1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
|
-- -----------------------------------------------------------------------------
--
-- (c) The University of Glasgow 1993-2004
--
-- This is the top-level module in the native code generator.
--
-- -----------------------------------------------------------------------------
\begin{code}
{-# OPTIONS -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
-- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
-- for details
module AsmCodeGen ( nativeCodeGen ) where
#include "HsVersions.h"
#include "nativeGen/NCG.h"
import MachInstrs
import MachRegs
import MachCodeGen
import PprMach
import RegAllocInfo
import NCGMonad
import PositionIndependentCode
import RegLiveness
import RegCoalesce
import qualified RegAllocLinear as Linear
import qualified RegAllocColor as Color
import qualified RegAllocStats as Color
import qualified GraphColor as Color
import Cmm
import CmmOpt ( cmmMiniInline, cmmMachOpFold )
import PprCmm
import MachOp
import CLabel
import State
import UniqFM
import Unique ( Unique, getUnique )
import UniqSupply
import List ( groupBy, sortBy )
import DynFlags
#if powerpc_TARGET_ARCH
import StaticFlags ( opt_Static, opt_PIC )
#endif
import Util
import Config ( cProjectVersion )
import Module
import Digraph
import qualified Pretty
import Outputable
import FastString
import UniqSet
import ErrUtils
-- DEBUGGING ONLY
--import OrdList
import Data.List
import Data.Int
import Data.Word
import Data.Bits
import Data.Maybe
import GHC.Exts
import Control.Monad
import System.IO
{-
The native-code generator has machine-independent and
machine-dependent modules.
This module ("AsmCodeGen") is the top-level machine-independent
module. Before entering machine-dependent land, we do some
machine-independent optimisations (defined below) on the
'CmmStmts's.
We convert to the machine-specific 'Instr' datatype with
'cmmCodeGen', assuming an infinite supply of registers. We then use
a machine-independent register allocator ('regAlloc') to rejoin
reality. Obviously, 'regAlloc' has machine-specific helper
functions (see about "RegAllocInfo" below).
Finally, we order the basic blocks of the function so as to minimise
the number of jumps between blocks, by utilising fallthrough wherever
possible.
The machine-dependent bits break down as follows:
* ["MachRegs"] Everything about the target platform's machine
registers (and immediate operands, and addresses, which tend to
intermingle/interact with registers).
* ["MachInstrs"] Includes the 'Instr' datatype (possibly should
have a module of its own), plus a miscellany of other things
(e.g., 'targetDoubleSize', 'smStablePtrTable', ...)
* ["MachCodeGen"] is where 'Cmm' stuff turns into
machine instructions.
* ["PprMach"] 'pprInstr' turns an 'Instr' into text (well, really
a 'Doc').
* ["RegAllocInfo"] In the register allocator, we manipulate
'MRegsState's, which are 'BitSet's, one bit per machine register.
When we want to say something about a specific machine register
(e.g., ``it gets clobbered by this instruction''), we set/unset
its bit. Obviously, we do this 'BitSet' thing for efficiency
reasons.
The 'RegAllocInfo' module collects together the machine-specific
info needed to do register allocation.
* ["RegisterAlloc"] The (machine-independent) register allocator.
-}
-- -----------------------------------------------------------------------------
-- Top-level of the native codegen
--------------------
nativeCodeGen :: DynFlags -> Handle -> UniqSupply -> [RawCmm] -> IO ()
nativeCodeGen dflags h us cmms
= do
let split_cmms = concat $ map add_split cmms
(imports, prof)
<- cmmNativeGens dflags h us split_cmms [] [] 0
let (native, colorStats, linearStats)
= unzip3 prof
-- dump native code
dumpIfSet_dyn dflags
Opt_D_dump_asm "Asm code"
(vcat $ map (docToSDoc . pprNatCmmTop) $ concat native)
-- dump global NCG stats for graph coloring allocator
(case concat $ catMaybes colorStats of
[] -> return ()
stats -> do
-- build the global register conflict graph
let graphGlobal
= foldl Color.union Color.initGraph
$ [ Color.raGraph stat
| stat@Color.RegAllocStatsStart{} <- stats]
dumpSDoc dflags Opt_D_dump_asm_stats "NCG stats"
$ Color.pprStats stats graphGlobal
dumpIfSet_dyn dflags
Opt_D_dump_asm_conflicts "Register conflict graph"
$ Color.dotGraph Color.regDotColor trivColorable
$ graphGlobal)
-- dump global NCG stats for linear allocator
(case concat $ catMaybes linearStats of
[] -> return ()
stats -> dumpSDoc dflags Opt_D_dump_asm_stats "NCG stats"
$ Linear.pprStats (concat native) stats)
-- write out the imports
Pretty.printDoc Pretty.LeftMode h
$ makeImportsDoc (concat imports)
return ()
where add_split (Cmm tops)
| dopt Opt_SplitObjs dflags = split_marker : tops
| otherwise = tops
split_marker = CmmProc [] mkSplitMarkerLabel [] (ListGraph [])
-- | Do native code generation on all these cmms.
--
cmmNativeGens dflags h us [] impAcc profAcc count
= return (reverse impAcc, reverse profAcc)
cmmNativeGens dflags h us (cmm : cmms) impAcc profAcc count
= do
(us', native, imports, colorStats, linearStats)
<- cmmNativeGen dflags us cmm count
Pretty.printDoc Pretty.LeftMode h
$ {-# SCC "pprNativeCode" #-} Pretty.vcat $ map pprNatCmmTop native
let lsPprNative =
if dopt Opt_D_dump_asm dflags
|| dopt Opt_D_dump_asm_stats dflags
then native
else []
let count' = count + 1;
-- force evaulation all this stuff to avoid space leaks
seqString (showSDoc $ vcat $ map ppr imports) `seq` return ()
lsPprNative `seq` return ()
count' `seq` return ()
cmmNativeGens dflags h us' cmms
(imports : impAcc)
((lsPprNative, colorStats, linearStats) : profAcc)
count'
where seqString [] = ()
seqString (x:xs) = x `seq` seqString xs `seq` ()
-- | Complete native code generation phase for a single top-level chunk of Cmm.
-- Dumping the output of each stage along the way.
-- Global conflict graph and NGC stats
cmmNativeGen
:: DynFlags
-> UniqSupply
-> RawCmmTop -- ^ the cmm to generate code for
-> Int -- ^ sequence number of this top thing
-> IO ( UniqSupply
, [NatCmmTop] -- native code
, [CLabel] -- things imported by this cmm
, Maybe [Color.RegAllocStats] -- stats for the coloring register allocator
, Maybe [Linear.RegAllocStats]) -- stats for the linear register allocators
cmmNativeGen dflags us cmm count
= do
-- rewrite assignments to global regs
let (fixed_cmm, usFix) =
{-# SCC "fixAssignsTop" #-}
initUs us $ fixAssignsTop cmm
-- cmm to cmm optimisations
let (opt_cmm, imports) =
{-# SCC "cmmToCmm" #-}
cmmToCmm dflags fixed_cmm
dumpIfSet_dyn dflags
Opt_D_dump_opt_cmm "Optimised Cmm"
(pprCmm $ Cmm [opt_cmm])
-- generate native code from cmm
let ((native, lastMinuteImports), usGen) =
{-# SCC "genMachCode" #-}
initUs usFix $ genMachCode dflags opt_cmm
dumpIfSet_dyn dflags
Opt_D_dump_asm_native "Native code"
(vcat $ map (docToSDoc . pprNatCmmTop) native)
-- tag instructions with register liveness information
let (withLiveness, usLive) =
{-# SCC "regLiveness" #-}
initUs usGen $ mapUs regLiveness native
dumpIfSet_dyn dflags
Opt_D_dump_asm_liveness "Liveness annotations added"
(vcat $ map ppr withLiveness)
-- allocate registers
(alloced, usAlloc, ppr_raStatsColor, ppr_raStatsLinear) <-
if ( dopt Opt_RegsGraph dflags
|| dopt Opt_RegsIterative dflags)
then do
-- the regs usable for allocation
let alloc_regs
= foldr (\r -> plusUFM_C unionUniqSets
$ unitUFM (regClass r) (unitUniqSet r))
emptyUFM
$ map RealReg allocatableRegs
-- graph coloring register allocation
let ((alloced, regAllocStats), usAlloc)
= {-# SCC "RegAlloc" #-}
initUs usLive
$ Color.regAlloc
dflags
alloc_regs
(mkUniqSet [0..maxSpillSlots])
withLiveness
-- dump out what happened during register allocation
dumpIfSet_dyn dflags
Opt_D_dump_asm_regalloc "Registers allocated"
(vcat $ map (docToSDoc . pprNatCmmTop) alloced)
dumpIfSet_dyn dflags
Opt_D_dump_asm_regalloc_stages "Build/spill stages"
(vcat $ map (\(stage, stats)
-> text "# --------------------------"
$$ text "# cmm " <> int count <> text " Stage " <> int stage
$$ ppr stats)
$ zip [0..] regAllocStats)
let mPprStats =
if dopt Opt_D_dump_asm_stats dflags
then Just regAllocStats else Nothing
-- force evaluation of the Maybe to avoid space leak
mPprStats `seq` return ()
return ( alloced, usAlloc
, mPprStats
, Nothing)
else do
-- do linear register allocation
let ((alloced, regAllocStats), usAlloc)
= {-# SCC "RegAlloc" #-}
initUs usLive
$ liftM unzip
$ mapUs Linear.regAlloc withLiveness
dumpIfSet_dyn dflags
Opt_D_dump_asm_regalloc "Registers allocated"
(vcat $ map (docToSDoc . pprNatCmmTop) alloced)
let mPprStats =
if dopt Opt_D_dump_asm_stats dflags
then Just (catMaybes regAllocStats) else Nothing
-- force evaluation of the Maybe to avoid space leak
mPprStats `seq` return ()
return ( alloced, usAlloc
, Nothing
, mPprStats)
---- shortcut branches
let shorted =
{-# SCC "shortcutBranches" #-}
shortcutBranches dflags alloced
---- sequence blocks
let sequenced =
{-# SCC "sequenceBlocks" #-}
map sequenceTop shorted
---- x86fp_kludge
let final_mach_code =
#if i386_TARGET_ARCH
{-# SCC "x86fp_kludge" #-}
map x86fp_kludge sequenced
#else
sequenced
#endif
return ( usAlloc
, final_mach_code
, lastMinuteImports ++ imports
, ppr_raStatsColor
, ppr_raStatsLinear)
#if i386_TARGET_ARCH
x86fp_kludge :: NatCmmTop -> NatCmmTop
x86fp_kludge top@(CmmData _ _) = top
x86fp_kludge top@(CmmProc info lbl params (ListGraph code)) =
CmmProc info lbl params (ListGraph $ i386_insert_ffrees code)
#endif
-- | Build a doc for all the imports.
--
makeImportsDoc :: [CLabel] -> Pretty.Doc
makeImportsDoc imports
= dyld_stubs imports
#if HAVE_SUBSECTIONS_VIA_SYMBOLS
-- On recent versions of Darwin, the linker supports
-- dead-stripping of code and data on a per-symbol basis.
-- There's a hack to make this work in PprMach.pprNatCmmTop.
Pretty.$$ Pretty.text ".subsections_via_symbols"
#endif
#if HAVE_GNU_NONEXEC_STACK
-- On recent GNU ELF systems one can mark an object file
-- as not requiring an executable stack. If all objects
-- linked into a program have this note then the program
-- will not use an executable stack, which is good for
-- security. GHC generated code does not need an executable
-- stack so add the note in:
Pretty.$$ Pretty.text ".section .note.GNU-stack,\"\",@progbits"
#endif
#if !defined(darwin_TARGET_OS)
-- And just because every other compiler does, lets stick in
-- an identifier directive: .ident "GHC x.y.z"
Pretty.$$ let compilerIdent = Pretty.text "GHC" Pretty.<+>
Pretty.text cProjectVersion
in Pretty.text ".ident" Pretty.<+>
Pretty.doubleQuotes compilerIdent
#endif
where
-- Generate "symbol stubs" for all external symbols that might
-- come from a dynamic library.
dyld_stubs :: [CLabel] -> Pretty.Doc
{- dyld_stubs imps = Pretty.vcat $ map pprDyldSymbolStub $
map head $ group $ sort imps-}
-- (Hack) sometimes two Labels pretty-print the same, but have
-- different uniques; so we compare their text versions...
dyld_stubs imps
| needImportedSymbols
= Pretty.vcat $
(pprGotDeclaration :) $
map (pprImportedSymbol . fst . head) $
groupBy (\(_,a) (_,b) -> a == b) $
sortBy (\(_,a) (_,b) -> compare a b) $
map doPpr $
imps
| otherwise
= Pretty.empty
doPpr lbl = (lbl, Pretty.render $ pprCLabel lbl astyle)
astyle = mkCodeStyle AsmStyle
-- -----------------------------------------------------------------------------
-- Sequencing the basic blocks
-- Cmm BasicBlocks are self-contained entities: they always end in a
-- jump, either non-local or to another basic block in the same proc.
-- In this phase, we attempt to place the basic blocks in a sequence
-- such that as many of the local jumps as possible turn into
-- fallthroughs.
sequenceTop :: NatCmmTop -> NatCmmTop
sequenceTop top@(CmmData _ _) = top
sequenceTop (CmmProc info lbl params (ListGraph blocks)) =
CmmProc info lbl params (ListGraph $ makeFarBranches $ sequenceBlocks blocks)
-- The algorithm is very simple (and stupid): we make a graph out of
-- the blocks where there is an edge from one block to another iff the
-- first block ends by jumping to the second. Then we topologically
-- sort this graph. Then traverse the list: for each block, we first
-- output the block, then if it has an out edge, we move the
-- destination of the out edge to the front of the list, and continue.
-- FYI, the classic layout for basic blocks uses postorder DFS; this
-- algorithm is implemented in cmm/ZipCfg.hs (NR 6 Sep 2007).
sequenceBlocks :: [NatBasicBlock] -> [NatBasicBlock]
sequenceBlocks [] = []
sequenceBlocks (entry:blocks) =
seqBlocks (mkNode entry : reverse (flattenSCCs (sccBlocks blocks)))
-- the first block is the entry point ==> it must remain at the start.
sccBlocks :: [NatBasicBlock] -> [SCC (NatBasicBlock,Unique,[Unique])]
sccBlocks blocks = stronglyConnCompFromEdgedVerticesR (map mkNode blocks)
getOutEdges :: [Instr] -> [Unique]
getOutEdges instrs = case jumpDests (last instrs) [] of
[one] -> [getUnique one]
_many -> []
-- we're only interested in the last instruction of
-- the block, and only if it has a single destination.
mkNode block@(BasicBlock id instrs) = (block, getUnique id, getOutEdges instrs)
seqBlocks [] = []
seqBlocks ((block,_,[]) : rest)
= block : seqBlocks rest
seqBlocks ((block@(BasicBlock id instrs),_,[next]) : rest)
| can_fallthrough = BasicBlock id (init instrs) : seqBlocks rest'
| otherwise = block : seqBlocks rest'
where
(can_fallthrough, rest') = reorder next [] rest
-- TODO: we should do a better job for cycles; try to maximise the
-- fallthroughs within a loop.
seqBlocks _ = panic "AsmCodegen:seqBlocks"
reorder id accum [] = (False, reverse accum)
reorder id accum (b@(block,id',out) : rest)
| id == id' = (True, (block,id,out) : reverse accum ++ rest)
| otherwise = reorder id (b:accum) rest
-- -----------------------------------------------------------------------------
-- Making far branches
-- Conditional branches on PowerPC are limited to +-32KB; if our Procs get too
-- big, we have to work around this limitation.
makeFarBranches :: [NatBasicBlock] -> [NatBasicBlock]
#if powerpc_TARGET_ARCH
makeFarBranches blocks
| last blockAddresses < nearLimit = blocks
| otherwise = zipWith handleBlock blockAddresses blocks
where
blockAddresses = scanl (+) 0 $ map blockLen blocks
blockLen (BasicBlock _ instrs) = length instrs
handleBlock addr (BasicBlock id instrs)
= BasicBlock id (zipWith makeFar [addr..] instrs)
makeFar addr (BCC ALWAYS tgt) = BCC ALWAYS tgt
makeFar addr (BCC cond tgt)
| abs (addr - targetAddr) >= nearLimit
= BCCFAR cond tgt
| otherwise
= BCC cond tgt
where Just targetAddr = lookupUFM blockAddressMap tgt
makeFar addr other = other
nearLimit = 7000 -- 8192 instructions are allowed; let's keep some
-- distance, as we have a few pseudo-insns that are
-- pretty-printed as multiple instructions,
-- and it's just not worth the effort to calculate
-- things exactly
blockAddressMap = listToUFM $ zip (map blockId blocks) blockAddresses
#else
makeFarBranches = id
#endif
-- -----------------------------------------------------------------------------
-- Shortcut branches
shortcutBranches :: DynFlags -> [NatCmmTop] -> [NatCmmTop]
shortcutBranches dflags tops
| optLevel dflags < 1 = tops -- only with -O or higher
| otherwise = map (apply_mapping mapping) tops'
where
(tops', mappings) = mapAndUnzip build_mapping tops
mapping = foldr plusUFM emptyUFM mappings
build_mapping top@(CmmData _ _) = (top, emptyUFM)
build_mapping (CmmProc info lbl params (ListGraph []))
= (CmmProc info lbl params (ListGraph []), emptyUFM)
build_mapping (CmmProc info lbl params (ListGraph (head:blocks)))
= (CmmProc info lbl params (ListGraph (head:others)), mapping)
-- drop the shorted blocks, but don't ever drop the first one,
-- because it is pointed to by a global label.
where
-- find all the blocks that just consist of a jump that can be
-- shorted.
(shortcut_blocks, others) = partitionWith split blocks
split (BasicBlock id [insn]) | Just dest <- canShortcut insn
= Left (id,dest)
split other = Right other
-- build a mapping from BlockId to JumpDest for shorting branches
mapping = foldl add emptyUFM shortcut_blocks
add ufm (id,dest) = addToUFM ufm id dest
apply_mapping ufm (CmmData sec statics)
= CmmData sec (map (shortcutStatic (lookupUFM ufm)) statics)
-- we need to get the jump tables, so apply the mapping to the entries
-- of a CmmData too.
apply_mapping ufm (CmmProc info lbl params (ListGraph blocks))
= CmmProc info lbl params (ListGraph $ map short_bb blocks)
where
short_bb (BasicBlock id insns) = BasicBlock id $! map short_insn insns
short_insn i = shortcutJump (lookupUFM ufm) i
-- shortcutJump should apply the mapping repeatedly,
-- just in case we can short multiple branches.
-- -----------------------------------------------------------------------------
-- Instruction selection
-- Native code instruction selection for a chunk of stix code. For
-- this part of the computation, we switch from the UniqSM monad to
-- the NatM monad. The latter carries not only a Unique, but also an
-- Int denoting the current C stack pointer offset in the generated
-- code; this is needed for creating correct spill offsets on
-- architectures which don't offer, or for which it would be
-- prohibitively expensive to employ, a frame pointer register. Viz,
-- x86.
-- The offset is measured in bytes, and indicates the difference
-- between the current (simulated) C stack-ptr and the value it was at
-- the beginning of the block. For stacks which grow down, this value
-- should be either zero or negative.
-- Switching between the two monads whilst carrying along the same
-- Unique supply breaks abstraction. Is that bad?
genMachCode :: DynFlags -> RawCmmTop -> UniqSM ([NatCmmTop], [CLabel])
genMachCode dflags cmm_top
= do { initial_us <- getUs
; let initial_st = mkNatM_State initial_us 0 dflags
(new_tops, final_st) = initNat initial_st (cmmTopCodeGen cmm_top)
final_delta = natm_delta final_st
final_imports = natm_imports final_st
; if final_delta == 0
then return (new_tops, final_imports)
else pprPanic "genMachCode: nonzero final delta" (int final_delta)
}
-- -----------------------------------------------------------------------------
-- Fixup assignments to global registers so that they assign to
-- locations within the RegTable, if appropriate.
-- Note that we currently don't fixup reads here: they're done by
-- the generic optimiser below, to avoid having two separate passes
-- over the Cmm.
fixAssignsTop :: RawCmmTop -> UniqSM RawCmmTop
fixAssignsTop top@(CmmData _ _) = returnUs top
fixAssignsTop (CmmProc info lbl params (ListGraph blocks)) =
mapUs fixAssignsBlock blocks `thenUs` \ blocks' ->
returnUs (CmmProc info lbl params (ListGraph blocks'))
fixAssignsBlock :: CmmBasicBlock -> UniqSM CmmBasicBlock
fixAssignsBlock (BasicBlock id stmts) =
fixAssigns stmts `thenUs` \ stmts' ->
returnUs (BasicBlock id stmts')
fixAssigns :: [CmmStmt] -> UniqSM [CmmStmt]
fixAssigns stmts =
mapUs fixAssign stmts `thenUs` \ stmtss ->
returnUs (concat stmtss)
fixAssign :: CmmStmt -> UniqSM [CmmStmt]
fixAssign (CmmAssign (CmmGlobal reg) src)
| Left realreg <- reg_or_addr
= returnUs [CmmAssign (CmmGlobal reg) src]
| Right baseRegAddr <- reg_or_addr
= returnUs [CmmStore baseRegAddr src]
-- Replace register leaves with appropriate StixTrees for
-- the given target. GlobalRegs which map to a reg on this
-- arch are left unchanged. Assigning to BaseReg is always
-- illegal, so we check for that.
where
reg_or_addr = get_GlobalReg_reg_or_addr reg
fixAssign other_stmt = returnUs [other_stmt]
-- -----------------------------------------------------------------------------
-- Generic Cmm optimiser
{-
Here we do:
(a) Constant folding
(b) Simple inlining: a temporary which is assigned to and then
used, once, can be shorted.
(c) Replacement of references to GlobalRegs which do not have
machine registers by the appropriate memory load (eg.
Hp ==> *(BaseReg + 34) ).
(d) Position independent code and dynamic linking
(i) introduce the appropriate indirections
and position independent refs
(ii) compile a list of imported symbols
Ideas for other things we could do (ToDo):
- shortcut jumps-to-jumps
- eliminate dead code blocks
- simple CSE: if an expr is assigned to a temp, then replace later occs of
that expr with the temp, until the expr is no longer valid (can push through
temp assignments, and certain assigns to mem...)
-}
cmmToCmm :: DynFlags -> RawCmmTop -> (RawCmmTop, [CLabel])
cmmToCmm _ top@(CmmData _ _) = (top, [])
cmmToCmm dflags (CmmProc info lbl params (ListGraph blocks)) = runCmmOpt dflags $ do
blocks' <- mapM cmmBlockConFold (cmmMiniInline blocks)
return $ CmmProc info lbl params (ListGraph blocks')
newtype CmmOptM a = CmmOptM (([CLabel], DynFlags) -> (# a, [CLabel] #))
instance Monad CmmOptM where
return x = CmmOptM $ \(imports, _) -> (# x,imports #)
(CmmOptM f) >>= g =
CmmOptM $ \(imports, dflags) ->
case f (imports, dflags) of
(# x, imports' #) ->
case g x of
CmmOptM g' -> g' (imports', dflags)
addImportCmmOpt :: CLabel -> CmmOptM ()
addImportCmmOpt lbl = CmmOptM $ \(imports, dflags) -> (# (), lbl:imports #)
getDynFlagsCmmOpt :: CmmOptM DynFlags
getDynFlagsCmmOpt = CmmOptM $ \(imports, dflags) -> (# dflags, imports #)
runCmmOpt :: DynFlags -> CmmOptM a -> (a, [CLabel])
runCmmOpt dflags (CmmOptM f) = case f ([], dflags) of
(# result, imports #) -> (result, imports)
cmmBlockConFold :: CmmBasicBlock -> CmmOptM CmmBasicBlock
cmmBlockConFold (BasicBlock id stmts) = do
stmts' <- mapM cmmStmtConFold stmts
return $ BasicBlock id stmts'
cmmStmtConFold stmt
= case stmt of
CmmAssign reg src
-> do src' <- cmmExprConFold DataReference src
return $ case src' of
CmmReg reg' | reg == reg' -> CmmNop
new_src -> CmmAssign reg new_src
CmmStore addr src
-> do addr' <- cmmExprConFold DataReference addr
src' <- cmmExprConFold DataReference src
return $ CmmStore addr' src'
CmmJump addr regs
-> do addr' <- cmmExprConFold JumpReference addr
return $ CmmJump addr' regs
CmmCall target regs args srt returns
-> do target' <- case target of
CmmCallee e conv -> do
e' <- cmmExprConFold CallReference e
return $ CmmCallee e' conv
other -> return other
args' <- mapM (\(CmmKinded arg hint) -> do
arg' <- cmmExprConFold DataReference arg
return (CmmKinded arg' hint)) args
return $ CmmCall target' regs args' srt returns
CmmCondBranch test dest
-> do test' <- cmmExprConFold DataReference test
return $ case test' of
CmmLit (CmmInt 0 _) ->
CmmComment (mkFastString ("deleted: " ++
showSDoc (pprStmt stmt)))
CmmLit (CmmInt n _) -> CmmBranch dest
other -> CmmCondBranch test' dest
CmmSwitch expr ids
-> do expr' <- cmmExprConFold DataReference expr
return $ CmmSwitch expr' ids
other
-> return other
cmmExprConFold referenceKind expr
= case expr of
CmmLoad addr rep
-> do addr' <- cmmExprConFold DataReference addr
return $ CmmLoad addr' rep
CmmMachOp mop args
-- For MachOps, we first optimize the children, and then we try
-- our hand at some constant-folding.
-> do args' <- mapM (cmmExprConFold DataReference) args
return $ cmmMachOpFold mop args'
CmmLit (CmmLabel lbl)
-> do
dflags <- getDynFlagsCmmOpt
cmmMakeDynamicReference dflags addImportCmmOpt referenceKind lbl
CmmLit (CmmLabelOff lbl off)
-> do
dflags <- getDynFlagsCmmOpt
dynRef <- cmmMakeDynamicReference dflags addImportCmmOpt referenceKind lbl
return $ cmmMachOpFold (MO_Add wordRep) [
dynRef,
(CmmLit $ CmmInt (fromIntegral off) wordRep)
]
#if powerpc_TARGET_ARCH
-- On powerpc (non-PIC), it's easier to jump directly to a label than
-- to use the register table, so we replace these registers
-- with the corresponding labels:
CmmReg (CmmGlobal EagerBlackholeInfo)
| not opt_PIC
-> cmmExprConFold referenceKind $
CmmLit (CmmLabel (mkRtsCodeLabel (sLit "__stg_EAGER_BLACKHOLE_INFO")))
CmmReg (CmmGlobal GCEnter1)
| not opt_PIC
-> cmmExprConFold referenceKind $
CmmLit (CmmLabel (mkRtsCodeLabel (sLit "__stg_gc_enter_1")))
CmmReg (CmmGlobal GCFun)
| not opt_PIC
-> cmmExprConFold referenceKind $
CmmLit (CmmLabel (mkRtsCodeLabel (sLit "__stg_gc_fun")))
#endif
CmmReg (CmmGlobal mid)
-- Replace register leaves with appropriate StixTrees for
-- the given target. MagicIds which map to a reg on this
-- arch are left unchanged. For the rest, BaseReg is taken
-- to mean the address of the reg table in MainCapability,
-- and for all others we generate an indirection to its
-- location in the register table.
-> case get_GlobalReg_reg_or_addr mid of
Left realreg -> return expr
Right baseRegAddr
-> case mid of
BaseReg -> cmmExprConFold DataReference baseRegAddr
other -> cmmExprConFold DataReference
(CmmLoad baseRegAddr (globalRegRep mid))
-- eliminate zero offsets
CmmRegOff reg 0
-> cmmExprConFold referenceKind (CmmReg reg)
CmmRegOff (CmmGlobal mid) offset
-- RegOf leaves are just a shorthand form. If the reg maps
-- to a real reg, we keep the shorthand, otherwise, we just
-- expand it and defer to the above code.
-> case get_GlobalReg_reg_or_addr mid of
Left realreg -> return expr
Right baseRegAddr
-> cmmExprConFold DataReference (CmmMachOp (MO_Add wordRep) [
CmmReg (CmmGlobal mid),
CmmLit (CmmInt (fromIntegral offset)
wordRep)])
other
-> return other
-- -----------------------------------------------------------------------------
-- Utils
bind f x = x $! f
\end{code}
|