1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
|
--
-- Copyright (c) 2018 Andreas Klebinger
--
{-# LANGUAGE TypeFamilies, ScopedTypeVariables #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE CPP #-}
module CFG
( CFG, CfgEdge(..), EdgeInfo(..), EdgeWeight(..)
, TransitionSource(..)
--Modify the CFG
, addWeightEdge, addEdge, delEdge
, addNodesBetween, shortcutWeightMap
, reverseEdges, filterEdges
, addImmediateSuccessor
, mkWeightInfo, adjustEdgeWeight
--Query the CFG
, infoEdgeList, edgeList
, getSuccessorEdges, getSuccessors
, getSuccEdgesSorted, weightedEdgeList
, getEdgeInfo
, getCfgNodes, hasNode
--Construction/Misc
, getCfg, getCfgProc, pprEdgeWeights, sanityCheckCfg
--Find backedges and update their weight
, optimizeCFG )
where
#include "HsVersions.h"
import GhcPrelude
import BlockId
import Cmm ( RawCmmDecl, GenCmmDecl( .. ), CmmBlock, succ, g_entry
, CmmGraph )
import CmmNode
import CmmUtils
import CmmSwitch
import Hoopl.Collections
import Hoopl.Label
import Hoopl.Block
import qualified Hoopl.Graph as G
import Util
import Digraph
import Outputable
-- DEBUGGING ONLY
--import Debug
--import OrdList
--import Debug.Trace
import PprCmm ()
import qualified DynFlags as D
import Data.List
-- import qualified Data.IntMap.Strict as M --TODO: LabelMap
type Edge = (BlockId, BlockId)
type Edges = [Edge]
newtype EdgeWeight
= EdgeWeight Int
deriving (Eq,Ord,Enum,Num,Real,Integral)
instance Outputable EdgeWeight where
ppr (EdgeWeight w) = ppr w
type EdgeInfoMap edgeInfo = LabelMap (LabelMap edgeInfo)
-- | A control flow graph where edges have been annotated with a weight.
type CFG = EdgeInfoMap EdgeInfo
data CfgEdge
= CfgEdge
{ edgeFrom :: !BlockId
, edgeTo :: !BlockId
, edgeInfo :: !EdgeInfo
}
-- | Careful! Since we assume there is at most one edge from A to B
-- the Eq instance does not consider weight.
instance Eq CfgEdge where
(==) (CfgEdge from1 to1 _) (CfgEdge from2 to2 _)
= from1 == from2 && to1 == to2
-- | Edges are sorted ascending pointwise by weight, source and destination
instance Ord CfgEdge where
compare (CfgEdge from1 to1 (EdgeInfo {edgeWeight = weight1}))
(CfgEdge from2 to2 (EdgeInfo {edgeWeight = weight2}))
| weight1 < weight2 || weight1 == weight2 && from1 < from2 ||
weight1 == weight2 && from1 == from2 && to1 < to2
= LT
| from1 == from2 && to1 == to2 && weight1 == weight2
= EQ
| otherwise
= GT
instance Outputable CfgEdge where
ppr (CfgEdge from1 to1 edgeInfo)
= parens (ppr from1 <+> text "-(" <> ppr edgeInfo <> text ")->" <+> ppr to1)
-- | Can we trace back a edge to a specific Cmm Node
-- or has it been introduced for codegen. We use this to maintain
-- some information which would otherwise be lost during the
-- Cmm <-> asm transition.
-- See also Note [Inverting Conditional Branches]
data TransitionSource
= CmmSource (CmmNode O C)
| AsmCodeGen
deriving (Eq)
-- | Information about edges
data EdgeInfo
= EdgeInfo
{ transitionSource :: !TransitionSource
, edgeWeight :: !EdgeWeight
} deriving (Eq)
instance Outputable EdgeInfo where
ppr edgeInfo = text "weight:" <+> ppr (edgeWeight edgeInfo)
-- Allow specialization
{-# INLINEABLE mkWeightInfo #-}
-- | Convenience function, generate edge info based
-- on weight not originating from cmm.
mkWeightInfo :: Integral n => n -> EdgeInfo
mkWeightInfo = EdgeInfo AsmCodeGen . fromIntegral
-- | Adjust the weight between the blocks using the given function.
-- If there is no such edge returns the original map.
adjustEdgeWeight :: CFG -> (EdgeWeight -> EdgeWeight)
-> BlockId -> BlockId -> CFG
adjustEdgeWeight cfg f from to
| Just info <- getEdgeInfo from to cfg
, weight <- edgeWeight info
= addEdge from to (info { edgeWeight = f weight}) cfg
| otherwise = cfg
getCfgNodes :: CFG -> LabelSet
getCfgNodes m = mapFoldMapWithKey (\k v -> setFromList (k:mapKeys v)) m
hasNode :: CFG -> BlockId -> Bool
hasNode m node = mapMember node m || any (mapMember node) m
-- | Check if the nodes in the cfg and the set of blocks are the same.
-- In a case of a missmatch we panic and show the difference.
sanityCheckCfg :: CFG -> LabelSet -> SDoc -> Bool
sanityCheckCfg m blockSet msg
| blockSet == cfgNodes
= True
| otherwise =
pprPanic "Block list and cfg nodes don't match" (
text "difference:" <+> ppr diff $$
text "blocks:" <+> ppr blockSet $$
text "cfg:" <+> ppr m $$
msg )
False
where
cfgNodes = getCfgNodes m :: LabelSet
diff = (setUnion cfgNodes blockSet) `setDifference` (setIntersection cfgNodes blockSet) :: LabelSet
-- | Filter the CFG with a custom function f.
-- Paramaeters are `f from to edgeInfo`
filterEdges :: (BlockId -> BlockId -> EdgeInfo -> Bool) -> CFG -> CFG
filterEdges f cfg =
mapMapWithKey filterSources cfg
where
filterSources from m =
mapFilterWithKey (\to w -> f from to w) m
{- Note [Updating the CFG during shortcutting]
See Note [What is shortcutting] in the control flow optimization
code (CmmContFlowOpt.hs) for a slightly more in depth explanation on shortcutting.
In the native backend we shortcut jumps at the assembly level. (AsmCodeGen.hs)
This means we remove blocks containing only one jump from the code
and instead redirecting all jumps targeting this block to the deleted
blocks jump target.
However we want to have an accurate representation of control
flow in the CFG. So we add/remove edges accordingly to account
for the eliminated blocks and new edges.
If we shortcut A -> B -> C to A -> C:
* We delete edges A -> B and B -> C
* Replacing them with the edge A -> C
We also try to preserve jump weights while doing so.
Note that:
* The edge B -> C can't have interesting weights since
the block B consists of a single unconditional jump without branching.
* We delete the edge A -> B and add the edge A -> C.
* The edge A -> B can be one of many edges originating from A so likely
has edge weights we want to preserve.
For this reason we simply store the edge info from the original A -> B
edge and apply this information to the new edge A -> C.
Sometimes we have a scenario where jump target C is not represented by an
BlockId but an immediate value. I'm only aware of this happening without
tables next to code currently.
Then we go from A ---> B - -> IMM to A - -> IMM where the dashed arrows
are not stored in the CFG.
In that case we simply delete the edge A -> B.
In terms of implementation the native backend first builds a mapping
from blocks suitable for shortcutting to their jump targets.
Then it redirects all jump instructions to these blocks using the
built up mapping.
This function (shortcutWeightMap) takes the same mapping and
applies the mapping to the CFG in the way layed out above.
-}
shortcutWeightMap :: CFG -> LabelMap (Maybe BlockId) -> CFG
shortcutWeightMap cfg cuts =
foldl' applyMapping cfg $ mapToList cuts
where
-- takes the tuple (B,C) from the notation in [Updating the CFG during shortcutting]
applyMapping :: CFG -> (BlockId,Maybe BlockId) -> CFG
--Shortcut immediate
applyMapping m (from, Nothing) =
mapDelete from .
fmap (mapDelete from) $ m
--Regular shortcut
applyMapping m (from, Just to) =
let updatedMap :: CFG
updatedMap
= fmap (shortcutEdge (from,to)) $
(mapDelete from m :: CFG )
--Sometimes we can shortcut multiple blocks like so:
-- A -> B -> C -> D -> E => A -> E
-- so we check for such chains.
in case mapLookup to cuts of
Nothing -> updatedMap
Just dest -> applyMapping updatedMap (to, dest)
--Redirect edge from B to C
shortcutEdge :: (BlockId, BlockId) -> LabelMap EdgeInfo -> LabelMap EdgeInfo
shortcutEdge (from, to) m =
case mapLookup from m of
Just info -> mapInsert to info $ mapDelete from m
Nothing -> m
-- | Sometimes we insert a block which should unconditionally be executed
-- after a given block. This function updates the CFG for these cases.
-- So we get A -> B => A -> A' -> B
-- \ \
-- -> C => -> C
--
addImmediateSuccessor :: BlockId -> BlockId -> CFG -> CFG
addImmediateSuccessor node follower cfg
= updateEdges . addWeightEdge node follower uncondWeight $ cfg
where
uncondWeight = fromIntegral . D.uncondWeight .
D.cfgWeightInfo $ D.unsafeGlobalDynFlags
targets = getSuccessorEdges cfg node
successors = map fst targets :: [BlockId]
updateEdges = addNewSuccs . remOldSuccs
remOldSuccs m = foldl' (flip (delEdge node)) m successors
addNewSuccs m =
foldl' (\m' (t,info) -> addEdge follower t info m') m targets
-- | Adds a new edge, overwrites existing edges if present
addEdge :: BlockId -> BlockId -> EdgeInfo -> CFG -> CFG
addEdge from to info cfg =
mapAlter addDest from cfg
where
addDest Nothing = Just $ mapSingleton to info
addDest (Just wm) = Just $ mapInsert to info wm
-- | Adds a edge with the given weight to the cfg
-- If there already existed an edge it is overwritten.
-- `addWeightEdge from to weight cfg`
addWeightEdge :: BlockId -> BlockId -> EdgeWeight -> CFG -> CFG
addWeightEdge from to weight cfg =
addEdge from to (mkWeightInfo weight) cfg
delEdge :: BlockId -> BlockId -> CFG -> CFG
delEdge from to m =
mapAlter remDest from m
where
remDest Nothing = Nothing
remDest (Just wm) = Just $ mapDelete to wm
-- | Destinations from bid ordered by weight (descending)
getSuccEdgesSorted :: CFG -> BlockId -> [(BlockId,EdgeInfo)]
getSuccEdgesSorted m bid =
let destMap = mapFindWithDefault mapEmpty bid m
cfgEdges = mapToList destMap
sortedEdges = sortWith (negate . edgeWeight . snd) cfgEdges
in --pprTrace "getSuccEdgesSorted" (ppr bid <+> text "map:" <+> ppr m)
sortedEdges
-- | Get successors of a given node with edge weights.
getSuccessorEdges :: CFG -> BlockId -> [(BlockId,EdgeInfo)]
getSuccessorEdges m bid = maybe [] mapToList $ mapLookup bid m
getEdgeInfo :: BlockId -> BlockId -> CFG -> Maybe EdgeInfo
getEdgeInfo from to m
| Just wm <- mapLookup from m
, Just info <- mapLookup to wm
= Just $! info
| otherwise
= Nothing
reverseEdges :: CFG -> CFG
reverseEdges cfg = foldr add mapEmpty flatElems
where
elems = mapToList $ fmap mapToList cfg :: [(BlockId,[(BlockId,EdgeInfo)])]
flatElems =
concatMap (\(from,ws) -> map (\(to,info) -> (to,from,info)) ws ) elems
add (to,from,info) m = addEdge to from info m
-- | Returns a unordered list of all edges with info
infoEdgeList :: CFG -> [CfgEdge]
infoEdgeList m =
mapFoldMapWithKey
(\from toMap ->
map (\(to,info) -> CfgEdge from to info) (mapToList toMap))
m
-- | Unordered list of edges with weight as Tuple (from,to,weight)
weightedEdgeList :: CFG -> [(BlockId,BlockId,EdgeWeight)]
weightedEdgeList m =
mapFoldMapWithKey
(\from toMap ->
map (\(to,info) ->
(from,to, edgeWeight info)) (mapToList toMap))
m
-- (\(from, tos) -> map (\(to,info) -> (from,to, edgeWeight info)) tos )
-- | Returns a unordered list of all edges without weights
edgeList :: CFG -> [Edge]
edgeList m =
mapFoldMapWithKey (\from toMap -> fmap (from,) (mapKeys toMap)) m
-- | Get successors of a given node without edge weights.
getSuccessors :: CFG -> BlockId -> [BlockId]
getSuccessors m bid
| Just wm <- mapLookup bid m
= mapKeys wm
| otherwise = []
pprEdgeWeights :: CFG -> SDoc
pprEdgeWeights m =
let edges = sort $ weightedEdgeList m
printEdge (from, to, weight)
= text "\t" <> ppr from <+> text "->" <+> ppr to <>
text "[label=\"" <> ppr weight <> text "\",weight=\"" <>
ppr weight <> text "\"];\n"
--for the case that there are no edges from/to this node.
--This should rarely happen but it can save a lot of time
--to immediatly see it when it does.
printNode node
= text "\t" <> ppr node <> text ";\n"
getEdgeNodes (from, to, _weight) = [from,to]
edgeNodes = setFromList $ concatMap getEdgeNodes edges :: LabelSet
nodes = filter (\n -> (not . setMember n) edgeNodes) . mapKeys $ mapFilter null m
in
text "digraph {\n" <>
(foldl' (<>) empty (map printEdge edges)) <>
(foldl' (<>) empty (map printNode nodes)) <>
text "}\n"
{-# INLINE updateEdgeWeight #-} --Allows eliminating the tuple when possible
updateEdgeWeight :: (EdgeWeight -> EdgeWeight) -> Edge -> CFG -> CFG
updateEdgeWeight f (from, to) cfg
| Just oldInfo <- getEdgeInfo from to cfg
= let oldWeight = edgeWeight oldInfo
newWeight = f oldWeight
in addEdge from to (oldInfo {edgeWeight = newWeight}) cfg
| otherwise
= panic "Trying to update invalid edge"
-- from to oldWeight => newWeight
mapWeights :: (BlockId -> BlockId -> EdgeWeight -> EdgeWeight) -> CFG -> CFG
mapWeights f cfg =
foldl' (\cfg (CfgEdge from to info) ->
let oldWeight = edgeWeight info
newWeight = f from to oldWeight
in addEdge from to (info {edgeWeight = newWeight}) cfg)
cfg (infoEdgeList cfg)
-- | Insert a block in the control flow between two other blocks.
-- We pass a list of tuples (A,B,C) where
-- * A -> C: Old edge
-- * A -> B -> C : New Arc, where B is the new block.
-- It's possible that a block has two jumps to the same block
-- in the assembly code. However we still only store a single edge for
-- these cases.
-- We assign the old edge info to the edge A -> B and assign B -> C the
-- weight of an unconditional jump.
addNodesBetween :: CFG -> [(BlockId,BlockId,BlockId)] -> CFG
addNodesBetween m updates =
foldl' updateWeight m .
weightUpdates $ updates
where
weight = fromIntegral . D.uncondWeight .
D.cfgWeightInfo $ D.unsafeGlobalDynFlags
-- We might add two blocks for different jumps along a single
-- edge. So we end up with edges: A -> B -> C , A -> D -> C
-- in this case after applying the first update the weight for A -> C
-- is no longer available. So we calculate future weights before updates.
weightUpdates = map getWeight
getWeight :: (BlockId,BlockId,BlockId) -> (BlockId,BlockId,BlockId,EdgeInfo)
getWeight (from,between,old)
| Just edgeInfo <- getEdgeInfo from old m
= (from,between,old,edgeInfo)
| otherwise
= pprPanic "Can't find weight for edge that should have one" (
text "triple" <+> ppr (from,between,old) $$
text "updates" <+> ppr updates )
updateWeight :: CFG -> (BlockId,BlockId,BlockId,EdgeInfo) -> CFG
updateWeight m (from,between,old,edgeInfo)
= addEdge from between edgeInfo .
addWeightEdge between old weight .
delEdge from old $ m
{-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~ Note [CFG Edge Weights] ~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Edge weights assigned do not currently represent a specific
cost model and rather just a ranking of which blocks should
be placed next to each other given their connection type in
the CFG.
This is especially relevant if we whenever two blocks will
jump to the same target.
A B
\ /
C
Should A or B be placed in front of C? The block layout algorithm
decides this based on which edge (A,C)/(B,C) is heavier. So we
make a educated guess how often execution will transer control
along each edge as well as how much we gain by placing eg A before
C.
We rank edges in this order:
* Unconditional Control Transfer - They will always
transfer control to their target. Unless there is a info table
we can turn the jump into a fallthrough as well.
We use 20k as default, so it's easy to spot if values have been
modified but unlikely that we run into issues with overflow.
* If branches (likely) - We assume branches marked as likely
are taken more than 80% of the time.
By ranking them below unconditional jumps we make sure we
prefer the unconditional if there is a conditional and
unconditional edge towards a block.
* If branches (regular) - The false branch can potentially be turned
into a fallthrough so we prefer it slightly over the true branch.
* Unlikely branches - These can be assumed to be taken less than 20%
of the time. So we given them one of the lowest priorities.
* Switches - Switches at this level are implemented as jump tables
so have a larger number of successors. So without more information
we can only say that each individual successor is unlikely to be
jumped to and we rank them accordingly.
* Calls - We currently ignore calls completly:
* By the time we return from a call there is a good chance
that the address we return to has already been evicted from
cache eliminating a main advantage sequential placement brings.
* Calls always require a info table in front of their return
address. This reduces the chance that we return to the same
cache line further.
-}
-- | Generate weights for a Cmm proc based on some simple heuristics.
getCfgProc :: D.CfgWeights -> RawCmmDecl -> CFG
getCfgProc _ (CmmData {}) = mapEmpty
-- Sometimes GHC generates dummy procs which don't actually contain code.
-- But they might contain bottoms in some fields so we check for an empty
-- body first. In particular this happens with SplitObjs enabled.
getCfgProc weights (CmmProc _info _lab _live graph)
| null (toBlockList graph) = mapEmpty
| otherwise = getCfg weights graph
getCfg :: D.CfgWeights -> CmmGraph -> CFG
getCfg weights graph =
foldl' insertEdge edgelessCfg $ concatMap getBlockEdges blocks
where
D.CFGWeights
{ D.uncondWeight = uncondWeight
, D.condBranchWeight = condBranchWeight
, D.switchWeight = switchWeight
, D.callWeight = callWeight
, D.likelyCondWeight = likelyCondWeight
, D.unlikelyCondWeight = unlikelyCondWeight
-- Last two are used in other places
--, D.infoTablePenalty = infoTablePenalty
--, D.backEdgeBonus = backEdgeBonus
} = weights
-- Explicitly add all nodes to the cfg to ensure they are part of the
-- CFG.
edgelessCfg = mapFromList $ zip (map G.entryLabel blocks) (repeat mapEmpty)
insertEdge :: CFG -> ((BlockId,BlockId),EdgeInfo) -> CFG
insertEdge m ((from,to),weight) =
mapAlter f from m
where
f :: Maybe (LabelMap EdgeInfo) -> Maybe (LabelMap EdgeInfo)
f Nothing = Just $ mapSingleton to weight
f (Just destMap) = Just $ mapInsert to weight destMap
getBlockEdges :: CmmBlock -> [((BlockId,BlockId),EdgeInfo)]
getBlockEdges block =
case branch of
CmmBranch dest -> [mkEdge dest uncondWeight]
CmmCondBranch _c t f l
| l == Nothing ->
[mkEdge f condBranchWeight, mkEdge t condBranchWeight]
| l == Just True ->
[mkEdge f unlikelyCondWeight, mkEdge t likelyCondWeight]
| l == Just False ->
[mkEdge f likelyCondWeight, mkEdge t unlikelyCondWeight]
(CmmSwitch _e ids) ->
let switchTargets = switchTargetsToList ids
--Compiler performance hack - for very wide switches don't
--consider targets for layout.
adjustedWeight =
if (length switchTargets > 10) then -1 else switchWeight
in map (\x -> mkEdge x adjustedWeight) switchTargets
(CmmCall { cml_cont = Just cont}) -> [mkEdge cont callWeight]
(CmmForeignCall {Cmm.succ = cont}) -> [mkEdge cont callWeight]
(CmmCall { cml_cont = Nothing }) -> []
other ->
panic "Foo" $
ASSERT2(False, ppr "Unkown successor cause:" <>
(ppr branch <+> text "=>" <> ppr (G.successors other)))
map (\x -> ((bid,x),mkEdgeInfo 0)) $ G.successors other
where
bid = G.entryLabel block
mkEdgeInfo = EdgeInfo (CmmSource branch) . fromIntegral
mkEdge target weight = ((bid,target), mkEdgeInfo weight)
branch = lastNode block :: CmmNode O C
blocks = revPostorder graph :: [CmmBlock]
--Find back edges by BFS
findBackEdges :: BlockId -> CFG -> Edges
findBackEdges root cfg =
--pprTraceIt "Backedges:" $
map fst .
filter (\x -> snd x == Backward) $ typedEdges
where
edges = edgeList cfg :: [(BlockId,BlockId)]
getSuccs = getSuccessors cfg :: BlockId -> [BlockId]
typedEdges =
classifyEdges root getSuccs edges :: [((BlockId,BlockId),EdgeType)]
optimizeCFG :: D.CfgWeights -> RawCmmDecl -> CFG -> CFG
optimizeCFG _ (CmmData {}) cfg = cfg
optimizeCFG weights (CmmProc info _lab _live graph) cfg =
favourFewerPreds .
penalizeInfoTables info .
increaseBackEdgeWeight (g_entry graph) $ cfg
where
-- | Increase the weight of all backedges in the CFG
-- this helps to make loop jumpbacks the heaviest edges
increaseBackEdgeWeight :: BlockId -> CFG -> CFG
increaseBackEdgeWeight root cfg =
let backedges = findBackEdges root cfg
update weight
--Keep irrelevant edges irrelevant
| weight <= 0 = 0
| otherwise
= weight + fromIntegral (D.backEdgeBonus weights)
in foldl' (\cfg edge -> updateEdgeWeight update edge cfg)
cfg backedges
-- | Since we cant fall through info tables we penalize these.
penalizeInfoTables :: LabelMap a -> CFG -> CFG
penalizeInfoTables info cfg =
mapWeights fupdate cfg
where
fupdate :: BlockId -> BlockId -> EdgeWeight -> EdgeWeight
fupdate _ to weight
| mapMember to info
= weight - (fromIntegral $ D.infoTablePenalty weights)
| otherwise = weight
{- Note [Optimize for Fallthrough]
-}
-- | If a block has two successors, favour the one with fewer
-- predecessors. (As that one is more likely to become a fallthrough)
favourFewerPreds :: CFG -> CFG
favourFewerPreds cfg =
let
revCfg =
reverseEdges $ filterEdges
(\_from -> fallthroughTarget) cfg
predCount n = length $ getSuccessorEdges revCfg n
nodes = getCfgNodes cfg
modifiers :: Int -> Int -> (EdgeWeight, EdgeWeight)
modifiers preds1 preds2
| preds1 < preds2 = ( 1,-1)
| preds1 == preds2 = ( 0, 0)
| otherwise = (-1, 1)
update cfg node
| [(s1,e1),(s2,e2)] <- getSuccessorEdges cfg node
, w1 <- edgeWeight e1
, w2 <- edgeWeight e2
--Only change the weights if there isn't already a ordering.
, w1 == w2
, (mod1,mod2) <- modifiers (predCount s1) (predCount s2)
= (\cfg' ->
(adjustEdgeWeight cfg' (+mod2) node s2))
(adjustEdgeWeight cfg (+mod1) node s1)
| otherwise
= cfg
in setFoldl update cfg nodes
where
fallthroughTarget :: BlockId -> EdgeInfo -> Bool
fallthroughTarget to (EdgeInfo source _weight)
| mapMember to info = False
| AsmCodeGen <- source = True
| CmmSource (CmmBranch {}) <- source = True
| CmmSource (CmmCondBranch {}) <- source = True
| otherwise = False
|