1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
|
-- -----------------------------------------------------------------------------
--
-- (c) The University of Glasgow 1993-2004
--
-- This is the top-level module in the native code generator.
--
-- -----------------------------------------------------------------------------
\begin{code}
module AsmCodeGen ( nativeCodeGen ) where
#include "HsVersions.h"
#include "nativeGen/NCG.h"
import qualified X86.CodeGen
import qualified X86.Regs
import qualified X86.Instr
import qualified X86.Ppr
import qualified SPARC.CodeGen
import qualified SPARC.Regs
import qualified SPARC.Instr
import qualified SPARC.Ppr
import qualified SPARC.ShortcutJump
import qualified SPARC.CodeGen.Expand
import qualified PPC.CodeGen
import qualified PPC.Cond
import qualified PPC.Regs
import qualified PPC.RegInfo
import qualified PPC.Instr
import qualified PPC.Ppr
import RegAlloc.Liveness
import qualified RegAlloc.Linear.Main as Linear
import qualified GraphColor as Color
import qualified RegAlloc.Graph.Main as Color
import qualified RegAlloc.Graph.Stats as Color
import qualified RegAlloc.Graph.TrivColorable as Color
import TargetReg
import Platform
import Config
import Instruction
import PIC
import Reg
import NCGMonad
import BlockId
import CgUtils ( fixStgRegisters )
import OldCmm
import CmmOpt ( cmmEliminateDeadBlocks, cmmMiniInline, cmmMachOpFold )
import OldPprCmm
import CLabel
import UniqFM
import Unique ( Unique, getUnique )
import UniqSupply
import DynFlags
import StaticFlags
import Util
import BasicTypes ( Alignment )
import Digraph
import Pretty (Doc)
import qualified Pretty
import BufWrite
import Outputable
import FastString
import UniqSet
import ErrUtils
import Module
-- DEBUGGING ONLY
--import OrdList
import Data.List
import Data.Maybe
import Control.Monad
import System.IO
{-
The native-code generator has machine-independent and
machine-dependent modules.
This module ("AsmCodeGen") is the top-level machine-independent
module. Before entering machine-dependent land, we do some
machine-independent optimisations (defined below) on the
'CmmStmts's.
We convert to the machine-specific 'Instr' datatype with
'cmmCodeGen', assuming an infinite supply of registers. We then use
a machine-independent register allocator ('regAlloc') to rejoin
reality. Obviously, 'regAlloc' has machine-specific helper
functions (see about "RegAllocInfo" below).
Finally, we order the basic blocks of the function so as to minimise
the number of jumps between blocks, by utilising fallthrough wherever
possible.
The machine-dependent bits break down as follows:
* ["MachRegs"] Everything about the target platform's machine
registers (and immediate operands, and addresses, which tend to
intermingle/interact with registers).
* ["MachInstrs"] Includes the 'Instr' datatype (possibly should
have a module of its own), plus a miscellany of other things
(e.g., 'targetDoubleSize', 'smStablePtrTable', ...)
* ["MachCodeGen"] is where 'Cmm' stuff turns into
machine instructions.
* ["PprMach"] 'pprInstr' turns an 'Instr' into text (well, really
a 'Doc').
* ["RegAllocInfo"] In the register allocator, we manipulate
'MRegsState's, which are 'BitSet's, one bit per machine register.
When we want to say something about a specific machine register
(e.g., ``it gets clobbered by this instruction''), we set/unset
its bit. Obviously, we do this 'BitSet' thing for efficiency
reasons.
The 'RegAllocInfo' module collects together the machine-specific
info needed to do register allocation.
* ["RegisterAlloc"] The (machine-independent) register allocator.
-}
-- -----------------------------------------------------------------------------
-- Top-level of the native codegen
data NcgImpl statics instr jumpDest = NcgImpl {
cmmTopCodeGen :: RawCmmTop -> NatM [NatCmmTop statics instr],
generateJumpTableForInstr :: instr -> Maybe (NatCmmTop statics instr),
getJumpDestBlockId :: jumpDest -> Maybe BlockId,
canShortcut :: instr -> Maybe jumpDest,
shortcutStatics :: (BlockId -> Maybe jumpDest) -> statics -> statics,
shortcutJump :: (BlockId -> Maybe jumpDest) -> instr -> instr,
pprNatCmmTop :: Platform -> NatCmmTop statics instr -> Doc,
maxSpillSlots :: Int,
allocatableRegs :: [RealReg],
ncg_x86fp_kludge :: [NatCmmTop statics instr] -> [NatCmmTop statics instr],
ncgExpandTop :: [NatCmmTop statics instr] -> [NatCmmTop statics instr],
ncgMakeFarBranches :: [NatBasicBlock instr] -> [NatBasicBlock instr]
}
--------------------
nativeCodeGen :: DynFlags -> Handle -> UniqSupply -> [RawCmm] -> IO ()
nativeCodeGen dflags h us cmms
= let nCG' :: (Outputable statics, PlatformOutputable instr, Instruction instr) => NcgImpl statics instr jumpDest -> IO ()
nCG' ncgImpl = nativeCodeGen' dflags ncgImpl h us cmms
x86NcgImpl = NcgImpl {
cmmTopCodeGen = X86.CodeGen.cmmTopCodeGen
,generateJumpTableForInstr = X86.CodeGen.generateJumpTableForInstr
,getJumpDestBlockId = X86.Instr.getJumpDestBlockId
,canShortcut = X86.Instr.canShortcut
,shortcutStatics = X86.Instr.shortcutStatics
,shortcutJump = X86.Instr.shortcutJump
,pprNatCmmTop = X86.Ppr.pprNatCmmTop
,maxSpillSlots = X86.Instr.maxSpillSlots
,allocatableRegs = X86.Regs.allocatableRegs
,ncg_x86fp_kludge = id
,ncgExpandTop = id
,ncgMakeFarBranches = id
}
in case platformArch $ targetPlatform dflags of
ArchX86 -> nCG' (x86NcgImpl { ncg_x86fp_kludge = map x86fp_kludge })
ArchX86_64 -> nCG' x86NcgImpl
ArchPPC ->
nCG' $ NcgImpl {
cmmTopCodeGen = PPC.CodeGen.cmmTopCodeGen
,generateJumpTableForInstr = PPC.CodeGen.generateJumpTableForInstr
,getJumpDestBlockId = PPC.RegInfo.getJumpDestBlockId
,canShortcut = PPC.RegInfo.canShortcut
,shortcutStatics = PPC.RegInfo.shortcutStatics
,shortcutJump = PPC.RegInfo.shortcutJump
,pprNatCmmTop = PPC.Ppr.pprNatCmmTop
,maxSpillSlots = PPC.Instr.maxSpillSlots
,allocatableRegs = PPC.Regs.allocatableRegs
,ncg_x86fp_kludge = id
,ncgExpandTop = id
,ncgMakeFarBranches = makeFarBranches
}
ArchSPARC ->
nCG' $ NcgImpl {
cmmTopCodeGen = SPARC.CodeGen.cmmTopCodeGen
,generateJumpTableForInstr = SPARC.CodeGen.generateJumpTableForInstr
,getJumpDestBlockId = SPARC.ShortcutJump.getJumpDestBlockId
,canShortcut = SPARC.ShortcutJump.canShortcut
,shortcutStatics = SPARC.ShortcutJump.shortcutStatics
,shortcutJump = SPARC.ShortcutJump.shortcutJump
,pprNatCmmTop = SPARC.Ppr.pprNatCmmTop
,maxSpillSlots = SPARC.Instr.maxSpillSlots
,allocatableRegs = SPARC.Regs.allocatableRegs
,ncg_x86fp_kludge = id
,ncgExpandTop = map SPARC.CodeGen.Expand.expandTop
,ncgMakeFarBranches = id
}
ArchARM _ _ ->
panic "nativeCodeGen: No NCG for ARM"
ArchPPC_64 ->
panic "nativeCodeGen: No NCG for PPC 64"
ArchUnknown ->
panic "nativeCodeGen: No NCG for unknown arch"
nativeCodeGen' :: (Outputable statics, PlatformOutputable instr, Instruction instr)
=> DynFlags
-> NcgImpl statics instr jumpDest
-> Handle -> UniqSupply -> [RawCmm] -> IO ()
nativeCodeGen' dflags ncgImpl h us cmms
= do
let platform = targetPlatform dflags
split_cmms = concat $ map add_split cmms
-- BufHandle is a performance hack. We could hide it inside
-- Pretty if it weren't for the fact that we do lots of little
-- printDocs here (in order to do codegen in constant space).
bufh <- newBufHandle h
(imports, prof) <- cmmNativeGens dflags ncgImpl bufh us split_cmms [] [] 0
bFlush bufh
let (native, colorStats, linearStats)
= unzip3 prof
-- dump native code
dumpIfSet_dyn dflags
Opt_D_dump_asm "Asm code"
(vcat $ map (docToSDoc . pprNatCmmTop ncgImpl platform) $ concat native)
-- dump global NCG stats for graph coloring allocator
(case concat $ catMaybes colorStats of
[] -> return ()
stats -> do
-- build the global register conflict graph
let graphGlobal
= foldl Color.union Color.initGraph
$ [ Color.raGraph stat
| stat@Color.RegAllocStatsStart{} <- stats]
dumpSDoc dflags Opt_D_dump_asm_stats "NCG stats"
$ Color.pprStats stats graphGlobal
dumpIfSet_dyn dflags
Opt_D_dump_asm_conflicts "Register conflict graph"
$ Color.dotGraph
(targetRegDotColor platform)
(Color.trivColorable platform
(targetVirtualRegSqueeze platform)
(targetRealRegSqueeze platform))
$ graphGlobal)
-- dump global NCG stats for linear allocator
(case concat $ catMaybes linearStats of
[] -> return ()
stats -> dumpSDoc dflags Opt_D_dump_asm_stats "NCG stats"
$ Linear.pprStats (concat native) stats)
-- write out the imports
Pretty.printDoc Pretty.LeftMode h
$ makeImportsDoc dflags (concat imports)
return ()
where add_split (Cmm tops)
| dopt Opt_SplitObjs dflags = split_marker : tops
| otherwise = tops
split_marker = CmmProc Nothing mkSplitMarkerLabel (ListGraph [])
-- | Do native code generation on all these cmms.
--
cmmNativeGens :: (Outputable statics, PlatformOutputable instr, Instruction instr)
=> DynFlags
-> NcgImpl statics instr jumpDest
-> BufHandle
-> UniqSupply
-> [RawCmmTop]
-> [[CLabel]]
-> [ ([NatCmmTop statics instr],
Maybe [Color.RegAllocStats statics instr],
Maybe [Linear.RegAllocStats]) ]
-> Int
-> IO ( [[CLabel]],
[([NatCmmTop statics instr],
Maybe [Color.RegAllocStats statics instr],
Maybe [Linear.RegAllocStats])] )
cmmNativeGens _ _ _ _ [] impAcc profAcc _
= return (reverse impAcc, reverse profAcc)
cmmNativeGens dflags ncgImpl h us (cmm : cmms) impAcc profAcc count
= do
(us', native, imports, colorStats, linearStats)
<- cmmNativeGen dflags ncgImpl us cmm count
Pretty.bufLeftRender h
$ {-# SCC "pprNativeCode" #-} Pretty.vcat $ map (pprNatCmmTop ncgImpl (targetPlatform dflags)) native
-- carefully evaluate this strictly. Binding it with 'let'
-- and then using 'seq' doesn't work, because the let
-- apparently gets inlined first.
lsPprNative <- return $!
if dopt Opt_D_dump_asm dflags
|| dopt Opt_D_dump_asm_stats dflags
then native
else []
count' <- return $! count + 1;
-- force evaulation all this stuff to avoid space leaks
seqString (showSDoc $ vcat $ map ppr imports) `seq` return ()
cmmNativeGens dflags ncgImpl
h us' cmms
(imports : impAcc)
((lsPprNative, colorStats, linearStats) : profAcc)
count'
where seqString [] = ()
seqString (x:xs) = x `seq` seqString xs `seq` ()
-- | Complete native code generation phase for a single top-level chunk of Cmm.
-- Dumping the output of each stage along the way.
-- Global conflict graph and NGC stats
cmmNativeGen
:: (Outputable statics, PlatformOutputable instr, Instruction instr)
=> DynFlags
-> NcgImpl statics instr jumpDest
-> UniqSupply
-> RawCmmTop -- ^ the cmm to generate code for
-> Int -- ^ sequence number of this top thing
-> IO ( UniqSupply
, [NatCmmTop statics instr] -- native code
, [CLabel] -- things imported by this cmm
, Maybe [Color.RegAllocStats statics instr] -- stats for the coloring register allocator
, Maybe [Linear.RegAllocStats]) -- stats for the linear register allocators
cmmNativeGen dflags ncgImpl us cmm count
= do
let platform = targetPlatform dflags
-- rewrite assignments to global regs
let fixed_cmm =
{-# SCC "fixStgRegisters" #-}
fixStgRegisters cmm
-- cmm to cmm optimisations
let (opt_cmm, imports) =
{-# SCC "cmmToCmm" #-}
cmmToCmm dflags fixed_cmm
dumpIfSet_dyn dflags
Opt_D_dump_opt_cmm "Optimised Cmm"
(pprCmm platform $ Cmm [opt_cmm])
-- generate native code from cmm
let ((native, lastMinuteImports), usGen) =
{-# SCC "genMachCode" #-}
initUs us $ genMachCode dflags (cmmTopCodeGen ncgImpl) opt_cmm
dumpIfSet_dyn dflags
Opt_D_dump_asm_native "Native code"
(vcat $ map (docToSDoc . pprNatCmmTop ncgImpl platform) native)
-- tag instructions with register liveness information
let (withLiveness, usLive) =
{-# SCC "regLiveness" #-}
initUs usGen
$ mapUs (regLiveness platform)
$ map natCmmTopToLive native
dumpIfSet_dyn dflags
Opt_D_dump_asm_liveness "Liveness annotations added"
(vcat $ map (pprPlatform platform) withLiveness)
-- allocate registers
(alloced, usAlloc, ppr_raStatsColor, ppr_raStatsLinear) <-
if ( dopt Opt_RegsGraph dflags
|| dopt Opt_RegsIterative dflags)
then do
-- the regs usable for allocation
let (alloc_regs :: UniqFM (UniqSet RealReg))
= foldr (\r -> plusUFM_C unionUniqSets
$ unitUFM (targetClassOfRealReg platform r) (unitUniqSet r))
emptyUFM
$ allocatableRegs ncgImpl
-- do the graph coloring register allocation
let ((alloced, regAllocStats), usAlloc)
= {-# SCC "RegAlloc" #-}
initUs usLive
$ Color.regAlloc
dflags
alloc_regs
(mkUniqSet [0 .. maxSpillSlots ncgImpl])
withLiveness
-- dump out what happened during register allocation
dumpIfSet_dyn dflags
Opt_D_dump_asm_regalloc "Registers allocated"
(vcat $ map (docToSDoc . pprNatCmmTop ncgImpl platform) alloced)
dumpIfSet_dyn dflags
Opt_D_dump_asm_regalloc_stages "Build/spill stages"
(vcat $ map (\(stage, stats)
-> text "# --------------------------"
$$ text "# cmm " <> int count <> text " Stage " <> int stage
$$ pprPlatform platform stats)
$ zip [0..] regAllocStats)
let mPprStats =
if dopt Opt_D_dump_asm_stats dflags
then Just regAllocStats else Nothing
-- force evaluation of the Maybe to avoid space leak
mPprStats `seq` return ()
return ( alloced, usAlloc
, mPprStats
, Nothing)
else do
-- do linear register allocation
let ((alloced, regAllocStats), usAlloc)
= {-# SCC "RegAlloc" #-}
initUs usLive
$ liftM unzip
$ mapUs (Linear.regAlloc dflags) withLiveness
dumpIfSet_dyn dflags
Opt_D_dump_asm_regalloc "Registers allocated"
(vcat $ map (docToSDoc . pprNatCmmTop ncgImpl platform) alloced)
let mPprStats =
if dopt Opt_D_dump_asm_stats dflags
then Just (catMaybes regAllocStats) else Nothing
-- force evaluation of the Maybe to avoid space leak
mPprStats `seq` return ()
return ( alloced, usAlloc
, Nothing
, mPprStats)
---- x86fp_kludge. This pass inserts ffree instructions to clear
---- the FPU stack on x86. The x86 ABI requires that the FPU stack
---- is clear, and library functions can return odd results if it
---- isn't.
----
---- NB. must happen before shortcutBranches, because that
---- generates JXX_GBLs which we can't fix up in x86fp_kludge.
let kludged = {-# SCC "x86fp_kludge" #-} ncg_x86fp_kludge ncgImpl alloced
---- generate jump tables
let tabled =
{-# SCC "generateJumpTables" #-}
generateJumpTables ncgImpl kludged
---- shortcut branches
let shorted =
{-# SCC "shortcutBranches" #-}
shortcutBranches dflags ncgImpl tabled
---- sequence blocks
let sequenced =
{-# SCC "sequenceBlocks" #-}
map (sequenceTop ncgImpl) shorted
---- expansion of SPARC synthetic instrs
let expanded =
{-# SCC "sparc_expand" #-}
ncgExpandTop ncgImpl sequenced
dumpIfSet_dyn dflags
Opt_D_dump_asm_expanded "Synthetic instructions expanded"
(vcat $ map (docToSDoc . pprNatCmmTop ncgImpl platform) expanded)
return ( usAlloc
, expanded
, lastMinuteImports ++ imports
, ppr_raStatsColor
, ppr_raStatsLinear)
x86fp_kludge :: NatCmmTop (Alignment, CmmStatics) X86.Instr.Instr -> NatCmmTop (Alignment, CmmStatics) X86.Instr.Instr
x86fp_kludge top@(CmmData _ _) = top
x86fp_kludge (CmmProc info lbl (ListGraph code)) =
CmmProc info lbl (ListGraph $ X86.Instr.i386_insert_ffrees code)
-- | Build a doc for all the imports.
--
makeImportsDoc :: DynFlags -> [CLabel] -> Pretty.Doc
makeImportsDoc dflags imports
= dyld_stubs imports
#if HAVE_SUBSECTIONS_VIA_SYMBOLS
-- On recent versions of Darwin, the linker supports
-- dead-stripping of code and data on a per-symbol basis.
-- There's a hack to make this work in PprMach.pprNatCmmTop.
Pretty.$$ Pretty.text ".subsections_via_symbols"
#endif
#if HAVE_GNU_NONEXEC_STACK
-- On recent GNU ELF systems one can mark an object file
-- as not requiring an executable stack. If all objects
-- linked into a program have this note then the program
-- will not use an executable stack, which is good for
-- security. GHC generated code does not need an executable
-- stack so add the note in:
Pretty.$$ Pretty.text ".section .note.GNU-stack,\"\",@progbits"
#endif
-- And just because every other compiler does, lets stick in
-- an identifier directive: .ident "GHC x.y.z"
Pretty.$$ let compilerIdent = Pretty.text "GHC" Pretty.<+>
Pretty.text cProjectVersion
in Pretty.text ".ident" Pretty.<+>
Pretty.doubleQuotes compilerIdent
where
-- Generate "symbol stubs" for all external symbols that might
-- come from a dynamic library.
dyld_stubs :: [CLabel] -> Pretty.Doc
{- dyld_stubs imps = Pretty.vcat $ map pprDyldSymbolStub $
map head $ group $ sort imps-}
arch = platformArch $ targetPlatform dflags
os = platformOS $ targetPlatform dflags
-- (Hack) sometimes two Labels pretty-print the same, but have
-- different uniques; so we compare their text versions...
dyld_stubs imps
| needImportedSymbols arch os
= Pretty.vcat $
(pprGotDeclaration arch os :) $
map ( pprImportedSymbol arch os . fst . head) $
groupBy (\(_,a) (_,b) -> a == b) $
sortBy (\(_,a) (_,b) -> compare a b) $
map doPpr $
imps
| otherwise
= Pretty.empty
doPpr lbl = (lbl, renderWithStyle (pprCLabel lbl) astyle)
astyle = mkCodeStyle AsmStyle
-- -----------------------------------------------------------------------------
-- Sequencing the basic blocks
-- Cmm BasicBlocks are self-contained entities: they always end in a
-- jump, either non-local or to another basic block in the same proc.
-- In this phase, we attempt to place the basic blocks in a sequence
-- such that as many of the local jumps as possible turn into
-- fallthroughs.
sequenceTop
:: Instruction instr
=> NcgImpl statics instr jumpDest -> NatCmmTop statics instr -> NatCmmTop statics instr
sequenceTop _ top@(CmmData _ _) = top
sequenceTop ncgImpl (CmmProc info lbl (ListGraph blocks)) =
CmmProc info lbl (ListGraph $ ncgMakeFarBranches ncgImpl $ sequenceBlocks blocks)
-- The algorithm is very simple (and stupid): we make a graph out of
-- the blocks where there is an edge from one block to another iff the
-- first block ends by jumping to the second. Then we topologically
-- sort this graph. Then traverse the list: for each block, we first
-- output the block, then if it has an out edge, we move the
-- destination of the out edge to the front of the list, and continue.
-- FYI, the classic layout for basic blocks uses postorder DFS; this
-- algorithm is implemented in Hoopl.
sequenceBlocks
:: Instruction instr
=> [NatBasicBlock instr]
-> [NatBasicBlock instr]
sequenceBlocks [] = []
sequenceBlocks (entry:blocks) =
seqBlocks (mkNode entry : reverse (flattenSCCs (sccBlocks blocks)))
-- the first block is the entry point ==> it must remain at the start.
sccBlocks
:: Instruction instr
=> [NatBasicBlock instr]
-> [SCC ( NatBasicBlock instr
, Unique
, [Unique])]
sccBlocks blocks = stronglyConnCompFromEdgedVerticesR (map mkNode blocks)
-- we're only interested in the last instruction of
-- the block, and only if it has a single destination.
getOutEdges
:: Instruction instr
=> [instr] -> [Unique]
getOutEdges instrs
= case jumpDestsOfInstr (last instrs) of
[one] -> [getUnique one]
_many -> []
mkNode :: (Instruction t)
=> GenBasicBlock t
-> (GenBasicBlock t, Unique, [Unique])
mkNode block@(BasicBlock id instrs) = (block, getUnique id, getOutEdges instrs)
seqBlocks :: (Eq t) => [(GenBasicBlock t1, t, [t])] -> [GenBasicBlock t1]
seqBlocks [] = []
seqBlocks ((block,_,[]) : rest)
= block : seqBlocks rest
seqBlocks ((block@(BasicBlock id instrs),_,[next]) : rest)
| can_fallthrough = BasicBlock id (init instrs) : seqBlocks rest'
| otherwise = block : seqBlocks rest'
where
(can_fallthrough, rest') = reorder next [] rest
-- TODO: we should do a better job for cycles; try to maximise the
-- fallthroughs within a loop.
seqBlocks _ = panic "AsmCodegen:seqBlocks"
reorder :: (Eq a) => a -> [(t, a, t1)] -> [(t, a, t1)] -> (Bool, [(t, a, t1)])
reorder _ accum [] = (False, reverse accum)
reorder id accum (b@(block,id',out) : rest)
| id == id' = (True, (block,id,out) : reverse accum ++ rest)
| otherwise = reorder id (b:accum) rest
-- -----------------------------------------------------------------------------
-- Making far branches
-- Conditional branches on PowerPC are limited to +-32KB; if our Procs get too
-- big, we have to work around this limitation.
makeFarBranches
:: [NatBasicBlock PPC.Instr.Instr]
-> [NatBasicBlock PPC.Instr.Instr]
makeFarBranches blocks
| last blockAddresses < nearLimit = blocks
| otherwise = zipWith handleBlock blockAddresses blocks
where
blockAddresses = scanl (+) 0 $ map blockLen blocks
blockLen (BasicBlock _ instrs) = length instrs
handleBlock addr (BasicBlock id instrs)
= BasicBlock id (zipWith makeFar [addr..] instrs)
makeFar _ (PPC.Instr.BCC PPC.Cond.ALWAYS tgt) = PPC.Instr.BCC PPC.Cond.ALWAYS tgt
makeFar addr (PPC.Instr.BCC cond tgt)
| abs (addr - targetAddr) >= nearLimit
= PPC.Instr.BCCFAR cond tgt
| otherwise
= PPC.Instr.BCC cond tgt
where Just targetAddr = lookupUFM blockAddressMap tgt
makeFar _ other = other
nearLimit = 7000 -- 8192 instructions are allowed; let's keep some
-- distance, as we have a few pseudo-insns that are
-- pretty-printed as multiple instructions,
-- and it's just not worth the effort to calculate
-- things exactly
blockAddressMap = listToUFM $ zip (map blockId blocks) blockAddresses
-- -----------------------------------------------------------------------------
-- Generate jump tables
-- Analyzes all native code and generates data sections for all jump
-- table instructions.
generateJumpTables
:: NcgImpl statics instr jumpDest
-> [NatCmmTop statics instr] -> [NatCmmTop statics instr]
generateJumpTables ncgImpl xs = concatMap f xs
where f p@(CmmProc _ _ (ListGraph xs)) = p : concatMap g xs
f p = [p]
g (BasicBlock _ xs) = catMaybes (map (generateJumpTableForInstr ncgImpl) xs)
-- -----------------------------------------------------------------------------
-- Shortcut branches
shortcutBranches
:: DynFlags
-> NcgImpl statics instr jumpDest
-> [NatCmmTop statics instr]
-> [NatCmmTop statics instr]
shortcutBranches dflags ncgImpl tops
| optLevel dflags < 1 = tops -- only with -O or higher
| otherwise = map (apply_mapping ncgImpl mapping) tops'
where
(tops', mappings) = mapAndUnzip (build_mapping ncgImpl) tops
mapping = foldr plusUFM emptyUFM mappings
build_mapping :: NcgImpl statics instr jumpDest
-> GenCmmTop d t (ListGraph instr)
-> (GenCmmTop d t (ListGraph instr), UniqFM jumpDest)
build_mapping _ top@(CmmData _ _) = (top, emptyUFM)
build_mapping _ (CmmProc info lbl (ListGraph []))
= (CmmProc info lbl (ListGraph []), emptyUFM)
build_mapping ncgImpl (CmmProc info lbl (ListGraph (head:blocks)))
= (CmmProc info lbl (ListGraph (head:others)), mapping)
-- drop the shorted blocks, but don't ever drop the first one,
-- because it is pointed to by a global label.
where
-- find all the blocks that just consist of a jump that can be
-- shorted.
-- Don't completely eliminate loops here -- that can leave a dangling jump!
(_, shortcut_blocks, others) = foldl split (emptyBlockSet, [], []) blocks
split (s, shortcut_blocks, others) b@(BasicBlock id [insn])
| Just jd <- canShortcut ncgImpl insn,
Just dest <- getJumpDestBlockId ncgImpl jd,
(setMember dest s) || dest == id -- loop checks
= (s, shortcut_blocks, b : others)
split (s, shortcut_blocks, others) (BasicBlock id [insn])
| Just dest <- canShortcut ncgImpl insn
= (setInsert id s, (id,dest) : shortcut_blocks, others)
split (s, shortcut_blocks, others) other = (s, shortcut_blocks, other : others)
-- build a mapping from BlockId to JumpDest for shorting branches
mapping = foldl add emptyUFM shortcut_blocks
add ufm (id,dest) = addToUFM ufm id dest
apply_mapping :: NcgImpl statics instr jumpDest
-> UniqFM jumpDest
-> GenCmmTop statics h (ListGraph instr)
-> GenCmmTop statics h (ListGraph instr)
apply_mapping ncgImpl ufm (CmmData sec statics)
= CmmData sec (shortcutStatics ncgImpl (lookupUFM ufm) statics)
apply_mapping ncgImpl ufm (CmmProc info lbl (ListGraph blocks))
= CmmProc info lbl (ListGraph $ map short_bb blocks)
where
short_bb (BasicBlock id insns) = BasicBlock id $! map short_insn insns
short_insn i = shortcutJump ncgImpl (lookupUFM ufm) i
-- shortcutJump should apply the mapping repeatedly,
-- just in case we can short multiple branches.
-- -----------------------------------------------------------------------------
-- Instruction selection
-- Native code instruction selection for a chunk of stix code. For
-- this part of the computation, we switch from the UniqSM monad to
-- the NatM monad. The latter carries not only a Unique, but also an
-- Int denoting the current C stack pointer offset in the generated
-- code; this is needed for creating correct spill offsets on
-- architectures which don't offer, or for which it would be
-- prohibitively expensive to employ, a frame pointer register. Viz,
-- x86.
-- The offset is measured in bytes, and indicates the difference
-- between the current (simulated) C stack-ptr and the value it was at
-- the beginning of the block. For stacks which grow down, this value
-- should be either zero or negative.
-- Switching between the two monads whilst carrying along the same
-- Unique supply breaks abstraction. Is that bad?
genMachCode
:: DynFlags
-> (RawCmmTop -> NatM [NatCmmTop statics instr])
-> RawCmmTop
-> UniqSM
( [NatCmmTop statics instr]
, [CLabel])
genMachCode dflags cmmTopCodeGen cmm_top
= do { initial_us <- getUs
; let initial_st = mkNatM_State initial_us 0 dflags
(new_tops, final_st) = initNat initial_st (cmmTopCodeGen cmm_top)
final_delta = natm_delta final_st
final_imports = natm_imports final_st
; if final_delta == 0
then return (new_tops, final_imports)
else pprPanic "genMachCode: nonzero final delta" (int final_delta)
}
-- -----------------------------------------------------------------------------
-- Generic Cmm optimiser
{-
Here we do:
(a) Constant folding
(b) Simple inlining: a temporary which is assigned to and then
used, once, can be shorted.
(c) Position independent code and dynamic linking
(i) introduce the appropriate indirections
and position independent refs
(ii) compile a list of imported symbols
(d) Some arch-specific optimizations
(a) and (b) will be moving to the new Hoopl pipeline, however, (c) and
(d) are only needed by the native backend and will continue to live
here.
Ideas for other things we could do (put these in Hoopl please!):
- shortcut jumps-to-jumps
- simple CSE: if an expr is assigned to a temp, then replace later occs of
that expr with the temp, until the expr is no longer valid (can push through
temp assignments, and certain assigns to mem...)
-}
cmmToCmm :: DynFlags -> RawCmmTop -> (RawCmmTop, [CLabel])
cmmToCmm _ top@(CmmData _ _) = (top, [])
cmmToCmm dflags (CmmProc info lbl (ListGraph blocks)) = runCmmOpt dflags $ do
blocks' <- mapM cmmBlockConFold (cmmMiniInline (cmmEliminateDeadBlocks blocks))
return $ CmmProc info lbl (ListGraph blocks')
newtype CmmOptM a = CmmOptM (([CLabel], DynFlags) -> (# a, [CLabel] #))
instance Monad CmmOptM where
return x = CmmOptM $ \(imports, _) -> (# x,imports #)
(CmmOptM f) >>= g =
CmmOptM $ \(imports, dflags) ->
case f (imports, dflags) of
(# x, imports' #) ->
case g x of
CmmOptM g' -> g' (imports', dflags)
addImportCmmOpt :: CLabel -> CmmOptM ()
addImportCmmOpt lbl = CmmOptM $ \(imports, _dflags) -> (# (), lbl:imports #)
getDynFlagsCmmOpt :: CmmOptM DynFlags
getDynFlagsCmmOpt = CmmOptM $ \(imports, dflags) -> (# dflags, imports #)
runCmmOpt :: DynFlags -> CmmOptM a -> (a, [CLabel])
runCmmOpt dflags (CmmOptM f) = case f ([], dflags) of
(# result, imports #) -> (result, imports)
cmmBlockConFold :: CmmBasicBlock -> CmmOptM CmmBasicBlock
cmmBlockConFold (BasicBlock id stmts) = do
stmts' <- mapM cmmStmtConFold stmts
return $ BasicBlock id stmts'
-- This does three optimizations, but they're very quick to check, so we don't
-- bother turning them off even when the Hoopl code is active. Since
-- this is on the old Cmm representation, we can't reuse the code either:
-- * reg = reg --> nop
-- * if 0 then jump --> nop
-- * if 1 then jump --> jump
-- We might be tempted to skip this step entirely of not opt_PIC, but
-- there is some PowerPC code for the non-PIC case, which would also
-- have to be separated.
cmmStmtConFold :: CmmStmt -> CmmOptM CmmStmt
cmmStmtConFold stmt
= case stmt of
CmmAssign reg src
-> do src' <- cmmExprConFold DataReference src
return $ case src' of
CmmReg reg' | reg == reg' -> CmmNop
new_src -> CmmAssign reg new_src
CmmStore addr src
-> do addr' <- cmmExprConFold DataReference addr
src' <- cmmExprConFold DataReference src
return $ CmmStore addr' src'
CmmJump addr regs
-> do addr' <- cmmExprConFold JumpReference addr
return $ CmmJump addr' regs
CmmCall target regs args srt returns
-> do target' <- case target of
CmmCallee e conv -> do
e' <- cmmExprConFold CallReference e
return $ CmmCallee e' conv
other -> return other
args' <- mapM (\(CmmHinted arg hint) -> do
arg' <- cmmExprConFold DataReference arg
return (CmmHinted arg' hint)) args
return $ CmmCall target' regs args' srt returns
CmmCondBranch test dest
-> do test' <- cmmExprConFold DataReference test
return $ case test' of
CmmLit (CmmInt 0 _) ->
CmmComment (mkFastString ("deleted: " ++
showSDoc (pprStmt stmt)))
CmmLit (CmmInt _ _) -> CmmBranch dest
_other -> CmmCondBranch test' dest
CmmSwitch expr ids
-> do expr' <- cmmExprConFold DataReference expr
return $ CmmSwitch expr' ids
other
-> return other
cmmExprConFold :: ReferenceKind -> CmmExpr -> CmmOptM CmmExpr
cmmExprConFold referenceKind expr = do
dflags <- getDynFlagsCmmOpt
-- Skip constant folding if new code generator is running
-- (this optimization is done in Hoopl)
let expr' = if dopt Opt_TryNewCodeGen dflags
then expr
else cmmExprCon expr
cmmExprNative referenceKind expr'
cmmExprCon :: CmmExpr -> CmmExpr
cmmExprCon (CmmLoad addr rep) = CmmLoad (cmmExprCon addr) rep
cmmExprCon (CmmMachOp mop args) = cmmMachOpFold mop (map cmmExprCon args)
cmmExprCon other = other
-- handles both PIC and non-PIC cases... a very strange mixture
-- of things to do.
cmmExprNative :: ReferenceKind -> CmmExpr -> CmmOptM CmmExpr
cmmExprNative referenceKind expr = do
dflags <- getDynFlagsCmmOpt
let arch = platformArch (targetPlatform dflags)
case expr of
CmmLoad addr rep
-> do addr' <- cmmExprNative DataReference addr
return $ CmmLoad addr' rep
CmmMachOp mop args
-> do args' <- mapM (cmmExprNative DataReference) args
return $ CmmMachOp mop args'
CmmLit (CmmLabel lbl)
-> do
cmmMakeDynamicReference dflags addImportCmmOpt referenceKind lbl
CmmLit (CmmLabelOff lbl off)
-> do
dynRef <- cmmMakeDynamicReference dflags addImportCmmOpt referenceKind lbl
-- need to optimize here, since it's late
return $ cmmMachOpFold (MO_Add wordWidth) [
dynRef,
(CmmLit $ CmmInt (fromIntegral off) wordWidth)
]
-- On powerpc (non-PIC), it's easier to jump directly to a label than
-- to use the register table, so we replace these registers
-- with the corresponding labels:
CmmReg (CmmGlobal EagerBlackholeInfo)
| arch == ArchPPC && not opt_PIC
-> cmmExprNative referenceKind $
CmmLit (CmmLabel (mkCmmCodeLabel rtsPackageId (fsLit "__stg_EAGER_BLACKHOLE_info")))
CmmReg (CmmGlobal GCEnter1)
| arch == ArchPPC && not opt_PIC
-> cmmExprNative referenceKind $
CmmLit (CmmLabel (mkCmmCodeLabel rtsPackageId (fsLit "__stg_gc_enter_1")))
CmmReg (CmmGlobal GCFun)
| arch == ArchPPC && not opt_PIC
-> cmmExprNative referenceKind $
CmmLit (CmmLabel (mkCmmCodeLabel rtsPackageId (fsLit "__stg_gc_fun")))
other
-> return other
\end{code}
|