1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
|
{-# OPTIONS -fno-warn-type-defaults #-}
-- ----------------------------------------------------------------------------
-- | Handle conversion of CmmProc to LLVM code.
--
module LlvmCodeGen.CodeGen ( genLlvmProc ) where
#include "HsVersions.h"
import Llvm
import LlvmCodeGen.Base
import LlvmCodeGen.Regs
import BlockId
import CgUtils ( activeStgRegs, callerSaves )
import CLabel
import OldCmm
import qualified OldPprCmm as PprCmm
import OrdList
import FastString
import ForeignCall
import Outputable hiding ( panic, pprPanic )
import qualified Outputable
import UniqSupply
import Unique
import Util
import Data.List ( partition )
import Control.Monad ( liftM )
type LlvmStatements = OrdList LlvmStatement
-- -----------------------------------------------------------------------------
-- | Top-level of the LLVM proc Code generator
--
genLlvmProc :: LlvmEnv -> RawCmmTop -> UniqSM (LlvmEnv, [LlvmCmmTop])
genLlvmProc env (CmmData _ _)
= return (env, [])
genLlvmProc env (CmmProc _ _ (ListGraph []))
= return (env, [])
genLlvmProc env (CmmProc info lbl (ListGraph blocks))
= do
(env', lmblocks, lmdata) <- basicBlocksCodeGen env blocks ([], [])
let proc = CmmProc info lbl (ListGraph lmblocks)
let tops = lmdata ++ [proc]
return (env', tops)
-- -----------------------------------------------------------------------------
-- * Block code generation
--
-- | Generate code for a list of blocks that make up a complete procedure.
basicBlocksCodeGen :: LlvmEnv
-> [CmmBasicBlock]
-> ( [LlvmBasicBlock] , [LlvmCmmTop] )
-> UniqSM (LlvmEnv, [LlvmBasicBlock] , [LlvmCmmTop] )
basicBlocksCodeGen env ([]) (blocks, tops)
= do let (blocks', allocs) = mapAndUnzip dominateAllocs blocks
let allocs' = concat allocs
let ((BasicBlock id fstmts):rblks) = blocks'
fplog <- funPrologue
let fblocks = (BasicBlock id (fplog ++ allocs' ++ fstmts)):rblks
return (env, fblocks, tops)
basicBlocksCodeGen env (block:blocks) (lblocks', ltops')
= do (env', lb, lt) <- basicBlockCodeGen env block
let lblocks = lblocks' ++ lb
let ltops = ltops' ++ lt
basicBlocksCodeGen env' blocks (lblocks, ltops)
-- | Allocations need to be extracted so they can be moved to the entry
-- of a function to make sure they dominate all possible paths in the CFG.
dominateAllocs :: LlvmBasicBlock -> (LlvmBasicBlock, [LlvmStatement])
dominateAllocs (BasicBlock id stmts)
= let (allocs, stmts') = partition isAlloc stmts
isAlloc (Assignment _ (Alloca _ _)) = True
isAlloc _other = False
in (BasicBlock id stmts', allocs)
-- | Generate code for one block
basicBlockCodeGen :: LlvmEnv
-> CmmBasicBlock
-> UniqSM ( LlvmEnv, [LlvmBasicBlock], [LlvmCmmTop] )
basicBlockCodeGen env (BasicBlock id stmts)
= do (env', instrs, top) <- stmtsToInstrs env stmts (nilOL, [])
return (env', [BasicBlock id (fromOL instrs)], top)
-- -----------------------------------------------------------------------------
-- * CmmStmt code generation
--
-- A statement conversion return data.
-- * LlvmEnv: The new environment
-- * LlvmStatements: The compiled LLVM statements.
-- * LlvmCmmTop: Any global data needed.
type StmtData = (LlvmEnv, LlvmStatements, [LlvmCmmTop])
-- | Convert a list of CmmStmt's to LlvmStatement's
stmtsToInstrs :: LlvmEnv -> [CmmStmt] -> (LlvmStatements, [LlvmCmmTop])
-> UniqSM StmtData
stmtsToInstrs env [] (llvm, top)
= return (env, llvm, top)
stmtsToInstrs env (stmt : stmts) (llvm, top)
= do (env', instrs, tops) <- stmtToInstrs env stmt
stmtsToInstrs env' stmts (llvm `appOL` instrs, top ++ tops)
-- | Convert a CmmStmt to a list of LlvmStatement's
stmtToInstrs :: LlvmEnv -> CmmStmt
-> UniqSM StmtData
stmtToInstrs env stmt = case stmt of
CmmNop -> return (env, nilOL, [])
CmmComment _ -> return (env, nilOL, []) -- nuke comments
CmmAssign reg src -> genAssign env reg src
CmmStore addr src -> genStore env addr src
CmmBranch id -> genBranch env id
CmmCondBranch arg id -> genCondBranch env arg id
CmmSwitch arg ids -> genSwitch env arg ids
-- Foreign Call
CmmCall target res args _ ret
-> genCall env target res args ret
-- Tail call
CmmJump arg _ -> genJump env arg
-- CPS, only tail calls, no return's
-- Actually, there are a few return statements that occur because of hand
-- written Cmm code.
CmmReturn _
-> return (env, unitOL $ Return Nothing, [])
-- | Foreign Calls
genCall :: LlvmEnv -> CmmCallTarget -> [HintedCmmFormal] -> [HintedCmmActual]
-> CmmReturnInfo -> UniqSM StmtData
-- Write barrier needs to be handled specially as it is implemented as an LLVM
-- intrinsic function.
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH || sparc_TARGET_ARCH
genCall env (CmmPrim MO_WriteBarrier) _ _ _ = return (env, nilOL, [])
#else
genCall env (CmmPrim MO_WriteBarrier) _ _ _ = do
let fname = fsLit "llvm.memory.barrier"
let funSig = LlvmFunctionDecl fname ExternallyVisible CC_Ccc LMVoid
FixedArgs (tysToParams [i1, i1, i1, i1, i1]) llvmFunAlign
let fty = LMFunction funSig
let fv = LMGlobalVar fname fty (funcLinkage funSig) Nothing Nothing False
let tops = case funLookup fname env of
Just _ -> []
Nothing -> [CmmData Data [([],[fty])]]
let args = [lmTrue, lmTrue, lmTrue, lmTrue, lmTrue]
let s1 = Expr $ Call StdCall fv args llvmStdFunAttrs
let env' = funInsert fname fty env
return (env', unitOL s1, tops)
where
lmTrue :: LlvmVar
lmTrue = mkIntLit i1 (-1)
#endif
-- Handle memcpy function specifically since llvm's intrinsic version takes
-- some extra parameters.
genCall env t@(CmmPrim op) [] args CmmMayReturn | op == MO_Memcpy ||
op == MO_Memset ||
op == MO_Memmove = do
let (isVolTy, isVolVal) = if getLlvmVer env >= 28
then ([i1], [mkIntLit i1 0]) else ([], [])
argTy | op == MO_Memset = [i8Ptr, i8, llvmWord, i32] ++ isVolTy
| otherwise = [i8Ptr, i8Ptr, llvmWord, i32] ++ isVolTy
funTy = \name -> LMFunction $ LlvmFunctionDecl name ExternallyVisible
CC_Ccc LMVoid FixedArgs (tysToParams argTy) Nothing
(env1, argVars, stmts1, top1) <- arg_vars env args ([], nilOL, [])
(env2, fptr, stmts2, top2) <- getFunPtr env1 funTy t
(argVars', stmts3) <- castVars $ zip argVars argTy
let arguments = argVars' ++ isVolVal
call = Expr $ Call StdCall fptr arguments []
stmts = stmts1 `appOL` stmts2 `appOL` stmts3
`appOL` trashStmts `snocOL` call
return (env2, stmts, top1 ++ top2)
-- Handle all other foreign calls and prim ops.
genCall env target res args ret = do
-- parameter types
let arg_type (CmmHinted _ AddrHint) = i8Ptr
-- cast pointers to i8*. Llvm equivalent of void*
arg_type (CmmHinted expr _ ) = cmmToLlvmType $ cmmExprType expr
-- ret type
let ret_type ([]) = LMVoid
ret_type ([CmmHinted _ AddrHint]) = i8Ptr
ret_type ([CmmHinted reg _]) = cmmToLlvmType $ localRegType reg
ret_type t = panic $ "genCall: Too many return values! Can only handle"
++ " 0 or 1, given " ++ show (length t) ++ "."
-- extract Cmm call convention
let cconv = case target of
CmmCallee _ conv -> conv
CmmPrim _ -> PrimCallConv
-- translate to LLVM call convention
let lmconv = case cconv of
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
StdCallConv -> CC_X86_Stdcc
#else
StdCallConv -> CC_Ccc
#endif
CCallConv -> CC_Ccc
PrimCallConv -> CC_Ccc
CmmCallConv -> panic "CmmCallConv not supported here!"
{-
Some of the possibilities here are a worry with the use of a custom
calling convention for passing STG args. In practice the more
dangerous combinations (e.g StdCall + llvmGhcCC) don't occur.
The native code generator only handles StdCall and CCallConv.
-}
-- call attributes
let fnAttrs | ret == CmmNeverReturns = NoReturn : llvmStdFunAttrs
| otherwise = llvmStdFunAttrs
-- fun type
let ccTy = StdCall -- tail calls should be done through CmmJump
let retTy = ret_type res
let argTy = tysToParams $ map arg_type args
let funTy = \name -> LMFunction $ LlvmFunctionDecl name ExternallyVisible
lmconv retTy FixedArgs argTy llvmFunAlign
(env1, argVars, stmts1, top1) <- arg_vars env args ([], nilOL, [])
(env2, fptr, stmts2, top2) <- getFunPtr env1 funTy target
let retStmt | ccTy == TailCall = unitOL $ Return Nothing
| ret == CmmNeverReturns = unitOL $ Unreachable
| otherwise = nilOL
let stmts = stmts1 `appOL` stmts2 `appOL` trashStmts
-- make the actual call
case retTy of
LMVoid -> do
let s1 = Expr $ Call ccTy fptr argVars fnAttrs
let allStmts = stmts `snocOL` s1 `appOL` retStmt
return (env2, allStmts, top1 ++ top2)
_ -> do
(v1, s1) <- doExpr retTy $ Call ccTy fptr argVars fnAttrs
-- get the return register
let ret_reg ([CmmHinted reg hint]) = (reg, hint)
ret_reg t = panic $ "genCall: Bad number of registers! Can only handle"
++ " 1, given " ++ show (length t) ++ "."
let (creg, _) = ret_reg res
let (env3, vreg, stmts3, top3) = getCmmReg env2 (CmmLocal creg)
let allStmts = stmts `snocOL` s1 `appOL` stmts3
if retTy == pLower (getVarType vreg)
then do
let s2 = Store v1 vreg
return (env3, allStmts `snocOL` s2 `appOL` retStmt,
top1 ++ top2 ++ top3)
else do
let ty = pLower $ getVarType vreg
let op = case ty of
vt | isPointer vt -> LM_Bitcast
| isInt vt -> LM_Ptrtoint
| otherwise ->
panic $ "genCall: CmmReg bad match for"
++ " returned type!"
(v2, s2) <- doExpr ty $ Cast op v1 ty
let s3 = Store v2 vreg
return (env3, allStmts `snocOL` s2 `snocOL` s3
`appOL` retStmt, top1 ++ top2 ++ top3)
-- | Create a function pointer from a target.
getFunPtr :: LlvmEnv -> (LMString -> LlvmType) -> CmmCallTarget
-> UniqSM ExprData
getFunPtr env funTy targ = case targ of
CmmCallee (CmmLit (CmmLabel lbl)) _ -> litCase $ strCLabel_llvm lbl
CmmCallee expr _ -> do
(env', v1, stmts, top) <- exprToVar env expr
let fty = funTy $ fsLit "dynamic"
cast = case getVarType v1 of
ty | isPointer ty -> LM_Bitcast
ty | isInt ty -> LM_Inttoptr
ty -> panic $ "genCall: Expr is of bad type for function"
++ " call! (" ++ show (ty) ++ ")"
(v2,s1) <- doExpr (pLift fty) $ Cast cast v1 (pLift fty)
return (env', v2, stmts `snocOL` s1, top)
CmmPrim mop -> litCase $ cmmPrimOpFunctions env mop
where
litCase name = do
case funLookup name env of
Just ty'@(LMFunction sig) -> do
-- Function in module in right form
let fun = LMGlobalVar name ty' (funcLinkage sig)
Nothing Nothing False
return (env, fun, nilOL, [])
Just ty' -> do
-- label in module but not function pointer, convert
let fty@(LMFunction sig) = funTy name
fun = LMGlobalVar name (pLift ty') (funcLinkage sig)
Nothing Nothing False
(v1, s1) <- doExpr (pLift fty)
$ Cast LM_Bitcast fun (pLift fty)
return (env, v1, unitOL s1, [])
Nothing -> do
-- label not in module, create external reference
let fty@(LMFunction sig) = funTy name
fun = LMGlobalVar name fty (funcLinkage sig)
Nothing Nothing False
top = [CmmData Data [([],[fty])]]
env' = funInsert name fty env
return (env', fun, nilOL, top)
-- | Conversion of call arguments.
arg_vars :: LlvmEnv
-> [HintedCmmActual]
-> ([LlvmVar], LlvmStatements, [LlvmCmmTop])
-> UniqSM (LlvmEnv, [LlvmVar], LlvmStatements, [LlvmCmmTop])
arg_vars env [] (vars, stmts, tops)
= return (env, vars, stmts, tops)
arg_vars env (CmmHinted e AddrHint:rest) (vars, stmts, tops)
= do (env', v1, stmts', top') <- exprToVar env e
let op = case getVarType v1 of
ty | isPointer ty -> LM_Bitcast
ty | isInt ty -> LM_Inttoptr
a -> panic $ "genCall: Can't cast llvmType to i8*! ("
++ show a ++ ")"
(v2, s1) <- doExpr i8Ptr $ Cast op v1 i8Ptr
arg_vars env' rest (vars ++ [v2], stmts `appOL` stmts' `snocOL` s1,
tops ++ top')
arg_vars env (CmmHinted e _:rest) (vars, stmts, tops)
= do (env', v1, stmts', top') <- exprToVar env e
arg_vars env' rest (vars ++ [v1], stmts `appOL` stmts', tops ++ top')
-- | Cast a collection of LLVM variables to specific types.
castVars :: [(LlvmVar, LlvmType)]
-> UniqSM ([LlvmVar], LlvmStatements)
castVars vars = do
done <- mapM (uncurry castVar) vars
let (vars', stmts) = unzip done
return (vars', toOL stmts)
-- | Cast an LLVM variable to a specific type, panicing if it can't be done.
castVar :: LlvmVar -> LlvmType -> UniqSM (LlvmVar, LlvmStatement)
castVar v t | getVarType v == t
= return (v, Nop)
| otherwise
= let op = case (getVarType v, t) of
(LMInt n, LMInt m)
-> if n < m then LM_Sext else LM_Trunc
(vt, _) | isFloat vt && isFloat t
-> if llvmWidthInBits vt < llvmWidthInBits t
then LM_Fpext else LM_Fptrunc
(vt, _) | isInt vt && isFloat t -> LM_Sitofp
(vt, _) | isFloat vt && isInt t -> LM_Fptosi
(vt, _) | isInt vt && isPointer t -> LM_Inttoptr
(vt, _) | isPointer vt && isInt t -> LM_Ptrtoint
(vt, _) | isPointer vt && isPointer t -> LM_Bitcast
(vt, _) -> panic $ "castVars: Can't cast this type ("
++ show vt ++ ") to (" ++ show t ++ ")"
in doExpr t $ Cast op v t
-- | Decide what C function to use to implement a CallishMachOp
cmmPrimOpFunctions :: LlvmEnv -> CallishMachOp -> LMString
cmmPrimOpFunctions env mop
= case mop of
MO_F32_Exp -> fsLit "expf"
MO_F32_Log -> fsLit "logf"
MO_F32_Sqrt -> fsLit "llvm.sqrt.f32"
MO_F32_Pwr -> fsLit "llvm.pow.f32"
MO_F32_Sin -> fsLit "llvm.sin.f32"
MO_F32_Cos -> fsLit "llvm.cos.f32"
MO_F32_Tan -> fsLit "tanf"
MO_F32_Asin -> fsLit "asinf"
MO_F32_Acos -> fsLit "acosf"
MO_F32_Atan -> fsLit "atanf"
MO_F32_Sinh -> fsLit "sinhf"
MO_F32_Cosh -> fsLit "coshf"
MO_F32_Tanh -> fsLit "tanhf"
MO_F64_Exp -> fsLit "exp"
MO_F64_Log -> fsLit "log"
MO_F64_Sqrt -> fsLit "llvm.sqrt.f64"
MO_F64_Pwr -> fsLit "llvm.pow.f64"
MO_F64_Sin -> fsLit "llvm.sin.f64"
MO_F64_Cos -> fsLit "llvm.cos.f64"
MO_F64_Tan -> fsLit "tan"
MO_F64_Asin -> fsLit "asin"
MO_F64_Acos -> fsLit "acos"
MO_F64_Atan -> fsLit "atan"
MO_F64_Sinh -> fsLit "sinh"
MO_F64_Cosh -> fsLit "cosh"
MO_F64_Tanh -> fsLit "tanh"
MO_Memcpy -> fsLit $ "llvm.memcpy." ++ intrinTy1
MO_Memmove -> fsLit $ "llvm.memmove." ++ intrinTy1
MO_Memset -> fsLit $ "llvm.memset." ++ intrinTy2
a -> panic $ "cmmPrimOpFunctions: Unknown callish op! (" ++ show a ++ ")"
where
intrinTy1 = (if getLlvmVer env >= 28
then "p0i8.p0i8." else "") ++ show llvmWord
intrinTy2 = (if getLlvmVer env >= 28
then "p0i8." else "") ++ show llvmWord
-- | Tail function calls
genJump :: LlvmEnv -> CmmExpr -> UniqSM StmtData
-- Call to known function
genJump env (CmmLit (CmmLabel lbl)) = do
(env', vf, stmts, top) <- getHsFunc env lbl
(stgRegs, stgStmts) <- funEpilogue
let s1 = Expr $ Call TailCall vf stgRegs llvmStdFunAttrs
let s2 = Return Nothing
return (env', stmts `appOL` stgStmts `snocOL` s1 `snocOL` s2, top)
-- Call to unknown function / address
genJump env expr = do
let fty = llvmFunTy
(env', vf, stmts, top) <- exprToVar env expr
let cast = case getVarType vf of
ty | isPointer ty -> LM_Bitcast
ty | isInt ty -> LM_Inttoptr
ty -> panic $ "genJump: Expr is of bad type for function call! ("
++ show (ty) ++ ")"
(v1, s1) <- doExpr (pLift fty) $ Cast cast vf (pLift fty)
(stgRegs, stgStmts) <- funEpilogue
let s2 = Expr $ Call TailCall v1 stgRegs llvmStdFunAttrs
let s3 = Return Nothing
return (env', stmts `snocOL` s1 `appOL` stgStmts `snocOL` s2 `snocOL` s3,
top)
-- | CmmAssign operation
--
-- We use stack allocated variables for CmmReg. The optimiser will replace
-- these with registers when possible.
genAssign :: LlvmEnv -> CmmReg -> CmmExpr -> UniqSM StmtData
genAssign env reg val = do
let (env1, vreg, stmts1, top1) = getCmmReg env reg
(env2, vval, stmts2, top2) <- exprToVar env1 val
let stmts = stmts1 `appOL` stmts2
let ty = (pLower . getVarType) vreg
case isPointer ty && getVarType vval == llvmWord of
-- Some registers are pointer types, so need to cast value to pointer
True -> do
(v, s1) <- doExpr ty $ Cast LM_Inttoptr vval ty
let s2 = Store v vreg
return (env2, stmts `snocOL` s1 `snocOL` s2, top1 ++ top2)
False -> do
let s1 = Store vval vreg
return (env2, stmts `snocOL` s1, top1 ++ top2)
-- | CmmStore operation
genStore :: LlvmEnv -> CmmExpr -> CmmExpr -> UniqSM StmtData
-- First we try to detect a few common cases and produce better code for
-- these then the default case. We are mostly trying to detect Cmm code
-- like I32[Sp + n] and use 'getelementptr' operations instead of the
-- generic case that uses casts and pointer arithmetic
genStore env addr@(CmmReg (CmmGlobal r)) val
= genStore_fast env addr r 0 val
genStore env addr@(CmmRegOff (CmmGlobal r) n) val
= genStore_fast env addr r n val
genStore env addr@(CmmMachOp (MO_Add _) [
(CmmReg (CmmGlobal r)),
(CmmLit (CmmInt n _))])
val
= genStore_fast env addr r (fromInteger n) val
genStore env addr@(CmmMachOp (MO_Sub _) [
(CmmReg (CmmGlobal r)),
(CmmLit (CmmInt n _))])
val
= genStore_fast env addr r (negate $ fromInteger n) val
-- generic case
genStore env addr val = genStore_slow env addr val
-- | CmmStore operation
-- This is a special case for storing to a global register pointer
-- offset such as I32[Sp+8].
genStore_fast :: LlvmEnv -> CmmExpr -> GlobalReg -> Int -> CmmExpr
-> UniqSM StmtData
genStore_fast env addr r n val
= let gr = lmGlobalRegVar r
grt = (pLower . getVarType) gr
(ix,rem) = n `divMod` ((llvmWidthInBits . pLower) grt `div` 8)
in case isPointer grt && rem == 0 of
True -> do
(env', vval, stmts, top) <- exprToVar env val
(gv, s1) <- doExpr grt $ Load gr
(ptr, s2) <- doExpr grt $ GetElemPtr True gv [toI32 ix]
-- We might need a different pointer type, so check
case pLower grt == getVarType vval of
-- were fine
True -> do
let s3 = Store vval ptr
return (env', stmts `snocOL` s1 `snocOL` s2
`snocOL` s3, top)
-- cast to pointer type needed
False -> do
let ty = (pLift . getVarType) vval
(ptr', s3) <- doExpr ty $ Cast LM_Bitcast ptr ty
let s4 = Store vval ptr'
return (env', stmts `snocOL` s1 `snocOL` s2
`snocOL` s3 `snocOL` s4, top)
-- If its a bit type then we use the slow method since
-- we can't avoid casting anyway.
False -> genStore_slow env addr val
-- | CmmStore operation
-- Generic case. Uses casts and pointer arithmetic if needed.
genStore_slow :: LlvmEnv -> CmmExpr -> CmmExpr -> UniqSM StmtData
genStore_slow env addr val = do
(env1, vaddr, stmts1, top1) <- exprToVar env addr
(env2, vval, stmts2, top2) <- exprToVar env1 val
let stmts = stmts1 `appOL` stmts2
case getVarType vaddr of
-- sometimes we need to cast an int to a pointer before storing
LMPointer ty@(LMPointer _) | getVarType vval == llvmWord -> do
(v, s1) <- doExpr ty $ Cast LM_Inttoptr vval ty
let s2 = Store v vaddr
return (env2, stmts `snocOL` s1 `snocOL` s2, top1 ++ top2)
LMPointer _ -> do
let s1 = Store vval vaddr
return (env2, stmts `snocOL` s1, top1 ++ top2)
i@(LMInt _) | i == llvmWord -> do
let vty = pLift $ getVarType vval
(vptr, s1) <- doExpr vty $ Cast LM_Inttoptr vaddr vty
let s2 = Store vval vptr
return (env2, stmts `snocOL` s1 `snocOL` s2, top1 ++ top2)
other ->
pprPanic "genStore: ptr not right type!"
(PprCmm.pprExpr addr <+> text (
"Size of Ptr: " ++ show llvmPtrBits ++
", Size of var: " ++ show (llvmWidthInBits other) ++
", Var: " ++ show vaddr))
-- | Unconditional branch
genBranch :: LlvmEnv -> BlockId -> UniqSM StmtData
genBranch env id =
let label = blockIdToLlvm id
in return (env, unitOL $ Branch label, [])
-- | Conditional branch
genCondBranch :: LlvmEnv -> CmmExpr -> BlockId -> UniqSM StmtData
genCondBranch env cond idT = do
idF <- getUniqueUs
let labelT = blockIdToLlvm idT
let labelF = LMLocalVar idF LMLabel
(env', vc, stmts, top) <- exprToVarOpt env i1Option cond
if getVarType vc == i1
then do
let s1 = BranchIf vc labelT labelF
let s2 = MkLabel idF
return $ (env', stmts `snocOL` s1 `snocOL` s2, top)
else
panic $ "genCondBranch: Cond expr not bool! (" ++ show vc ++ ")"
-- | Switch branch
--
-- N.B. We remove Nothing's from the list of branches, as they are 'undefined'.
-- However, they may be defined one day, so we better document this behaviour.
genSwitch :: LlvmEnv -> CmmExpr -> [Maybe BlockId] -> UniqSM StmtData
genSwitch env cond maybe_ids = do
(env', vc, stmts, top) <- exprToVar env cond
let ty = getVarType vc
let pairs = [ (ix, id) | (ix,Just id) <- zip [0..] maybe_ids ]
let labels = map (\(ix, b) -> (mkIntLit ty ix, blockIdToLlvm b)) pairs
-- out of range is undefied, so lets just branch to first label
let (_, defLbl) = head labels
let s1 = Switch vc defLbl labels
return $ (env', stmts `snocOL` s1, top)
-- -----------------------------------------------------------------------------
-- * CmmExpr code generation
--
-- | An expression conversion return data:
-- * LlvmEnv: The new enviornment
-- * LlvmVar: The var holding the result of the expression
-- * LlvmStatements: Any statements needed to evaluate the expression
-- * LlvmCmmTop: Any global data needed for this expression
type ExprData = (LlvmEnv, LlvmVar, LlvmStatements, [LlvmCmmTop])
-- | Values which can be passed to 'exprToVar' to configure its
-- behaviour in certain circumstances.
data EOption = EOption {
-- | The expected LlvmType for the returned variable.
--
-- Currently just used for determining if a comparison should return
-- a boolean (i1) or a int (i32/i64).
eoExpectedType :: Maybe LlvmType
}
i1Option :: EOption
i1Option = EOption (Just i1)
wordOption :: EOption
wordOption = EOption (Just llvmWord)
-- | Convert a CmmExpr to a list of LlvmStatements with the result of the
-- expression being stored in the returned LlvmVar.
exprToVar :: LlvmEnv -> CmmExpr -> UniqSM ExprData
exprToVar env = exprToVarOpt env wordOption
exprToVarOpt :: LlvmEnv -> EOption -> CmmExpr -> UniqSM ExprData
exprToVarOpt env opt e = case e of
CmmLit lit
-> genLit env lit
CmmLoad e' ty
-> genLoad env e' ty
-- Cmmreg in expression is the value, so must load. If you want actual
-- reg pointer, call getCmmReg directly.
CmmReg r -> do
let (env', vreg, stmts, top) = getCmmReg env r
(v1, s1) <- doExpr (pLower $ getVarType vreg) $ Load vreg
case (isPointer . getVarType) v1 of
True -> do
-- Cmm wants the value, so pointer types must be cast to ints
(v2, s2) <- doExpr llvmWord $ Cast LM_Ptrtoint v1 llvmWord
return (env', v2, stmts `snocOL` s1 `snocOL` s2, top)
False -> return (env', v1, stmts `snocOL` s1, top)
CmmMachOp op exprs
-> genMachOp env opt op exprs
CmmRegOff r i
-> exprToVar env $ expandCmmReg (r, i)
CmmStackSlot _ _
-> panic "exprToVar: CmmStackSlot not supported!"
-- | Handle CmmMachOp expressions
genMachOp :: LlvmEnv -> EOption -> MachOp -> [CmmExpr] -> UniqSM ExprData
-- Unary Machop
genMachOp env _ op [x] = case op of
MO_Not w ->
let all1 = mkIntLit (widthToLlvmInt w) (-1)
in negate (widthToLlvmInt w) all1 LM_MO_Xor
MO_S_Neg w ->
let all0 = mkIntLit (widthToLlvmInt w) 0
in negate (widthToLlvmInt w) all0 LM_MO_Sub
MO_F_Neg w ->
let all0 = LMLitVar $ LMFloatLit (-0) (widthToLlvmFloat w)
in negate (widthToLlvmFloat w) all0 LM_MO_FSub
MO_SF_Conv _ w -> fiConv (widthToLlvmFloat w) LM_Sitofp
MO_FS_Conv _ w -> fiConv (widthToLlvmInt w) LM_Fptosi
MO_SS_Conv from to
-> sameConv from (widthToLlvmInt to) LM_Trunc LM_Sext
MO_UU_Conv from to
-> sameConv from (widthToLlvmInt to) LM_Trunc LM_Zext
MO_FF_Conv from to
-> sameConv from (widthToLlvmFloat to) LM_Fptrunc LM_Fpext
a -> panic $ "genMachOp: unmatched unary CmmMachOp! (" ++ show a ++ ")"
where
negate ty v2 negOp = do
(env', vx, stmts, top) <- exprToVar env x
(v1, s1) <- doExpr ty $ LlvmOp negOp v2 vx
return (env', v1, stmts `snocOL` s1, top)
fiConv ty convOp = do
(env', vx, stmts, top) <- exprToVar env x
(v1, s1) <- doExpr ty $ Cast convOp vx ty
return (env', v1, stmts `snocOL` s1, top)
sameConv from ty reduce expand = do
x'@(env', vx, stmts, top) <- exprToVar env x
let sameConv' op = do
(v1, s1) <- doExpr ty $ Cast op vx ty
return (env', v1, stmts `snocOL` s1, top)
let toWidth = llvmWidthInBits ty
-- LLVM doesn't like trying to convert to same width, so
-- need to check for that as we do get Cmm code doing it.
case widthInBits from of
w | w < toWidth -> sameConv' expand
w | w > toWidth -> sameConv' reduce
_w -> return x'
-- Handle GlobalRegs pointers
genMachOp env opt o@(MO_Add _) e@[(CmmReg (CmmGlobal r)), (CmmLit (CmmInt n _))]
= genMachOp_fast env opt o r (fromInteger n) e
genMachOp env opt o@(MO_Sub _) e@[(CmmReg (CmmGlobal r)), (CmmLit (CmmInt n _))]
= genMachOp_fast env opt o r (negate . fromInteger $ n) e
-- Generic case
genMachOp env opt op e = genMachOp_slow env opt op e
-- | Handle CmmMachOp expressions
-- This is a specialised method that handles Global register manipulations like
-- 'Sp - 16', using the getelementptr instruction.
genMachOp_fast :: LlvmEnv -> EOption -> MachOp -> GlobalReg -> Int -> [CmmExpr]
-> UniqSM ExprData
genMachOp_fast env opt op r n e
= let gr = lmGlobalRegVar r
grt = (pLower . getVarType) gr
(ix,rem) = n `divMod` ((llvmWidthInBits . pLower) grt `div` 8)
in case isPointer grt && rem == 0 of
True -> do
(gv, s1) <- doExpr grt $ Load gr
(ptr, s2) <- doExpr grt $ GetElemPtr True gv [toI32 ix]
(var, s3) <- doExpr llvmWord $ Cast LM_Ptrtoint ptr llvmWord
return (env, var, unitOL s1 `snocOL` s2 `snocOL` s3, [])
False -> genMachOp_slow env opt op e
-- | Handle CmmMachOp expressions
-- This handles all the cases not handle by the specialised genMachOp_fast.
genMachOp_slow :: LlvmEnv -> EOption -> MachOp -> [CmmExpr] -> UniqSM ExprData
-- Binary MachOp
genMachOp_slow env opt op [x, y] = case op of
MO_Eq _ -> genBinComp opt LM_CMP_Eq
MO_Ne _ -> genBinComp opt LM_CMP_Ne
MO_S_Gt _ -> genBinComp opt LM_CMP_Sgt
MO_S_Ge _ -> genBinComp opt LM_CMP_Sge
MO_S_Lt _ -> genBinComp opt LM_CMP_Slt
MO_S_Le _ -> genBinComp opt LM_CMP_Sle
MO_U_Gt _ -> genBinComp opt LM_CMP_Ugt
MO_U_Ge _ -> genBinComp opt LM_CMP_Uge
MO_U_Lt _ -> genBinComp opt LM_CMP_Ult
MO_U_Le _ -> genBinComp opt LM_CMP_Ule
MO_Add _ -> genBinMach LM_MO_Add
MO_Sub _ -> genBinMach LM_MO_Sub
MO_Mul _ -> genBinMach LM_MO_Mul
MO_U_MulMayOflo _ -> panic "genMachOp: MO_U_MulMayOflo unsupported!"
MO_S_MulMayOflo w -> isSMulOK w x y
MO_S_Quot _ -> genBinMach LM_MO_SDiv
MO_S_Rem _ -> genBinMach LM_MO_SRem
MO_U_Quot _ -> genBinMach LM_MO_UDiv
MO_U_Rem _ -> genBinMach LM_MO_URem
MO_F_Eq _ -> genBinComp opt LM_CMP_Feq
MO_F_Ne _ -> genBinComp opt LM_CMP_Fne
MO_F_Gt _ -> genBinComp opt LM_CMP_Fgt
MO_F_Ge _ -> genBinComp opt LM_CMP_Fge
MO_F_Lt _ -> genBinComp opt LM_CMP_Flt
MO_F_Le _ -> genBinComp opt LM_CMP_Fle
MO_F_Add _ -> genBinMach LM_MO_FAdd
MO_F_Sub _ -> genBinMach LM_MO_FSub
MO_F_Mul _ -> genBinMach LM_MO_FMul
MO_F_Quot _ -> genBinMach LM_MO_FDiv
MO_And _ -> genBinMach LM_MO_And
MO_Or _ -> genBinMach LM_MO_Or
MO_Xor _ -> genBinMach LM_MO_Xor
MO_Shl _ -> genBinMach LM_MO_Shl
MO_U_Shr _ -> genBinMach LM_MO_LShr
MO_S_Shr _ -> genBinMach LM_MO_AShr
a -> panic $ "genMachOp: unmatched binary CmmMachOp! (" ++ show a ++ ")"
where
binLlvmOp ty binOp = do
(env1, vx, stmts1, top1) <- exprToVar env x
(env2, vy, stmts2, top2) <- exprToVar env1 y
if getVarType vx == getVarType vy
then do
(v1, s1) <- doExpr (ty vx) $ binOp vx vy
return (env2, v1, stmts1 `appOL` stmts2 `snocOL` s1,
top1 ++ top2)
else do
-- XXX: Error. Continue anyway so we can debug the generated
-- ll file.
let cmmToStr = (lines . show . llvmSDoc . PprCmm.pprExpr)
let dx = Comment $ map fsLit $ cmmToStr x
let dy = Comment $ map fsLit $ cmmToStr y
(v1, s1) <- doExpr (ty vx) $ binOp vx vy
let allStmts = stmts1 `appOL` stmts2 `snocOL` dx
`snocOL` dy `snocOL` s1
return (env2, v1, allStmts, top1 ++ top2)
-- let o = case binOp vx vy of
-- Compare op _ _ -> show op
-- LlvmOp op _ _ -> show op
-- _ -> "unknown"
-- panic $ "genMachOp: comparison between different types ("
-- ++ o ++ " "++ show vx ++ ", " ++ show vy ++ ")"
-- ++ "\ne1: " ++ (show.llvmSDoc.PprCmm.pprExpr $ x)
-- ++ "\ne2: " ++ (show.llvmSDoc.PprCmm.pprExpr $ y)
-- | Need to use EOption here as Cmm expects word size results from
-- comparisons while LLVM return i1. Need to extend to llvmWord type
-- if expected
genBinComp opt cmp = do
ed@(env', v1, stmts, top) <- binLlvmOp (\_ -> i1) $ Compare cmp
if getVarType v1 == i1
then
case eoExpectedType opt of
Nothing ->
return ed
Just t | t == i1 ->
return ed
| isInt t -> do
(v2, s1) <- doExpr t $ Cast LM_Zext v1 t
return (env', v2, stmts `snocOL` s1, top)
| otherwise ->
panic $ "genBinComp: Can't case i1 compare"
++ "res to non int type " ++ show (t)
else
panic $ "genBinComp: Compare returned type other then i1! "
++ (show $ getVarType v1)
genBinMach op = binLlvmOp getVarType (LlvmOp op)
-- | Detect if overflow will occur in signed multiply of the two
-- CmmExpr's. This is the LLVM assembly equivalent of the NCG
-- implementation. Its much longer due to type information/safety.
-- This should actually compile to only about 3 asm instructions.
isSMulOK :: Width -> CmmExpr -> CmmExpr -> UniqSM ExprData
isSMulOK _ x y = do
(env1, vx, stmts1, top1) <- exprToVar env x
(env2, vy, stmts2, top2) <- exprToVar env1 y
let word = getVarType vx
let word2 = LMInt $ 2 * (llvmWidthInBits $ getVarType vx)
let shift = llvmWidthInBits word
let shift1 = toIWord (shift - 1)
let shift2 = toIWord shift
if isInt word
then do
(x1, s1) <- doExpr word2 $ Cast LM_Sext vx word2
(y1, s2) <- doExpr word2 $ Cast LM_Sext vy word2
(r1, s3) <- doExpr word2 $ LlvmOp LM_MO_Mul x1 y1
(rlow1, s4) <- doExpr word $ Cast LM_Trunc r1 word
(rlow2, s5) <- doExpr word $ LlvmOp LM_MO_AShr rlow1 shift1
(rhigh1, s6) <- doExpr word2 $ LlvmOp LM_MO_AShr r1 shift2
(rhigh2, s7) <- doExpr word $ Cast LM_Trunc rhigh1 word
(dst, s8) <- doExpr word $ LlvmOp LM_MO_Sub rlow2 rhigh2
let stmts = (unitOL s1) `snocOL` s2 `snocOL` s3 `snocOL` s4
`snocOL` s5 `snocOL` s6 `snocOL` s7 `snocOL` s8
return (env2, dst, stmts1 `appOL` stmts2 `appOL` stmts,
top1 ++ top2)
else
panic $ "isSMulOK: Not bit type! (" ++ show word ++ ")"
-- More then two expression, invalid!
genMachOp_slow _ _ _ _ = panic "genMachOp: More then 2 expressions in MachOp!"
-- | Handle CmmLoad expression.
genLoad :: LlvmEnv -> CmmExpr -> CmmType -> UniqSM ExprData
-- First we try to detect a few common cases and produce better code for
-- these then the default case. We are mostly trying to detect Cmm code
-- like I32[Sp + n] and use 'getelementptr' operations instead of the
-- generic case that uses casts and pointer arithmetic
genLoad env e@(CmmReg (CmmGlobal r)) ty
= genLoad_fast env e r 0 ty
genLoad env e@(CmmRegOff (CmmGlobal r) n) ty
= genLoad_fast env e r n ty
genLoad env e@(CmmMachOp (MO_Add _) [
(CmmReg (CmmGlobal r)),
(CmmLit (CmmInt n _))])
ty
= genLoad_fast env e r (fromInteger n) ty
genLoad env e@(CmmMachOp (MO_Sub _) [
(CmmReg (CmmGlobal r)),
(CmmLit (CmmInt n _))])
ty
= genLoad_fast env e r (negate $ fromInteger n) ty
-- generic case
genLoad env e ty = genLoad_slow env e ty
-- | Handle CmmLoad expression.
-- This is a special case for loading from a global register pointer
-- offset such as I32[Sp+8].
genLoad_fast :: LlvmEnv -> CmmExpr -> GlobalReg -> Int -> CmmType
-> UniqSM ExprData
genLoad_fast env e r n ty =
let gr = lmGlobalRegVar r
grt = (pLower . getVarType) gr
ty' = cmmToLlvmType ty
(ix,rem) = n `divMod` ((llvmWidthInBits . pLower) grt `div` 8)
in case isPointer grt && rem == 0 of
True -> do
(gv, s1) <- doExpr grt $ Load gr
(ptr, s2) <- doExpr grt $ GetElemPtr True gv [toI32 ix]
-- We might need a different pointer type, so check
case grt == ty' of
-- were fine
True -> do
(var, s3) <- doExpr ty' $ Load ptr
return (env, var, unitOL s1 `snocOL` s2 `snocOL` s3,
[])
-- cast to pointer type needed
False -> do
let pty = pLift ty'
(ptr', s3) <- doExpr pty $ Cast LM_Bitcast ptr pty
(var, s4) <- doExpr ty' $ Load ptr'
return (env, var, unitOL s1 `snocOL` s2 `snocOL` s3
`snocOL` s4, [])
-- If its a bit type then we use the slow method since
-- we can't avoid casting anyway.
False -> genLoad_slow env e ty
-- | Handle Cmm load expression.
-- Generic case. Uses casts and pointer arithmetic if needed.
genLoad_slow :: LlvmEnv -> CmmExpr -> CmmType -> UniqSM ExprData
genLoad_slow env e ty = do
(env', iptr, stmts, tops) <- exprToVar env e
case getVarType iptr of
LMPointer _ -> do
(dvar, load) <- doExpr (cmmToLlvmType ty) $ Load iptr
return (env', dvar, stmts `snocOL` load, tops)
i@(LMInt _) | i == llvmWord -> do
let pty = LMPointer $ cmmToLlvmType ty
(ptr, cast) <- doExpr pty $ Cast LM_Inttoptr iptr pty
(dvar, load) <- doExpr (cmmToLlvmType ty) $ Load ptr
return (env', dvar, stmts `snocOL` cast `snocOL` load, tops)
other -> pprPanic "exprToVar: CmmLoad expression is not right type!"
(PprCmm.pprExpr e <+> text (
"Size of Ptr: " ++ show llvmPtrBits ++
", Size of var: " ++ show (llvmWidthInBits other) ++
", Var: " ++ show iptr))
-- | Handle CmmReg expression
--
-- We allocate CmmReg on the stack. This avoids having to map a CmmReg to an
-- equivalent SSA form and avoids having to deal with Phi node insertion.
-- This is also the approach recommended by LLVM developers.
getCmmReg :: LlvmEnv -> CmmReg -> ExprData
getCmmReg env r@(CmmLocal (LocalReg un _))
= let exists = varLookup un env
(newv, stmts) = allocReg r
nenv = varInsert un (pLower $ getVarType newv) env
in case exists of
Just ety -> (env, (LMLocalVar un $ pLift ety), nilOL, [])
Nothing -> (nenv, newv, stmts, [])
getCmmReg env (CmmGlobal g) = (env, lmGlobalRegVar g, nilOL, [])
-- | Allocate a CmmReg on the stack
allocReg :: CmmReg -> (LlvmVar, LlvmStatements)
allocReg (CmmLocal (LocalReg un ty))
= let ty' = cmmToLlvmType ty
var = LMLocalVar un (LMPointer ty')
alc = Alloca ty' 1
in (var, unitOL $ Assignment var alc)
allocReg _ = panic $ "allocReg: Global reg encountered! Global registers should"
++ " have been handled elsewhere!"
-- | Generate code for a literal
genLit :: LlvmEnv -> CmmLit -> UniqSM ExprData
genLit env (CmmInt i w)
= return (env, mkIntLit (LMInt $ widthInBits w) i, nilOL, [])
genLit env (CmmFloat r w)
= return (env, LMLitVar $ LMFloatLit (fromRational r) (widthToLlvmFloat w),
nilOL, [])
genLit env cmm@(CmmLabel l)
= let label = strCLabel_llvm l
ty = funLookup label env
lmty = cmmToLlvmType $ cmmLitType cmm
in case ty of
-- Make generic external label definition and then pointer to it
Nothing -> do
let glob@(var, _) = genStringLabelRef label
let ldata = [CmmData Data [([glob], [])]]
let env' = funInsert label (pLower $ getVarType var) env
(v1, s1) <- doExpr lmty $ Cast LM_Ptrtoint var llvmWord
return (env', v1, unitOL s1, ldata)
-- Referenced data exists in this module, retrieve type and make
-- pointer to it.
Just ty' -> do
let var = LMGlobalVar label (LMPointer ty')
ExternallyVisible Nothing Nothing False
(v1, s1) <- doExpr lmty $ Cast LM_Ptrtoint var llvmWord
return (env, v1, unitOL s1, [])
genLit env (CmmLabelOff label off) = do
(env', vlbl, stmts, stat) <- genLit env (CmmLabel label)
let voff = toIWord off
(v1, s1) <- doExpr (getVarType vlbl) $ LlvmOp LM_MO_Add vlbl voff
return (env', v1, stmts `snocOL` s1, stat)
genLit env (CmmLabelDiffOff l1 l2 off) = do
(env1, vl1, stmts1, stat1) <- genLit env (CmmLabel l1)
(env2, vl2, stmts2, stat2) <- genLit env1 (CmmLabel l2)
let voff = toIWord off
let ty1 = getVarType vl1
let ty2 = getVarType vl2
if (isInt ty1) && (isInt ty2)
&& (llvmWidthInBits ty1 == llvmWidthInBits ty2)
then do
(v1, s1) <- doExpr (getVarType vl1) $ LlvmOp LM_MO_Sub vl1 vl2
(v2, s2) <- doExpr (getVarType v1 ) $ LlvmOp LM_MO_Add v1 voff
return (env2, v2, stmts1 `appOL` stmts2 `snocOL` s1 `snocOL` s2,
stat1 ++ stat2)
else
panic "genLit: CmmLabelDiffOff encountered with different label ty!"
genLit env (CmmBlock b)
= genLit env (CmmLabel $ infoTblLbl b)
genLit _ CmmHighStackMark
= panic "genStaticLit - CmmHighStackMark unsupported!"
-- -----------------------------------------------------------------------------
-- * Misc
--
-- | Function prologue. Load STG arguments into variables for function.
funPrologue :: UniqSM [LlvmStatement]
funPrologue = liftM concat $ mapM getReg activeStgRegs
where getReg rr =
let reg = lmGlobalRegVar rr
arg = lmGlobalRegArg rr
alloc = Assignment reg $ Alloca (pLower $ getVarType reg) 1
in return [alloc, Store arg reg]
-- | Function epilogue. Load STG variables to use as argument for call.
funEpilogue :: UniqSM ([LlvmVar], LlvmStatements)
funEpilogue = do
let loadExpr r = do
let reg = lmGlobalRegVar r
(v,s) <- doExpr (pLower $ getVarType reg) $ Load reg
return (v, unitOL s)
loads <- mapM loadExpr activeStgRegs
let (vars, stmts) = unzip loads
return (vars, concatOL stmts)
-- | A serries of statements to trash all the STG registers.
--
-- In LLVM we pass the STG registers around everywhere in function calls.
-- So this means LLVM considers them live across the entire function, when
-- in reality they usually aren't. For Caller save registers across C calls
-- the saving and restoring of them is done by the Cmm code generator,
-- using Cmm local vars. So to stop LLVM saving them as well (and saving
-- all of them since it thinks they're always live, we trash them just
-- before the call by assigning the 'undef' value to them. The ones we
-- need are restored from the Cmm local var and the ones we don't need
-- are fine to be trashed.
trashStmts :: LlvmStatements
trashStmts = concatOL $ map trashReg activeStgRegs
where trashReg r =
let reg = lmGlobalRegVar r
ty = (pLower . getVarType) reg
trash = unitOL $ Store (LMLitVar $ LMUndefLit ty) reg
in case callerSaves r of
True -> trash
False -> nilOL
-- | Get a function pointer to the CLabel specified.
--
-- This is for Haskell functions, function type is assumed, so doesn't work
-- with foreign functions.
getHsFunc :: LlvmEnv -> CLabel -> UniqSM ExprData
getHsFunc env lbl
= let fn = strCLabel_llvm lbl
ty = funLookup fn env
in case ty of
-- Function in module in right form
Just ty'@(LMFunction sig) -> do
let fun = LMGlobalVar fn ty' (funcLinkage sig) Nothing Nothing False
return (env, fun, nilOL, [])
-- label in module but not function pointer, convert
Just ty' -> do
let fun = LMGlobalVar fn (pLift ty') ExternallyVisible
Nothing Nothing False
(v1, s1) <- doExpr (pLift llvmFunTy) $
Cast LM_Bitcast fun (pLift llvmFunTy)
return (env, v1, unitOL s1, [])
-- label not in module, create external reference
Nothing -> do
let ty' = LMFunction $ llvmFunSig lbl ExternallyVisible
let fun = LMGlobalVar fn ty' ExternallyVisible Nothing Nothing False
let top = CmmData Data [([],[ty'])]
let env' = funInsert fn ty' env
return (env', fun, nilOL, [top])
-- | Create a new local var
mkLocalVar :: LlvmType -> UniqSM LlvmVar
mkLocalVar ty = do
un <- getUniqueUs
return $ LMLocalVar un ty
-- | Execute an expression, assigning result to a var
doExpr :: LlvmType -> LlvmExpression -> UniqSM (LlvmVar, LlvmStatement)
doExpr ty expr = do
v <- mkLocalVar ty
return (v, Assignment v expr)
-- | Expand CmmRegOff
expandCmmReg :: (CmmReg, Int) -> CmmExpr
expandCmmReg (reg, off)
= let width = typeWidth (cmmRegType reg)
voff = CmmLit $ CmmInt (fromIntegral off) width
in CmmMachOp (MO_Add width) [CmmReg reg, voff]
-- | Convert a block id into a appropriate Llvm label
blockIdToLlvm :: BlockId -> LlvmVar
blockIdToLlvm bid = LMLocalVar (getUnique bid) LMLabel
-- | Create Llvm int Literal
mkIntLit :: Integral a => LlvmType -> a -> LlvmVar
mkIntLit ty i = LMLitVar $ LMIntLit (toInteger i) ty
-- | Convert int type to a LLvmVar of word or i32 size
toI32, toIWord :: Integral a => a -> LlvmVar
toI32 = mkIntLit i32
toIWord = mkIntLit llvmWord
-- | Error functions
panic :: String -> a
panic s = Outputable.panic $ "LlvmCodeGen.CodeGen." ++ s
pprPanic :: String -> SDoc -> a
pprPanic s d = Outputable.pprPanic ("LlvmCodeGen.CodeGen." ++ s) d
|