1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
|
-- | Basic operations on graphs.
--
{-# OPTIONS -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
-- http://hackage.haskell.org/trac/ghc/wiki/CodingStyle#Warnings
-- for details
module GraphOps (
addNode, delNode, getNode, lookupNode, modNode,
size,
union,
addConflict, delConflict, addConflicts,
addCoalesce, delCoalesce,
addExclusion,
addPreference,
coalesceGraph,
coalesceNodes,
setColor,
validateGraph,
slurpNodeConflictCount
)
where
import GraphBase
import Outputable
import Unique
import UniqSet
import UniqFM
import Data.List hiding (union)
import Data.Maybe
-- | Lookup a node from the graph.
lookupNode
:: Uniquable k
=> Graph k cls color
-> k -> Maybe (Node k cls color)
lookupNode graph k
= lookupUFM (graphMap graph) k
-- | Get a node from the graph, throwing an error if it's not there
getNode
:: Uniquable k
=> Graph k cls color
-> k -> Node k cls color
getNode graph k
= case lookupUFM (graphMap graph) k of
Just node -> node
Nothing -> panic "ColorOps.getNode: not found"
-- | Add a node to the graph, linking up its edges
addNode :: Uniquable k
=> k -> Node k cls color
-> Graph k cls color -> Graph k cls color
addNode k node graph
= let
-- add back conflict edges from other nodes to this one
map_conflict
= foldUniqSet
(adjustUFM (\n -> n { nodeConflicts = addOneToUniqSet (nodeConflicts n) k}))
(graphMap graph)
(nodeConflicts node)
-- add back coalesce edges from other nodes to this one
map_coalesce
= foldUniqSet
(adjustUFM (\n -> n { nodeCoalesce = addOneToUniqSet (nodeCoalesce n) k}))
map_conflict
(nodeCoalesce node)
in graph
{ graphMap = addToUFM map_coalesce k node}
-- | Delete a node and all its edges from the graph.
-- Throws an error if it's not there.
delNode :: Uniquable k
=> k -> Graph k cls color -> Graph k cls color
delNode k graph
= let Just node = lookupNode graph k
-- delete conflict edges from other nodes to this one.
graph1 = foldl' (\g k1 -> let Just g' = delConflict k1 k g in g') graph
$ uniqSetToList (nodeConflicts node)
-- delete coalesce edge from other nodes to this one.
graph2 = foldl' (\g k1 -> let Just g' = delCoalesce k1 k g in g') graph1
$ uniqSetToList (nodeCoalesce node)
-- delete the node
graph3 = graphMapModify (\fm -> delFromUFM fm k) graph2
in graph3
-- | Modify a node in the graph.
-- returns Nothing if the node isn't present.
--
modNode :: Uniquable k
=> (Node k cls color -> Node k cls color)
-> k -> Graph k cls color -> Maybe (Graph k cls color)
modNode f k graph
= case lookupNode graph k of
Just Node{}
-> Just
$ graphMapModify
(\fm -> let Just node = lookupUFM fm k
node' = f node
in addToUFM fm k node')
graph
Nothing -> Nothing
-- | Get the size of the graph, O(n)
size :: Uniquable k
=> Graph k cls color -> Int
size graph
= sizeUFM $ graphMap graph
-- | Union two graphs together.
union :: Uniquable k
=> Graph k cls color -> Graph k cls color -> Graph k cls color
union graph1 graph2
= Graph
{ graphMap = plusUFM (graphMap graph1) (graphMap graph2) }
-- | Add a conflict between nodes to the graph, creating the nodes required.
-- Conflicts are virtual regs which need to be colored differently.
addConflict
:: Uniquable k
=> (k, cls) -> (k, cls)
-> Graph k cls color -> Graph k cls color
addConflict (u1, c1) (u2, c2)
= let addNeighbor u c u'
= adjustWithDefaultUFM
(\node -> node { nodeConflicts = addOneToUniqSet (nodeConflicts node) u' })
(newNode u c) { nodeConflicts = unitUniqSet u' }
u
in graphMapModify
( addNeighbor u1 c1 u2
. addNeighbor u2 c2 u1)
-- | Delete a conflict edge. k1 -> k2
-- returns Nothing if the node isn't in the graph
delConflict
:: Uniquable k
=> k -> k
-> Graph k cls color -> Maybe (Graph k cls color)
delConflict k1 k2
= modNode
(\node -> node { nodeConflicts = delOneFromUniqSet (nodeConflicts node) k2 })
k1
-- | Add some conflicts to the graph, creating nodes if required.
-- All the nodes in the set are taken to conflict with each other.
addConflicts
:: Uniquable k
=> UniqSet k -> (k -> cls)
-> Graph k cls color -> Graph k cls color
addConflicts conflicts getClass
-- just a single node, but no conflicts, create the node anyway.
| (u : []) <- uniqSetToList conflicts
= graphMapModify
$ adjustWithDefaultUFM
id
(newNode u (getClass u))
u
| otherwise
= graphMapModify
$ (\fm -> foldr (\u -> addConflictSet1 u getClass conflicts) fm
$ uniqSetToList conflicts)
addConflictSet1 u getClass set
= let set' = delOneFromUniqSet set u
in adjustWithDefaultUFM
(\node -> node { nodeConflicts = unionUniqSets set' (nodeConflicts node) } )
(newNode u (getClass u)) { nodeConflicts = set' }
u
-- | Add an exclusion to the graph, creating nodes if required.
-- These are extra colors that the node cannot use.
addExclusion
:: (Uniquable k, Uniquable color)
=> k -> (k -> cls) -> color
-> Graph k cls color -> Graph k cls color
addExclusion u getClass color
= graphMapModify
$ adjustWithDefaultUFM
(\node -> node { nodeExclusions = addOneToUniqSet (nodeExclusions node) color })
(newNode u (getClass u)) { nodeExclusions = unitUniqSet color }
u
-- | Add a coalescence edge to the graph, creating nodes if requried.
-- It is considered adventageous to assign the same color to nodes in a coalesence.
addCoalesce
:: Uniquable k
=> (k, cls) -> (k, cls)
-> Graph k cls color -> Graph k cls color
addCoalesce (u1, c1) (u2, c2)
= let addCoalesce u c u'
= adjustWithDefaultUFM
(\node -> node { nodeCoalesce = addOneToUniqSet (nodeCoalesce node) u' })
(newNode u c) { nodeCoalesce = unitUniqSet u' }
u
in graphMapModify
( addCoalesce u1 c1 u2
. addCoalesce u2 c2 u1)
-- | Delete a coalescence edge (k1 -> k2) from the graph.
delCoalesce
:: Uniquable k
=> k -> k
-> Graph k cls color -> Maybe (Graph k cls color)
delCoalesce k1 k2
= modNode (\node -> node { nodeCoalesce = delOneFromUniqSet (nodeCoalesce node) k2 })
k1
-- | Add a color preference to the graph, creating nodes if required.
-- The most recently added preference is the most prefered.
-- The algorithm tries to assign a node it's prefered color if possible.
--
addPreference
:: Uniquable k
=> (k, cls) -> color
-> Graph k cls color -> Graph k cls color
addPreference (u, c) color
= graphMapModify
$ adjustWithDefaultUFM
(\node -> node { nodePreference = color : (nodePreference node) })
(newNode u c) { nodePreference = [color] }
u
-- | Do agressive coalescing on this graph.
-- returns the new graph and the list of pairs of nodes that got coaleced together.
-- for each pair, the resulting node will have the least key and be second in the pair.
--
coalesceGraph
:: (Uniquable k, Ord k, Eq cls, Outputable k)
=> Graph k cls color
-> (Graph k cls color, [(k, k)])
coalesceGraph graph
= let
-- find all the nodes that have coalescence edges
cNodes = filter (\node -> not $ isEmptyUniqSet (nodeCoalesce node))
$ eltsUFM $ graphMap graph
-- build a list of pairs of keys for node's we'll try and coalesce
-- every pair of nodes will appear twice in this list
-- ie [(k1, k2), (k2, k1) ... ]
-- This is ok, GrapOps.coalesceNodes handles this and it's convenient for
-- build a list of what nodes get coalesced together for later on.
--
cList = [ (nodeId node1, k2)
| node1 <- cNodes
, k2 <- uniqSetToList $ nodeCoalesce node1 ]
-- do the coalescing, returning the new graph and a list of pairs of keys
-- that got coalesced together.
(graph', mPairs)
= mapAccumL coalesceNodes graph cList
in (graph', catMaybes mPairs)
-- | Coalesce this pair of nodes unconditionally / agressively.
-- The resulting node is the one with the least key.
--
-- returns: Just the pair of keys if the nodes were coalesced
-- the second element of the pair being the least one
--
-- Nothing if either of the nodes weren't in the graph
coalesceNodes
:: (Uniquable k, Ord k, Eq cls, Outputable k)
=> Graph k cls color
-> (k, k) -- ^ keys of the nodes to be coalesced
-> (Graph k cls color, Maybe (k, k))
coalesceNodes graph (k1, k2)
| (kMin, kMax) <- if k1 < k2
then (k1, k2)
else (k2, k1)
-- nodes must be in the graph
, Just nMin <- lookupNode graph kMin
, Just nMax <- lookupNode graph kMax
-- can't coalesce conflicting nodes
, not $ elementOfUniqSet kMin (nodeConflicts nMax)
, not $ elementOfUniqSet kMax (nodeConflicts nMin)
= coalesceNodes' graph kMin kMax nMin nMax
-- one of the nodes wasn't in the graph anymore
| otherwise
= (graph, Nothing)
coalesceNodes' graph kMin kMax nMin nMax
-- sanity checks
| nodeClass nMin /= nodeClass nMax
= error "GraphOps.coalesceNodes: can't coalesce nodes of different classes."
| not (isNothing (nodeColor nMin) && isNothing (nodeColor nMax))
= error "GraphOps.coalesceNodes: can't coalesce colored nodes."
---
| otherwise
= let
-- the new node gets all the edges from its two components
node =
Node { nodeId = kMin
, nodeClass = nodeClass nMin
, nodeColor = Nothing
-- nodes don't conflict with themselves..
, nodeConflicts
= (unionUniqSets (nodeConflicts nMin) (nodeConflicts nMax))
`delOneFromUniqSet` kMin
`delOneFromUniqSet` kMax
, nodeExclusions = unionUniqSets (nodeExclusions nMin) (nodeExclusions nMax)
, nodePreference = nodePreference nMin ++ nodePreference nMax
-- nodes don't coalesce with themselves..
, nodeCoalesce
= (unionUniqSets (nodeCoalesce nMin) (nodeCoalesce nMax))
`delOneFromUniqSet` kMin
`delOneFromUniqSet` kMax
}
-- delete the old nodes from the graph and add the new one
graph' = addNode kMin node
$ delNode kMin
$ delNode kMax
$ graph
in (graph', Just (kMax, kMin))
-- | validate the internal structure of a graph
-- all its edges should point to valid nodes
-- if they don't then throw an error
--
validateGraph
:: (Uniquable k, Outputable k)
=> SDoc
-> Graph k cls color
-> Graph k cls color
validateGraph doc graph
= let edges = unionUniqSets
(unionManyUniqSets
(map nodeConflicts $ eltsUFM $ graphMap graph))
(unionManyUniqSets
(map nodeCoalesce $ eltsUFM $ graphMap graph))
nodes = mkUniqSet $ map nodeId $ eltsUFM $ graphMap graph
badEdges = minusUniqSet edges nodes
in if isEmptyUniqSet badEdges
then graph
else pprPanic "GraphOps.validateGraph"
( text "-- bad edges"
$$ vcat (map ppr $ uniqSetToList badEdges)
$$ text "----------------------------"
$$ doc)
-- | Slurp out a map of how many nodes had a certain number of conflict neighbours
slurpNodeConflictCount
:: Uniquable k
=> Graph k cls color
-> UniqFM (Int, Int) -- ^ (conflict neighbours, num nodes with that many conflicts)
slurpNodeConflictCount graph
= addListToUFM_C
(\(c1, n1) (c2, n2) -> (c1, n1 + n2))
emptyUFM
$ map (\node
-> let count = sizeUniqSet $ nodeConflicts node
in (count, (count, 1)))
$ eltsUFM
$ graphMap graph
-- | Set the color of a certain node
setColor
:: Uniquable k
=> k -> color
-> Graph k cls color -> Graph k cls color
setColor u color
= graphMapModify
$ adjustUFM
(\n -> n { nodeColor = Just color })
u
adjustWithDefaultUFM
:: Uniquable k
=> (a -> a) -> a -> k
-> UniqFM a -> UniqFM a
adjustWithDefaultUFM f def k map
= addToUFM_C
(\old new -> f old)
map
k def
adjustUFM
:: Uniquable k
=> (a -> a)
-> k -> UniqFM a -> UniqFM a
adjustUFM f k map
= case lookupUFM map k of
Nothing -> map
Just a -> addToUFM map k (f a)
|