :: Name -> IfaceExpr -> IfL (Maybe CoreExpr)
tcPragExpr name expr
= forkM_maybe doc $
tcIfaceExpr expr `thenM` \ core_expr' ->
-- Check for type consistency in the unfolding
ifOptM Opt_DoCoreLinting (
get_in_scope_ids `thenM` \ in_scope ->
case lintUnfolding noSrcLoc in_scope core_expr' of
Nothing -> returnM ()
Just fail_msg -> pprPanic "Iface Lint failure" (hang doc 2 fail_msg)
) `thenM_`
returnM core_expr'
where
doc = text "Unfolding of" <+> ppr name
get_in_scope_ids -- Urgh; but just for linting
= setLclEnv () $
do { env <- getGblEnv
; case if_rec_types env of {
Nothing -> return [] ;
Just (_, get_env) -> do
{ type_env <- get_env
; return (typeEnvIds type_env) }}}
\end{code}
%************************************************************************
%* *
Getting from Names to TyThings
%* *
%************************************************************************
\begin{code}
tcIfaceGlobal :: Name -> IfL TyThing
tcIfaceGlobal name
| Just thing <- wiredInNameTyThing_maybe name
-- Wired-in things include TyCons, DataCons, and Ids
= do { ifCheckWiredInThing name; return thing }
| otherwise
= do { (eps,hpt) <- getEpsAndHpt
; dflags <- getDOpts
; case lookupType dflags hpt (eps_PTE eps) name of {
Just thing -> return thing ;
Nothing -> do
{ env <- getGblEnv
; case if_rec_types env of {
Just (mod, get_type_env)
| nameIsLocalOrFrom mod name
-> do -- It's defined in the module being compiled
{ type_env <- setLclEnv () get_type_env -- yuk
; case lookupNameEnv type_env name of
Just thing -> return thing
Nothing -> pprPanic "tcIfaceGlobal (local): not found:"
(ppr name $$ ppr type_env) }
; other -> do
{ mb_thing <- importDecl name -- It's imported; go get it
; case mb_thing of
Failed err -> failIfM err
Succeeded thing -> return thing
}}}}}
ifCheckWiredInThing :: Name -> IfL ()
-- Even though we are in an interface file, we want to make
-- sure the instances of a wired-in thing are loaded (imagine f :: Double -> Double)
-- Ditto want to ensure that RULES are loaded too
ifCheckWiredInThing name
= do { mod <- getIfModule
-- Check whether we are typechecking the interface for this
-- very module. E.g when compiling the base library in --make mode
-- we may typecheck GHC.Base.hi. At that point, GHC.Base is not in
-- the HPT, so without the test we'll demand-load it into the PIT!
-- C.f. the same test in checkWiredInTyCon above
; unless (mod == nameModule name)
(loadWiredInHomeIface name) }
tcIfaceTyCon :: IfaceTyCon -> IfL TyCon
tcIfaceTyCon IfaceIntTc = tcWiredInTyCon intTyCon
tcIfaceTyCon IfaceBoolTc = tcWiredInTyCon boolTyCon
tcIfaceTyCon IfaceCharTc = tcWiredInTyCon charTyCon
tcIfaceTyCon IfaceListTc = tcWiredInTyCon listTyCon
tcIfaceTyCon IfacePArrTc = tcWiredInTyCon parrTyCon
tcIfaceTyCon (IfaceTupTc bx ar) = tcWiredInTyCon (tupleTyCon bx ar)
tcIfaceTyCon (IfaceTc name) = do { thing <- tcIfaceGlobal name
; return (check_tc (tyThingTyCon thing)) }
where
#ifdef DEBUG
check_tc tc = case toIfaceTyCon tc of
IfaceTc _ -> tc
other -> pprTrace "check_tc" (ppr tc) tc
#else
check_tc tc = tc
#endif
-- we should be okay just returning Kind constructors without extra loading
tcIfaceTyCon IfaceLiftedTypeKindTc = return liftedTypeKindTyCon
tcIfaceTyCon IfaceOpenTypeKindTc = return openTypeKindTyCon
tcIfaceTyCon IfaceUnliftedTypeKindTc = return unliftedTypeKindTyCon
tcIfaceTyCon IfaceArgTypeKindTc = return argTypeKindTyCon
tcIfaceTyCon IfaceUbxTupleKindTc = return ubxTupleKindTyCon
-- Even though we are in an interface file, we want to make
-- sure the instances and RULES of this tycon are loaded
-- Imagine: f :: Double -> Double
tcWiredInTyCon :: TyCon -> IfL TyCon
tcWiredInTyCon tc = do { ifCheckWiredInThing (tyConName tc)
; return tc }
tcIfaceClass :: Name -> IfL Class
tcIfaceClass name = do { thing <- tcIfaceGlobal name
; return (tyThingClass thing) }
tcIfaceDataCon :: Name -> IfL DataCon
tcIfaceDataCon name = do { thing <- tcIfaceGlobal name
; case thing of
ADataCon dc -> return dc
other -> pprPanic "tcIfaceExtDC" (ppr name$$ ppr thing) }
tcIfaceExtId :: Name -> IfL Id
tcIfaceExtId name = do { thing <- tcIfaceGlobal name
; case thing of
AnId id -> return id
other -> pprPanic "tcIfaceExtId" (ppr name$$ ppr thing) }
\end{code}
%************************************************************************
%* *
Bindings
%* *
%************************************************************************
\begin{code}
bindIfaceBndr :: IfaceBndr -> (CoreBndr -> IfL a) -> IfL a
bindIfaceBndr (IfaceIdBndr bndr) thing_inside
= bindIfaceId bndr thing_inside
bindIfaceBndr (IfaceTvBndr bndr) thing_inside
= bindIfaceTyVar bndr thing_inside
bindIfaceBndrs :: [IfaceBndr] -> ([CoreBndr] -> IfL a) -> IfL a
bindIfaceBndrs [] thing_inside = thing_inside []
bindIfaceBndrs (b:bs) thing_inside
= bindIfaceBndr b $ \ b' ->
bindIfaceBndrs bs $ \ bs' ->
thing_inside (b':bs')
-----------------------
bindIfaceId :: IfaceIdBndr -> (Id -> IfL a) -> IfL a
bindIfaceId (occ, ty) thing_inside
= do { name <- newIfaceName (mkVarOccFS occ)
; ty' <- tcIfaceType ty
; let { id = mkLocalId name ty' }
; extendIfaceIdEnv [id] (thing_inside id) }
bindIfaceIds :: [IfaceIdBndr] -> ([Id] -> IfL a) -> IfL a
bindIfaceIds bndrs thing_inside
= do { names <- newIfaceNames (map mkVarOccFS occs)
; tys' <- mappM tcIfaceType tys
; let { ids = zipWithEqual "tcCoreValBndr" mkLocalId names tys' }
; extendIfaceIdEnv ids (thing_inside ids) }
where
(occs,tys) = unzip bndrs
-----------------------
newExtCoreBndr :: IfaceIdBndr -> IfL Id
newExtCoreBndr (var, ty)
= do { mod <- getIfModule
; name <- newGlobalBinder mod (mkVarOccFS var) noSrcLoc
; ty' <- tcIfaceType ty
; return (mkLocalId name ty') }
-----------------------
bindIfaceTyVar :: IfaceTvBndr -> (TyVar -> IfL a) -> IfL a
bindIfaceTyVar (occ,kind) thing_inside
= do { name <- newIfaceName (mkTyVarOcc occ)
; tyvar <- mk_iface_tyvar name kind
; extendIfaceTyVarEnv [tyvar] (thing_inside tyvar) }
bindIfaceTyVars :: [IfaceTvBndr] -> ([TyVar] -> IfL a) -> IfL a
bindIfaceTyVars bndrs thing_inside
= do { names <- newIfaceNames (map mkTyVarOcc occs)
; tyvars <- TcRnMonad.zipWithM mk_iface_tyvar names kinds
; extendIfaceTyVarEnv tyvars (thing_inside tyvars) }
where
(occs,kinds) = unzip bndrs
mk_iface_tyvar :: Name -> IfaceKind -> IfL TyVar
mk_iface_tyvar name ifKind
= do { kind <- tcIfaceType ifKind
; if isCoercionKind kind then
return (Var.mkCoVar name kind)
else
return (Var.mkTyVar name kind) }
\end{code}
|