1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
|
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section{Tidying up Core}
-}
{-# LANGUAGE CPP, ViewPatterns #-}
module TidyPgm (
mkBootModDetailsTc, tidyProgram, globaliseAndTidyId
) where
#include "HsVersions.h"
import GhcPrelude
import TcRnTypes
import DynFlags
import CoreSyn
import CoreUnfold
import CoreFVs
import CoreTidy
import CoreMonad
import CorePrep
import CoreUtils (rhsIsStatic)
import CoreStats (coreBindsStats, CoreStats(..))
import CoreSeq (seqBinds)
import CoreLint
import Literal
import Rules
import PatSyn
import ConLike
import CoreArity ( exprArity, exprBotStrictness_maybe )
import StaticPtrTable
import VarEnv
import VarSet
import Var
import Id
import MkId ( mkDictSelRhs )
import IdInfo
import InstEnv
import FamInstEnv
import Type ( tidyTopType )
import Demand ( appIsBottom, isTopSig, isBottomingSig )
import BasicTypes
import Name hiding (varName)
import NameSet
import NameEnv
import NameCache
import Avail
import IfaceEnv
import TcEnv
import TcRnMonad
import DataCon
import TyCon
import Class
import Module
import Packages( isDllName )
import HscTypes
import Maybes
import UniqSupply
import Outputable
import qualified ErrUtils as Err
import Control.Monad
import Data.Function
import Data.List ( sortBy )
import Data.IORef ( atomicModifyIORef' )
{-
Constructing the TypeEnv, Instances, Rules from which the
ModIface is constructed, and which goes on to subsequent modules in
--make mode.
Most of the interface file is obtained simply by serialising the
TypeEnv. One important consequence is that if the *interface file*
has pragma info if and only if the final TypeEnv does. This is not so
important for *this* module, but it's essential for ghc --make:
subsequent compilations must not see (e.g.) the arity if the interface
file does not contain arity If they do, they'll exploit the arity;
then the arity might change, but the iface file doesn't change =>
recompilation does not happen => disaster.
For data types, the final TypeEnv will have a TyThing for the TyCon,
plus one for each DataCon; the interface file will contain just one
data type declaration, but it is de-serialised back into a collection
of TyThings.
************************************************************************
* *
Plan A: simpleTidyPgm
* *
************************************************************************
Plan A: mkBootModDetails: omit pragmas, make interfaces small
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Ignore the bindings
* Drop all WiredIn things from the TypeEnv
(we never want them in interface files)
* Retain all TyCons and Classes in the TypeEnv, to avoid
having to find which ones are mentioned in the
types of exported Ids
* Trim off the constructors of non-exported TyCons, both
from the TyCon and from the TypeEnv
* Drop non-exported Ids from the TypeEnv
* Tidy the types of the DFunIds of Instances,
make them into GlobalIds, (they already have External Names)
and add them to the TypeEnv
* Tidy the types of the (exported) Ids in the TypeEnv,
make them into GlobalIds (they already have External Names)
* Drop rules altogether
* Tidy the bindings, to ensure that the Caf and Arity
information is correct for each top-level binder; the
code generator needs it. And to ensure that local names have
distinct OccNames in case of object-file splitting
* If this an hsig file, drop the instances altogether too (they'll
get pulled in by the implicit module import.
-}
-- This is Plan A: make a small type env when typechecking only,
-- or when compiling a hs-boot file, or simply when not using -O
--
-- We don't look at the bindings at all -- there aren't any
-- for hs-boot files
mkBootModDetailsTc :: HscEnv -> TcGblEnv -> IO ModDetails
mkBootModDetailsTc hsc_env
TcGblEnv{ tcg_exports = exports,
tcg_type_env = type_env, -- just for the Ids
tcg_tcs = tcs,
tcg_patsyns = pat_syns,
tcg_insts = insts,
tcg_fam_insts = fam_insts,
tcg_mod = this_mod
}
= -- This timing isn't terribly useful since the result isn't forced, but
-- the message is useful to locating oneself in the compilation process.
Err.withTiming (pure dflags)
(text "CoreTidy"<+>brackets (ppr this_mod))
(const ()) $
do { let { insts' = map (tidyClsInstDFun globaliseAndTidyId) insts
; pat_syns' = map (tidyPatSynIds globaliseAndTidyId) pat_syns
; type_env1 = mkBootTypeEnv (availsToNameSet exports)
(typeEnvIds type_env) tcs fam_insts
; type_env2 = extendTypeEnvWithPatSyns pat_syns' type_env1
; dfun_ids = map instanceDFunId insts'
; type_env' = extendTypeEnvWithIds type_env2 dfun_ids
}
; return (ModDetails { md_types = type_env'
, md_insts = insts'
, md_fam_insts = fam_insts
, md_rules = []
, md_anns = []
, md_exports = exports
, md_complete_sigs = []
})
}
where
dflags = hsc_dflags hsc_env
mkBootTypeEnv :: NameSet -> [Id] -> [TyCon] -> [FamInst] -> TypeEnv
mkBootTypeEnv exports ids tcs fam_insts
= tidyTypeEnv True $
typeEnvFromEntities final_ids tcs fam_insts
where
-- Find the LocalIds in the type env that are exported
-- Make them into GlobalIds, and tidy their types
--
-- It's very important to remove the non-exported ones
-- because we don't tidy the OccNames, and if we don't remove
-- the non-exported ones we'll get many things with the
-- same name in the interface file, giving chaos.
--
-- Do make sure that we keep Ids that are already Global.
-- When typechecking an .hs-boot file, the Ids come through as
-- GlobalIds.
final_ids = [ (if isLocalId id then globaliseAndTidyId id
else id)
`setIdUnfolding` BootUnfolding
| id <- ids
, keep_it id ]
-- default methods have their export flag set, but everything
-- else doesn't (yet), because this is pre-desugaring, so we
-- must test both.
keep_it id = isExportedId id || idName id `elemNameSet` exports
globaliseAndTidyId :: Id -> Id
-- Takes a LocalId with an External Name,
-- makes it into a GlobalId
-- * unchanged Name (might be Internal or External)
-- * unchanged details
-- * VanillaIdInfo (makes a conservative assumption about Caf-hood)
globaliseAndTidyId id
= Id.setIdType (globaliseId id) tidy_type
where
tidy_type = tidyTopType (idType id)
{-
************************************************************************
* *
Plan B: tidy bindings, make TypeEnv full of IdInfo
* *
************************************************************************
Plan B: include pragmas, make interfaces
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Step 1: Figure out which Ids are externally visible
See Note [Choosing external Ids]
* Step 2: Gather the externally visible rules, separately from
the top-level bindings.
See Note [Finding external rules]
* Step 3: Tidy the bindings, externalising appropriate Ids
See Note [Tidy the top-level bindings]
* Drop all Ids from the TypeEnv, and add all the External Ids from
the bindings. (This adds their IdInfo to the TypeEnv; and adds
floated-out Ids that weren't even in the TypeEnv before.)
Note [Choosing external Ids]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See also the section "Interface stability" in the
recompilation-avoidance commentary:
https://gitlab.haskell.org/ghc/ghc/wikis/commentary/compiler/recompilation-avoidance
First we figure out which Ids are "external" Ids. An
"external" Id is one that is visible from outside the compilation
unit. These are
a) the user exported ones
b) the ones bound to static forms
c) ones mentioned in the unfoldings, workers, or
rules of externally-visible ones
While figuring out which Ids are external, we pick a "tidy" OccName
for each one. That is, we make its OccName distinct from the other
external OccNames in this module, so that in interface files and
object code we can refer to it unambiguously by its OccName. The
OccName for each binder is prefixed by the name of the exported Id
that references it; e.g. if "f" references "x" in its unfolding, then
"x" is renamed to "f_x". This helps distinguish the different "x"s
from each other, and means that if "f" is later removed, things that
depend on the other "x"s will not need to be recompiled. Of course,
if there are multiple "f_x"s, then we have to disambiguate somehow; we
use "f_x0", "f_x1" etc.
As far as possible we should assign names in a deterministic fashion.
Each time this module is compiled with the same options, we should end
up with the same set of external names with the same types. That is,
the ABI hash in the interface should not change. This turns out to be
quite tricky, since the order of the bindings going into the tidy
phase is already non-deterministic, as it is based on the ordering of
Uniques, which are assigned unpredictably.
To name things in a stable way, we do a depth-first-search of the
bindings, starting from the exports sorted by name. This way, as long
as the bindings themselves are deterministic (they sometimes aren't!),
the order in which they are presented to the tidying phase does not
affect the names we assign.
Note [Tidy the top-level bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Next we traverse the bindings top to bottom. For each *top-level*
binder
1. Make it into a GlobalId; its IdDetails becomes VanillaGlobal,
reflecting the fact that from now on we regard it as a global,
not local, Id
2. Give it a system-wide Unique.
[Even non-exported things need system-wide Uniques because the
byte-code generator builds a single Name->BCO symbol table.]
We use the NameCache kept in the HscEnv as the
source of such system-wide uniques.
For external Ids, use the original-name cache in the NameCache
to ensure that the unique assigned is the same as the Id had
in any previous compilation run.
3. Rename top-level Ids according to the names we chose in step 1.
If it's an external Id, make it have a External Name, otherwise
make it have an Internal Name. This is used by the code generator
to decide whether to make the label externally visible
4. Give it its UTTERLY FINAL IdInfo; in ptic,
* its unfolding, if it should have one
* its arity, computed from the number of visible lambdas
* its CAF info, computed from what is free in its RHS
Finally, substitute these new top-level binders consistently
throughout, including in unfoldings. We also tidy binders in
RHSs, so that they print nicely in interfaces.
-}
tidyProgram :: HscEnv -> ModGuts -> IO (CgGuts, ModDetails)
tidyProgram hsc_env (ModGuts { mg_module = mod
, mg_exports = exports
, mg_rdr_env = rdr_env
, mg_tcs = tcs
, mg_insts = cls_insts
, mg_fam_insts = fam_insts
, mg_binds = binds
, mg_patsyns = patsyns
, mg_rules = imp_rules
, mg_anns = anns
, mg_complete_sigs = complete_sigs
, mg_deps = deps
, mg_foreign = foreign_stubs
, mg_foreign_files = foreign_files
, mg_hpc_info = hpc_info
, mg_modBreaks = modBreaks
})
= Err.withTiming (pure dflags)
(text "CoreTidy"<+>brackets (ppr mod))
(const ()) $
do { let { omit_prags = gopt Opt_OmitInterfacePragmas dflags
; expose_all = gopt Opt_ExposeAllUnfoldings dflags
; print_unqual = mkPrintUnqualified dflags rdr_env
}
; let { type_env = typeEnvFromEntities [] tcs fam_insts
; implicit_binds
= concatMap getClassImplicitBinds (typeEnvClasses type_env) ++
concatMap getTyConImplicitBinds (typeEnvTyCons type_env)
}
; (unfold_env, tidy_occ_env)
<- chooseExternalIds hsc_env mod omit_prags expose_all
binds implicit_binds imp_rules
; let { (trimmed_binds, trimmed_rules)
= findExternalRules omit_prags binds imp_rules unfold_env }
; (tidy_env, tidy_binds)
<- tidyTopBinds hsc_env mod unfold_env tidy_occ_env trimmed_binds
; let { final_ids = [ id | id <- bindersOfBinds tidy_binds,
isExternalName (idName id)]
; type_env1 = extendTypeEnvWithIds type_env final_ids
; tidy_cls_insts = map (tidyClsInstDFun (tidyVarOcc tidy_env)) cls_insts
-- A DFunId will have a binding in tidy_binds, and so will now be in
-- tidy_type_env, replete with IdInfo. Its name will be unchanged since
-- it was born, but we want Global, IdInfo-rich (or not) DFunId in the
-- tidy_cls_insts. Similarly the Ids inside a PatSyn.
; tidy_rules = tidyRules tidy_env trimmed_rules
-- You might worry that the tidy_env contains IdInfo-rich stuff
-- and indeed it does, but if omit_prags is on, ext_rules is
-- empty
-- Tidy the Ids inside each PatSyn, very similarly to DFunIds
-- and then override the PatSyns in the type_env with the new tidy ones
-- This is really the only reason we keep mg_patsyns at all; otherwise
-- they could just stay in type_env
; tidy_patsyns = map (tidyPatSynIds (tidyVarOcc tidy_env)) patsyns
; type_env2 = extendTypeEnvWithPatSyns tidy_patsyns type_env1
; tidy_type_env = tidyTypeEnv omit_prags type_env2
}
-- See Note [Grand plan for static forms] in StaticPtrTable.
; (spt_entries, tidy_binds') <-
sptCreateStaticBinds hsc_env mod tidy_binds
; let { spt_init_code = sptModuleInitCode mod spt_entries
; add_spt_init_code =
case hscTarget dflags of
-- If we are compiling for the interpreter we will insert
-- any necessary SPT entries dynamically
HscInterpreted -> id
-- otherwise add a C stub to do so
_ -> (`appendStubC` spt_init_code)
}
; let { -- See Note [Injecting implicit bindings]
all_tidy_binds = implicit_binds ++ tidy_binds'
-- Get the TyCons to generate code for. Careful! We must use
-- the untidied TypeEnv here, because we need
-- (a) implicit TyCons arising from types and classes defined
-- in this module
-- (b) wired-in TyCons, which are normally removed from the
-- TypeEnv we put in the ModDetails
-- (c) Constructors even if they are not exported (the
-- tidied TypeEnv has trimmed these away)
; alg_tycons = filter isAlgTyCon (typeEnvTyCons type_env)
}
; endPassIO hsc_env print_unqual CoreTidy all_tidy_binds tidy_rules
-- If the endPass didn't print the rules, but ddump-rules is
-- on, print now
; unless (dopt Opt_D_dump_simpl dflags) $
Err.dumpIfSet_dyn dflags Opt_D_dump_rules
(showSDoc dflags (ppr CoreTidy <+> text "rules"))
(pprRulesForUser dflags tidy_rules)
-- Print one-line size info
; let cs = coreBindsStats tidy_binds
; Err.dumpIfSet_dyn dflags Opt_D_dump_core_stats "Core Stats"
(text "Tidy size (terms,types,coercions)"
<+> ppr (moduleName mod) <> colon
<+> int (cs_tm cs)
<+> int (cs_ty cs)
<+> int (cs_co cs) )
; return (CgGuts { cg_module = mod,
cg_tycons = alg_tycons,
cg_binds = all_tidy_binds,
cg_foreign = add_spt_init_code foreign_stubs,
cg_foreign_files = foreign_files,
cg_dep_pkgs = map fst $ dep_pkgs deps,
cg_hpc_info = hpc_info,
cg_modBreaks = modBreaks,
cg_spt_entries = spt_entries },
ModDetails { md_types = tidy_type_env,
md_rules = tidy_rules,
md_insts = tidy_cls_insts,
md_fam_insts = fam_insts,
md_exports = exports,
md_anns = anns, -- are already tidy
md_complete_sigs = complete_sigs
})
}
where
dflags = hsc_dflags hsc_env
tidyTypeEnv :: Bool -- Compiling without -O, so omit prags
-> TypeEnv -> TypeEnv
-- The completed type environment is gotten from
-- a) the types and classes defined here (plus implicit things)
-- b) adding Ids with correct IdInfo, including unfoldings,
-- gotten from the bindings
-- From (b) we keep only those Ids with External names;
-- the CoreTidy pass makes sure these are all and only
-- the externally-accessible ones
-- This truncates the type environment to include only the
-- exported Ids and things needed from them, which saves space
--
-- See Note [Don't attempt to trim data types]
tidyTypeEnv omit_prags type_env
= let
type_env1 = filterNameEnv (not . isWiredInName . getName) type_env
-- (1) remove wired-in things
type_env2 | omit_prags = mapNameEnv trimThing type_env1
| otherwise = type_env1
-- (2) trimmed if necessary
in
type_env2
--------------------------
trimThing :: TyThing -> TyThing
-- Trim off inessentials, for boot files and no -O
trimThing (AnId id)
| not (isImplicitId id)
= AnId (id `setIdInfo` vanillaIdInfo)
trimThing other_thing
= other_thing
extendTypeEnvWithPatSyns :: [PatSyn] -> TypeEnv -> TypeEnv
extendTypeEnvWithPatSyns tidy_patsyns type_env
= extendTypeEnvList type_env [AConLike (PatSynCon ps) | ps <- tidy_patsyns ]
{-
Note [Don't attempt to trim data types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For some time GHC tried to avoid exporting the data constructors
of a data type if it wasn't strictly necessary to do so; see #835.
But "strictly necessary" accumulated a longer and longer list
of exceptions, and finally I gave up the battle:
commit 9a20e540754fc2af74c2e7392f2786a81d8d5f11
Author: Simon Peyton Jones <simonpj@microsoft.com>
Date: Thu Dec 6 16:03:16 2012 +0000
Stop attempting to "trim" data types in interface files
Without -O, we previously tried to make interface files smaller
by not including the data constructors of data types. But
there are a lot of exceptions, notably when Template Haskell is
involved or, more recently, DataKinds.
However #7445 shows that even without TemplateHaskell, using
the Data class and invoking Language.Haskell.TH.Quote.dataToExpQ
is enough to require us to expose the data constructors.
So I've given up on this "optimisation" -- it's probably not
important anyway. Now I'm simply not attempting to trim off
the data constructors. The gain in simplicity is worth the
modest cost in interface file growth, which is limited to the
bits reqd to describe those data constructors.
************************************************************************
* *
Implicit bindings
* *
************************************************************************
Note [Injecting implicit bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We inject the implicit bindings right at the end, in CoreTidy.
Some of these bindings, notably record selectors, are not
constructed in an optimised form. E.g. record selector for
data T = MkT { x :: {-# UNPACK #-} !Int }
Then the unfolding looks like
x = \t. case t of MkT x1 -> let x = I# x1 in x
This generates bad code unless it's first simplified a bit. That is
why CoreUnfold.mkImplicitUnfolding uses simpleOptExpr to do a bit of
optimisation first. (Only matters when the selector is used curried;
eg map x ys.) See #2070.
[Oct 09: in fact, record selectors are no longer implicit Ids at all,
because we really do want to optimise them properly. They are treated
much like any other Id. But doing "light" optimisation on an implicit
Id still makes sense.]
At one time I tried injecting the implicit bindings *early*, at the
beginning of SimplCore. But that gave rise to real difficulty,
because GlobalIds are supposed to have *fixed* IdInfo, but the
simplifier and other core-to-core passes mess with IdInfo all the
time. The straw that broke the camels back was when a class selector
got the wrong arity -- ie the simplifier gave it arity 2, whereas
importing modules were expecting it to have arity 1 (#2844).
It's much safer just to inject them right at the end, after tidying.
Oh: two other reasons for injecting them late:
- If implicit Ids are already in the bindings when we start TidyPgm,
we'd have to be careful not to treat them as external Ids (in
the sense of chooseExternalIds); else the Ids mentioned in *their*
RHSs will be treated as external and you get an interface file
saying a18 = <blah>
but nothing referring to a18 (because the implicit Id is the
one that does, and implicit Ids don't appear in interface files).
- More seriously, the tidied type-envt will include the implicit
Id replete with a18 in its unfolding; but we won't take account
of a18 when computing a fingerprint for the class; result chaos.
There is one sort of implicit binding that is injected still later,
namely those for data constructor workers. Reason (I think): it's
really just a code generation trick.... binding itself makes no sense.
See Note [Data constructor workers] in CorePrep.
-}
getTyConImplicitBinds :: TyCon -> [CoreBind]
getTyConImplicitBinds tc = map get_defn (mapMaybe dataConWrapId_maybe (tyConDataCons tc))
getClassImplicitBinds :: Class -> [CoreBind]
getClassImplicitBinds cls
= [ NonRec op (mkDictSelRhs cls val_index)
| (op, val_index) <- classAllSelIds cls `zip` [0..] ]
get_defn :: Id -> CoreBind
get_defn id = NonRec id (unfoldingTemplate (realIdUnfolding id))
{-
************************************************************************
* *
\subsection{Step 1: finding externals}
* *
************************************************************************
See Note [Choosing external Ids].
-}
type UnfoldEnv = IdEnv (Name{-new name-}, Bool {-show unfolding-})
-- Maps each top-level Id to its new Name (the Id is tidied in step 2)
-- The Unique is unchanged. If the new Name is external, it will be
-- visible in the interface file.
--
-- Bool => expose unfolding or not.
chooseExternalIds :: HscEnv
-> Module
-> Bool -> Bool
-> [CoreBind]
-> [CoreBind]
-> [CoreRule]
-> IO (UnfoldEnv, TidyOccEnv)
-- Step 1 from the notes above
chooseExternalIds hsc_env mod omit_prags expose_all binds implicit_binds imp_id_rules
= do { (unfold_env1,occ_env1) <- search init_work_list emptyVarEnv init_occ_env
; let internal_ids = filter (not . (`elemVarEnv` unfold_env1)) binders
; tidy_internal internal_ids unfold_env1 occ_env1 }
where
nc_var = hsc_NC hsc_env
-- init_ext_ids is the initial list of Ids that should be
-- externalised. It serves as the starting point for finding a
-- deterministic, tidy, renaming for all external Ids in this
-- module.
--
-- It is sorted, so that it has a deterministic order (i.e. it's the
-- same list every time this module is compiled), in contrast to the
-- bindings, which are ordered non-deterministically.
init_work_list = zip init_ext_ids init_ext_ids
init_ext_ids = sortBy (compare `on` getOccName) $ filter is_external binders
-- An Id should be external if either (a) it is exported,
-- (b) it appears in the RHS of a local rule for an imported Id, or
-- See Note [Which rules to expose]
is_external id = isExportedId id || id `elemVarSet` rule_rhs_vars
rule_rhs_vars = mapUnionVarSet ruleRhsFreeVars imp_id_rules
binders = map fst $ flattenBinds binds
implicit_binders = bindersOfBinds implicit_binds
binder_set = mkVarSet binders
avoids = [getOccName name | bndr <- binders ++ implicit_binders,
let name = idName bndr,
isExternalName name ]
-- In computing our "avoids" list, we must include
-- all implicit Ids
-- all things with global names (assigned once and for
-- all by the renamer)
-- since their names are "taken".
-- The type environment is a convenient source of such things.
-- In particular, the set of binders doesn't include
-- implicit Ids at this stage.
-- We also make sure to avoid any exported binders. Consider
-- f{-u1-} = 1 -- Local decl
-- ...
-- f{-u2-} = 2 -- Exported decl
--
-- The second exported decl must 'get' the name 'f', so we
-- have to put 'f' in the avoids list before we get to the first
-- decl. tidyTopId then does a no-op on exported binders.
init_occ_env = initTidyOccEnv avoids
search :: [(Id,Id)] -- The work-list: (external id, referring id)
-- Make a tidy, external Name for the external id,
-- add it to the UnfoldEnv, and do the same for the
-- transitive closure of Ids it refers to
-- The referring id is used to generate a tidy
--- name for the external id
-> UnfoldEnv -- id -> (new Name, show_unfold)
-> TidyOccEnv -- occ env for choosing new Names
-> IO (UnfoldEnv, TidyOccEnv)
search [] unfold_env occ_env = return (unfold_env, occ_env)
search ((idocc,referrer) : rest) unfold_env occ_env
| idocc `elemVarEnv` unfold_env = search rest unfold_env occ_env
| otherwise = do
(occ_env', name') <- tidyTopName mod nc_var (Just referrer) occ_env idocc
let
(new_ids, show_unfold)
| omit_prags = ([], False)
| otherwise = addExternal expose_all refined_id
-- 'idocc' is an *occurrence*, but we need to see the
-- unfolding in the *definition*; so look up in binder_set
refined_id = case lookupVarSet binder_set idocc of
Just id -> id
Nothing -> WARN( True, ppr idocc ) idocc
unfold_env' = extendVarEnv unfold_env idocc (name',show_unfold)
referrer' | isExportedId refined_id = refined_id
| otherwise = referrer
--
search (zip new_ids (repeat referrer') ++ rest) unfold_env' occ_env'
tidy_internal :: [Id] -> UnfoldEnv -> TidyOccEnv
-> IO (UnfoldEnv, TidyOccEnv)
tidy_internal [] unfold_env occ_env = return (unfold_env,occ_env)
tidy_internal (id:ids) unfold_env occ_env = do
(occ_env', name') <- tidyTopName mod nc_var Nothing occ_env id
let unfold_env' = extendVarEnv unfold_env id (name',False)
tidy_internal ids unfold_env' occ_env'
addExternal :: Bool -> Id -> ([Id], Bool)
addExternal expose_all id = (new_needed_ids, show_unfold)
where
new_needed_ids = bndrFvsInOrder show_unfold id
idinfo = idInfo id
show_unfold = show_unfolding (unfoldingInfo idinfo)
never_active = isNeverActive (inlinePragmaActivation (inlinePragInfo idinfo))
loop_breaker = isStrongLoopBreaker (occInfo idinfo)
bottoming_fn = isBottomingSig (strictnessInfo idinfo)
-- Stuff to do with the Id's unfolding
-- We leave the unfolding there even if there is a worker
-- In GHCi the unfolding is used by importers
show_unfolding (CoreUnfolding { uf_src = src, uf_guidance = guidance })
= expose_all -- 'expose_all' says to expose all
-- unfoldings willy-nilly
|| isStableSource src -- Always expose things whose
-- source is an inline rule
|| not (bottoming_fn -- No need to inline bottom functions
|| never_active -- Or ones that say not to
|| loop_breaker -- Or that are loop breakers
|| neverUnfoldGuidance guidance)
show_unfolding (DFunUnfolding {}) = True
show_unfolding _ = False
{-
************************************************************************
* *
Deterministic free variables
* *
************************************************************************
We want a deterministic free-variable list. exprFreeVars gives us
a VarSet, which is in a non-deterministic order when converted to a
list. Hence, here we define a free-variable finder that returns
the free variables in the order that they are encountered.
See Note [Choosing external Ids]
-}
bndrFvsInOrder :: Bool -> Id -> [Id]
bndrFvsInOrder show_unfold id
= run (dffvLetBndr show_unfold id)
run :: DFFV () -> [Id]
run (DFFV m) = case m emptyVarSet (emptyVarSet, []) of
((_,ids),_) -> ids
newtype DFFV a
= DFFV (VarSet -- Envt: non-top-level things that are in scope
-- we don't want to record these as free vars
-> (VarSet, [Var]) -- Input State: (set, list) of free vars so far
-> ((VarSet,[Var]),a)) -- Output state
instance Functor DFFV where
fmap = liftM
instance Applicative DFFV where
pure a = DFFV $ \_ st -> (st, a)
(<*>) = ap
instance Monad DFFV where
(DFFV m) >>= k = DFFV $ \env st ->
case m env st of
(st',a) -> case k a of
DFFV f -> f env st'
extendScope :: Var -> DFFV a -> DFFV a
extendScope v (DFFV f) = DFFV (\env st -> f (extendVarSet env v) st)
extendScopeList :: [Var] -> DFFV a -> DFFV a
extendScopeList vs (DFFV f) = DFFV (\env st -> f (extendVarSetList env vs) st)
insert :: Var -> DFFV ()
insert v = DFFV $ \ env (set, ids) ->
let keep_me = isLocalId v &&
not (v `elemVarSet` env) &&
not (v `elemVarSet` set)
in if keep_me
then ((extendVarSet set v, v:ids), ())
else ((set, ids), ())
dffvExpr :: CoreExpr -> DFFV ()
dffvExpr (Var v) = insert v
dffvExpr (App e1 e2) = dffvExpr e1 >> dffvExpr e2
dffvExpr (Lam v e) = extendScope v (dffvExpr e)
dffvExpr (Tick (Breakpoint _ ids) e) = mapM_ insert ids >> dffvExpr e
dffvExpr (Tick _other e) = dffvExpr e
dffvExpr (Cast e _) = dffvExpr e
dffvExpr (Let (NonRec x r) e) = dffvBind (x,r) >> extendScope x (dffvExpr e)
dffvExpr (Let (Rec prs) e) = extendScopeList (map fst prs) $
(mapM_ dffvBind prs >> dffvExpr e)
dffvExpr (Case e b _ as) = dffvExpr e >> extendScope b (mapM_ dffvAlt as)
dffvExpr _other = return ()
dffvAlt :: (t, [Var], CoreExpr) -> DFFV ()
dffvAlt (_,xs,r) = extendScopeList xs (dffvExpr r)
dffvBind :: (Id, CoreExpr) -> DFFV ()
dffvBind(x,r)
| not (isId x) = dffvExpr r
| otherwise = dffvLetBndr False x >> dffvExpr r
-- Pass False because we are doing the RHS right here
-- If you say True you'll get *exponential* behaviour!
dffvLetBndr :: Bool -> Id -> DFFV ()
-- Gather the free vars of the RULES and unfolding of a binder
-- We always get the free vars of a *stable* unfolding, but
-- for a *vanilla* one (InlineRhs), the flag controls what happens:
-- True <=> get fvs of even a *vanilla* unfolding
-- False <=> ignore an InlineRhs
-- For nested bindings (call from dffvBind) we always say "False" because
-- we are taking the fvs of the RHS anyway
-- For top-level bindings (call from addExternal, via bndrFvsInOrder)
-- we say "True" if we are exposing that unfolding
dffvLetBndr vanilla_unfold id
= do { go_unf (unfoldingInfo idinfo)
; mapM_ go_rule (ruleInfoRules (ruleInfo idinfo)) }
where
idinfo = idInfo id
go_unf (CoreUnfolding { uf_tmpl = rhs, uf_src = src })
= case src of
InlineRhs | vanilla_unfold -> dffvExpr rhs
| otherwise -> return ()
_ -> dffvExpr rhs
go_unf (DFunUnfolding { df_bndrs = bndrs, df_args = args })
= extendScopeList bndrs $ mapM_ dffvExpr args
go_unf _ = return ()
go_rule (BuiltinRule {}) = return ()
go_rule (Rule { ru_bndrs = bndrs, ru_rhs = rhs })
= extendScopeList bndrs (dffvExpr rhs)
{-
************************************************************************
* *
findExternalRules
* *
************************************************************************
Note [Finding external rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The complete rules are gotten by combining
a) local rules for imported Ids
b) rules embedded in the top-level Ids
There are two complications:
* Note [Which rules to expose]
* Note [Trimming auto-rules]
Note [Which rules to expose]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The function 'expose_rule' filters out rules that mention, on the LHS,
Ids that aren't externally visible; these rules can't fire in a client
module.
The externally-visible binders are computed (by chooseExternalIds)
assuming that all orphan rules are externalised (see init_ext_ids in
function 'search'). So in fact it's a bit conservative and we may
export more than we need. (It's a sort of mutual recursion.)
Note [Trimming auto-rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Second, with auto-specialisation we may specialise local or imported
dfuns or INLINE functions, and then later inline them. That may leave
behind something like
RULE "foo" forall d. f @ Int d = f_spec
where f is either local or imported, and there is no remaining
reference to f_spec except from the RULE.
Now that RULE *might* be useful to an importing module, but that is
purely speculative, and meanwhile the code is taking up space and
codegen time. I found that binary sizes jumped by 6-10% when I
started to specialise INLINE functions (again, Note [Inline
specialisations] in Specialise).
So it seems better to drop the binding for f_spec, and the rule
itself, if the auto-generated rule is the *only* reason that it is
being kept alive.
(The RULE still might have been useful in the past; that is, it was
the right thing to have generated it in the first place. See Note
[Inline specialisations] in Specialise. But now it has served its
purpose, and can be discarded.)
So findExternalRules does this:
* Remove all bindings that are kept alive *only* by isAutoRule rules
(this is done in trim_binds)
* Remove all auto rules that mention bindings that have been removed
(this is done by filtering by keep_rule)
NB: if a binding is kept alive for some *other* reason (e.g. f_spec is
called in the final code), we keep the rule too.
This stuff is the only reason for the ru_auto field in a Rule.
-}
findExternalRules :: Bool -- Omit pragmas
-> [CoreBind]
-> [CoreRule] -- Local rules for imported fns
-> UnfoldEnv -- Ids that are exported, so we need their rules
-> ([CoreBind], [CoreRule])
-- See Note [Finding external rules]
findExternalRules omit_prags binds imp_id_rules unfold_env
= (trimmed_binds, filter keep_rule all_rules)
where
imp_rules = filter expose_rule imp_id_rules
imp_user_rule_fvs = mapUnionVarSet user_rule_rhs_fvs imp_rules
user_rule_rhs_fvs rule | isAutoRule rule = emptyVarSet
| otherwise = ruleRhsFreeVars rule
(trimmed_binds, local_bndrs, _, all_rules) = trim_binds binds
keep_rule rule = ruleFreeVars rule `subVarSet` local_bndrs
-- Remove rules that make no sense, because they mention a
-- local binder (on LHS or RHS) that we have now discarded.
-- (NB: ruleFreeVars only includes LocalIds)
--
-- LHS: we have already filtered out rules that mention internal Ids
-- on LHS but that isn't enough because we might have by now
-- discarded a binding with an external Id. (How?
-- chooseExternalIds is a bit conservative.)
--
-- RHS: the auto rules that might mention a binder that has
-- been discarded; see Note [Trimming auto-rules]
expose_rule rule
| omit_prags = False
| otherwise = all is_external_id (ruleLhsFreeIdsList rule)
-- Don't expose a rule whose LHS mentions a locally-defined
-- Id that is completely internal (i.e. not visible to an
-- importing module). NB: ruleLhsFreeIds only returns LocalIds.
-- See Note [Which rules to expose]
is_external_id id = case lookupVarEnv unfold_env id of
Just (name, _) -> isExternalName name
Nothing -> False
trim_binds :: [CoreBind]
-> ( [CoreBind] -- Trimmed bindings
, VarSet -- Binders of those bindings
, VarSet -- Free vars of those bindings + rhs of user rules
-- (we don't bother to delete the binders)
, [CoreRule]) -- All rules, imported + from the bindings
-- This function removes unnecessary bindings, and gathers up rules from
-- the bindings we keep. See Note [Trimming auto-rules]
trim_binds [] -- Base case, start with imp_user_rule_fvs
= ([], emptyVarSet, imp_user_rule_fvs, imp_rules)
trim_binds (bind:binds)
| any needed bndrs -- Keep binding
= ( bind : binds', bndr_set', needed_fvs', local_rules ++ rules )
| otherwise -- Discard binding altogether
= stuff
where
stuff@(binds', bndr_set, needed_fvs, rules)
= trim_binds binds
needed bndr = isExportedId bndr || bndr `elemVarSet` needed_fvs
bndrs = bindersOf bind
rhss = rhssOfBind bind
bndr_set' = bndr_set `extendVarSetList` bndrs
needed_fvs' = needed_fvs `unionVarSet`
mapUnionVarSet idUnfoldingVars bndrs `unionVarSet`
-- Ignore type variables in the type of bndrs
mapUnionVarSet exprFreeVars rhss `unionVarSet`
mapUnionVarSet user_rule_rhs_fvs local_rules
-- In needed_fvs', we don't bother to delete binders from the fv set
local_rules = [ rule
| id <- bndrs
, is_external_id id -- Only collect rules for external Ids
, rule <- idCoreRules id
, expose_rule rule ] -- and ones that can fire in a client
{-
************************************************************************
* *
tidyTopName
* *
************************************************************************
This is where we set names to local/global based on whether they really are
externally visible (see comment at the top of this module). If the name
was previously local, we have to give it a unique occurrence name if
we intend to externalise it.
-}
tidyTopName :: Module -> IORef NameCache -> Maybe Id -> TidyOccEnv
-> Id -> IO (TidyOccEnv, Name)
tidyTopName mod nc_var maybe_ref occ_env id
| global && internal = return (occ_env, localiseName name)
| global && external = return (occ_env, name)
-- Global names are assumed to have been allocated by the renamer,
-- so they already have the "right" unique
-- And it's a system-wide unique too
-- Now we get to the real reason that all this is in the IO Monad:
-- we have to update the name cache in a nice atomic fashion
| local && internal = do { new_local_name <- atomicModifyIORef' nc_var mk_new_local
; return (occ_env', new_local_name) }
-- Even local, internal names must get a unique occurrence, because
-- if we do -split-objs we externalise the name later, in the code generator
--
-- Similarly, we must make sure it has a system-wide Unique, because
-- the byte-code generator builds a system-wide Name->BCO symbol table
| local && external = do { new_external_name <- atomicModifyIORef' nc_var mk_new_external
; return (occ_env', new_external_name) }
| otherwise = panic "tidyTopName"
where
name = idName id
external = isJust maybe_ref
global = isExternalName name
local = not global
internal = not external
loc = nameSrcSpan name
old_occ = nameOccName name
new_occ | Just ref <- maybe_ref
, ref /= id
= mkOccName (occNameSpace old_occ) $
let
ref_str = occNameString (getOccName ref)
occ_str = occNameString old_occ
in
case occ_str of
'$':'w':_ -> occ_str
-- workers: the worker for a function already
-- includes the occname for its parent, so there's
-- no need to prepend the referrer.
_other | isSystemName name -> ref_str
| otherwise -> ref_str ++ '_' : occ_str
-- If this name was system-generated, then don't bother
-- to retain its OccName, just use the referrer. These
-- system-generated names will become "f1", "f2", etc. for
-- a referrer "f".
| otherwise = old_occ
(occ_env', occ') = tidyOccName occ_env new_occ
mk_new_local nc = (nc { nsUniqs = us }, mkInternalName uniq occ' loc)
where
(uniq, us) = takeUniqFromSupply (nsUniqs nc)
mk_new_external nc = allocateGlobalBinder nc mod occ' loc
-- If we want to externalise a currently-local name, check
-- whether we have already assigned a unique for it.
-- If so, use it; if not, extend the table.
-- All this is done by allcoateGlobalBinder.
-- This is needed when *re*-compiling a module in GHCi; we must
-- use the same name for externally-visible things as we did before.
{-
************************************************************************
* *
\subsection{Step 2: top-level tidying}
* *
************************************************************************
-}
-- TopTidyEnv: when tidying we need to know
-- * nc_var: The NameCache, containing a unique supply and any pre-ordained Names.
-- These may have arisen because the
-- renamer read in an interface file mentioning M.$wf, say,
-- and assigned it unique r77. If, on this compilation, we've
-- invented an Id whose name is $wf (but with a different unique)
-- we want to rename it to have unique r77, so that we can do easy
-- comparisons with stuff from the interface file
--
-- * occ_env: The TidyOccEnv, which tells us which local occurrences
-- are 'used'
--
-- * subst_env: A Var->Var mapping that substitutes the new Var for the old
tidyTopBinds :: HscEnv
-> Module
-> UnfoldEnv
-> TidyOccEnv
-> CoreProgram
-> IO (TidyEnv, CoreProgram)
tidyTopBinds hsc_env this_mod unfold_env init_occ_env binds
= do mkIntegerId <- lookupMkIntegerName dflags hsc_env
mkNaturalId <- lookupMkNaturalName dflags hsc_env
integerSDataCon <- lookupIntegerSDataConName dflags hsc_env
naturalSDataCon <- lookupNaturalSDataConName dflags hsc_env
let cvt_literal nt i = case nt of
LitNumInteger -> Just (cvtLitInteger dflags mkIntegerId integerSDataCon i)
LitNumNatural -> Just (cvtLitNatural dflags mkNaturalId naturalSDataCon i)
_ -> Nothing
result = tidy cvt_literal init_env binds
seqBinds (snd result) `seq` return result
-- This seqBinds avoids a spike in space usage (see #13564)
where
dflags = hsc_dflags hsc_env
init_env = (init_occ_env, emptyVarEnv)
tidy _ env [] = (env, [])
tidy cvt_literal env (b:bs)
= let (env1, b') = tidyTopBind dflags this_mod cvt_literal unfold_env
env b
(env2, bs') = tidy cvt_literal env1 bs
in (env2, b':bs')
------------------------
tidyTopBind :: DynFlags
-> Module
-> (LitNumType -> Integer -> Maybe CoreExpr)
-> UnfoldEnv
-> TidyEnv
-> CoreBind
-> (TidyEnv, CoreBind)
tidyTopBind dflags this_mod cvt_literal unfold_env
(occ_env,subst1) (NonRec bndr rhs)
= (tidy_env2, NonRec bndr' rhs')
where
Just (name',show_unfold) = lookupVarEnv unfold_env bndr
caf_info = hasCafRefs dflags this_mod
(subst1, cvt_literal)
(idArity bndr) rhs
(bndr', rhs') = tidyTopPair dflags show_unfold tidy_env2 caf_info name'
(bndr, rhs)
subst2 = extendVarEnv subst1 bndr bndr'
tidy_env2 = (occ_env, subst2)
tidyTopBind dflags this_mod cvt_literal unfold_env
(occ_env, subst1) (Rec prs)
= (tidy_env2, Rec prs')
where
prs' = [ tidyTopPair dflags show_unfold tidy_env2 caf_info name' (id,rhs)
| (id,rhs) <- prs,
let (name',show_unfold) =
expectJust "tidyTopBind" $ lookupVarEnv unfold_env id
]
subst2 = extendVarEnvList subst1 (bndrs `zip` map fst prs')
tidy_env2 = (occ_env, subst2)
bndrs = map fst prs
-- the CafInfo for a recursive group says whether *any* rhs in
-- the group may refer indirectly to a CAF (because then, they all do).
caf_info
| or [ mayHaveCafRefs (hasCafRefs dflags this_mod
(subst1, cvt_literal)
(idArity bndr) rhs)
| (bndr,rhs) <- prs ] = MayHaveCafRefs
| otherwise = NoCafRefs
-----------------------------------------------------------
tidyTopPair :: DynFlags
-> Bool -- show unfolding
-> TidyEnv -- The TidyEnv is used to tidy the IdInfo
-- It is knot-tied: don't look at it!
-> CafInfo
-> Name -- New name
-> (Id, CoreExpr) -- Binder and RHS before tidying
-> (Id, CoreExpr)
-- This function is the heart of Step 2
-- The rec_tidy_env is the one to use for the IdInfo
-- It's necessary because when we are dealing with a recursive
-- group, a variable late in the group might be mentioned
-- in the IdInfo of one early in the group
tidyTopPair dflags show_unfold rhs_tidy_env caf_info name' (bndr, rhs)
= (bndr1, rhs1)
where
bndr1 = mkGlobalId details name' ty' idinfo'
details = idDetails bndr -- Preserve the IdDetails
ty' = tidyTopType (idType bndr)
rhs1 = tidyExpr rhs_tidy_env rhs
idinfo' = tidyTopIdInfo dflags rhs_tidy_env name' rhs rhs1 (idInfo bndr)
show_unfold caf_info
-- tidyTopIdInfo creates the final IdInfo for top-level
-- binders. There are two delicate pieces:
--
-- * Arity. After CoreTidy, this arity must not change any more.
-- Indeed, CorePrep must eta expand where necessary to make
-- the manifest arity equal to the claimed arity.
--
-- * CAF info. This must also remain valid through to code generation.
-- We add the info here so that it propagates to all
-- occurrences of the binders in RHSs, and hence to occurrences in
-- unfoldings, which are inside Ids imported by GHCi. Ditto RULES.
-- CoreToStg makes use of this when constructing SRTs.
tidyTopIdInfo :: DynFlags -> TidyEnv -> Name -> CoreExpr -> CoreExpr
-> IdInfo -> Bool -> CafInfo -> IdInfo
tidyTopIdInfo dflags rhs_tidy_env name orig_rhs tidy_rhs idinfo show_unfold caf_info
| not is_external -- For internal Ids (not externally visible)
= vanillaIdInfo -- we only need enough info for code generation
-- Arity and strictness info are enough;
-- c.f. CoreTidy.tidyLetBndr
`setCafInfo` caf_info
`setArityInfo` arity
`setStrictnessInfo` final_sig
`setUnfoldingInfo` minimal_unfold_info -- See note [Preserve evaluatedness]
-- in CoreTidy
| otherwise -- Externally-visible Ids get the whole lot
= vanillaIdInfo
`setCafInfo` caf_info
`setArityInfo` arity
`setStrictnessInfo` final_sig
`setOccInfo` robust_occ_info
`setInlinePragInfo` (inlinePragInfo idinfo)
`setUnfoldingInfo` unfold_info
-- NB: we throw away the Rules
-- They have already been extracted by findExternalRules
where
is_external = isExternalName name
--------- OccInfo ------------
robust_occ_info = zapFragileOcc (occInfo idinfo)
-- It's important to keep loop-breaker information
-- when we are doing -fexpose-all-unfoldings
--------- Strictness ------------
mb_bot_str = exprBotStrictness_maybe orig_rhs
sig = strictnessInfo idinfo
final_sig | not $ isTopSig sig
= WARN( _bottom_hidden sig , ppr name ) sig
-- try a cheap-and-cheerful bottom analyser
| Just (_, nsig) <- mb_bot_str = nsig
| otherwise = sig
_bottom_hidden id_sig = case mb_bot_str of
Nothing -> False
Just (arity, _) -> not (appIsBottom id_sig arity)
--------- Unfolding ------------
unf_info = unfoldingInfo idinfo
unfold_info | show_unfold = tidyUnfolding rhs_tidy_env unf_info unf_from_rhs
| otherwise = minimal_unfold_info
minimal_unfold_info = zapUnfolding unf_info
unf_from_rhs = mkTopUnfolding dflags is_bot tidy_rhs
is_bot = isBottomingSig final_sig
-- NB: do *not* expose the worker if show_unfold is off,
-- because that means this thing is a loop breaker or
-- marked NOINLINE or something like that
-- This is important: if you expose the worker for a loop-breaker
-- then you can make the simplifier go into an infinite loop, because
-- in effect the unfolding is exposed. See #1709
--
-- You might think that if show_unfold is False, then the thing should
-- not be w/w'd in the first place. But a legitimate reason is this:
-- the function returns bottom
-- In this case, show_unfold will be false (we don't expose unfoldings
-- for bottoming functions), but we might still have a worker/wrapper
-- split (see Note [Worker-wrapper for bottoming functions] in WorkWrap.hs
--------- Arity ------------
-- Usually the Id will have an accurate arity on it, because
-- the simplifier has just run, but not always.
-- One case I found was when the last thing the simplifier
-- did was to let-bind a non-atomic argument and then float
-- it to the top level. So it seems more robust just to
-- fix it here.
arity = exprArity orig_rhs
{-
************************************************************************
* *
Figuring out CafInfo for an expression
* *
************************************************************************
hasCafRefs decides whether a top-level closure can point into the dynamic heap.
We mark such things as `MayHaveCafRefs' because this information is
used to decide whether a particular closure needs to be referenced
in an SRT or not.
There are two reasons for setting MayHaveCafRefs:
a) The RHS is a CAF: a top-level updatable thunk.
b) The RHS refers to something that MayHaveCafRefs
Possible improvement: In an effort to keep the number of CAFs (and
hence the size of the SRTs) down, we could also look at the expression and
decide whether it requires a small bounded amount of heap, so we can ignore
it as a CAF. In these cases however, we would need to use an additional
CAF list to keep track of non-collectable CAFs.
Note [Disgusting computation of CafRefs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We compute hasCafRefs here, because IdInfo is supposed to be finalised
after TidyPgm. But CorePrep does some transformations that affect CAF-hood.
So we have to *predict* the result here, which is revolting.
In particular CorePrep expands Integer and Natural literals. So in the
prediction code here we resort to applying the same expansion (cvt_literal).
Ugh!
-}
type CafRefEnv = (VarEnv Id, LitNumType -> Integer -> Maybe CoreExpr)
-- The env finds the Caf-ness of the Id
-- The LitNumType -> Integer -> CoreExpr is the desugaring functions for
-- Integer and Natural literals
-- See Note [Disgusting computation of CafRefs]
hasCafRefs :: DynFlags -> Module
-> CafRefEnv -> Arity -> CoreExpr
-> CafInfo
hasCafRefs dflags this_mod (subst, cvt_literal) arity expr
| is_caf || mentions_cafs = MayHaveCafRefs
| otherwise = NoCafRefs
where
mentions_cafs = cafRefsE expr
is_dynamic_name = isDllName dflags this_mod
is_caf = not (arity > 0 || rhsIsStatic (targetPlatform dflags) is_dynamic_name
cvt_literal expr)
-- NB. we pass in the arity of the expression, which is expected
-- to be calculated by exprArity. This is because exprArity
-- knows how much eta expansion is going to be done by
-- CorePrep later on, and we don't want to duplicate that
-- knowledge in rhsIsStatic below.
cafRefsE :: Expr a -> Bool
cafRefsE (Var id) = cafRefsV id
cafRefsE (Lit lit) = cafRefsL lit
cafRefsE (App f a) = cafRefsE f || cafRefsE a
cafRefsE (Lam _ e) = cafRefsE e
cafRefsE (Let b e) = cafRefsEs (rhssOfBind b) || cafRefsE e
cafRefsE (Case e _ _ alts) = cafRefsE e || cafRefsEs (rhssOfAlts alts)
cafRefsE (Tick _n e) = cafRefsE e
cafRefsE (Cast e _co) = cafRefsE e
cafRefsE (Type _) = False
cafRefsE (Coercion _) = False
cafRefsEs :: [Expr a] -> Bool
cafRefsEs [] = False
cafRefsEs (e:es) = cafRefsE e || cafRefsEs es
cafRefsL :: Literal -> Bool
-- Don't forget that mk_integer id might have Caf refs!
-- We first need to convert the Integer into its final form, to
-- see whether mkInteger is used. Same for LitNatural.
cafRefsL (LitNumber nt i _) = case cvt_literal nt i of
Just e -> cafRefsE e
Nothing -> False
cafRefsL _ = False
cafRefsV :: Id -> Bool
cafRefsV id
| not (isLocalId id) = mayHaveCafRefs (idCafInfo id)
| Just id' <- lookupVarEnv subst id = mayHaveCafRefs (idCafInfo id')
| otherwise = False
{-
************************************************************************
* *
Old, dead, type-trimming code
* *
************************************************************************
We used to try to "trim off" the constructors of data types that are
not exported, to reduce the size of interface files, at least without
-O. But that is not always possible: see the old Note [When we can't
trim types] below for exceptions.
Then (#7445) I realised that the TH problem arises for any data type
that we have deriving( Data ), because we can invoke
Language.Haskell.TH.Quote.dataToExpQ
to get a TH Exp representation of a value built from that data type.
You don't even need {-# LANGUAGE TemplateHaskell #-}.
At this point I give up. The pain of trimming constructors just
doesn't seem worth the gain. So I've dumped all the code, and am just
leaving it here at the end of the module in case something like this
is ever resurrected.
Note [When we can't trim types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The basic idea of type trimming is to export algebraic data types
abstractly (without their data constructors) when compiling without
-O, unless of course they are explicitly exported by the user.
We always export synonyms, because they can be mentioned in the type
of an exported Id. We could do a full dependency analysis starting
from the explicit exports, but that's quite painful, and not done for
now.
But there are some times we can't do that, indicated by the 'no_trim_types' flag.
First, Template Haskell. Consider (#2386) this
module M(T, makeOne) where
data T = Yay String
makeOne = [| Yay "Yep" |]
Notice that T is exported abstractly, but makeOne effectively exports it too!
A module that splices in $(makeOne) will then look for a declaration of Yay,
so it'd better be there. Hence, brutally but simply, we switch off type
constructor trimming if TH is enabled in this module.
Second, data kinds. Consider (#5912)
{-# LANGUAGE DataKinds #-}
module M() where
data UnaryTypeC a = UnaryDataC a
type Bug = 'UnaryDataC
We always export synonyms, so Bug is exposed, and that means that
UnaryTypeC must be too, even though it's not explicitly exported. In
effect, DataKinds means that we'd need to do a full dependency analysis
to see what data constructors are mentioned. But we don't do that yet.
In these two cases we just switch off type trimming altogether.
mustExposeTyCon :: Bool -- Type-trimming flag
-> NameSet -- Exports
-> TyCon -- The tycon
-> Bool -- Can its rep be hidden?
-- We are compiling without -O, and thus trying to write as little as
-- possible into the interface file. But we must expose the details of
-- any data types whose constructors or fields are exported
mustExposeTyCon no_trim_types exports tc
| no_trim_types -- See Note [When we can't trim types]
= True
| not (isAlgTyCon tc) -- Always expose synonyms (otherwise we'd have to
-- figure out whether it was mentioned in the type
-- of any other exported thing)
= True
| isEnumerationTyCon tc -- For an enumeration, exposing the constructors
= True -- won't lead to the need for further exposure
| isFamilyTyCon tc -- Open type family
= True
-- Below here we just have data/newtype decls or family instances
| null data_cons -- Ditto if there are no data constructors
= True -- (NB: empty data types do not count as enumerations
-- see Note [Enumeration types] in TyCon
| any exported_con data_cons -- Expose rep if any datacon or field is exported
= True
| isNewTyCon tc && isFFITy (snd (newTyConRhs tc))
= True -- Expose the rep for newtypes if the rep is an FFI type.
-- For a very annoying reason. 'Foreign import' is meant to
-- be able to look through newtypes transparently, but it
-- can only do that if it can "see" the newtype representation
| otherwise
= False
where
data_cons = tyConDataCons tc
exported_con con = any (`elemNameSet` exports)
(dataConName con : dataConFieldLabels con)
-}
|