1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
|
{-# OPTIONS -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
-- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
-- for details
-----------------------------------------------------------------------------
--
-- Generating machine code (instruction selection)
--
-- (c) The University of Glasgow 1996-2004
--
-----------------------------------------------------------------------------
-- This is a big module, but, if you pay attention to
-- (a) the sectioning, (b) the type signatures, and
-- (c) the #if blah_TARGET_ARCH} things, the
-- structure should not be too overwhelming.
module MachCodeGen ( cmmTopCodeGen, InstrBlock ) where
#include "HsVersions.h"
#include "nativeGen/NCG.h"
#include "MachDeps.h"
-- NCG stuff:
import MachInstrs
import MachRegs
import NCGMonad
import PositionIndependentCode
import RegAllocInfo ( mkBranchInstr )
-- Our intermediate code:
import BlockId
import PprCmm ( pprExpr )
import Cmm
import MachOp
import CLabel
import ClosureInfo ( C_SRT(..) )
-- The rest:
import StaticFlags ( opt_PIC )
import ForeignCall ( CCallConv(..) )
import OrdList
import Pretty
import Outputable
import FastString
import FastBool ( isFastTrue )
import Constants ( wORD_SIZE )
import Debug.Trace ( trace )
import Control.Monad ( mapAndUnzipM )
import Data.Maybe ( fromJust )
import Data.Bits
import Data.Word
import Data.Int
-- -----------------------------------------------------------------------------
-- Top-level of the instruction selector
-- | 'InstrBlock's are the insn sequences generated by the insn selectors.
-- They are really trees of insns to facilitate fast appending, where a
-- left-to-right traversal (pre-order?) yields the insns in the correct
-- order.
type InstrBlock = OrdList Instr
cmmTopCodeGen :: RawCmmTop -> NatM [NatCmmTop]
cmmTopCodeGen (CmmProc info lab params (ListGraph blocks)) = do
(nat_blocks,statics) <- mapAndUnzipM basicBlockCodeGen blocks
picBaseMb <- getPicBaseMaybeNat
let proc = CmmProc info lab params (ListGraph $ concat nat_blocks)
tops = proc : concat statics
case picBaseMb of
Just picBase -> initializePicBase picBase tops
Nothing -> return tops
cmmTopCodeGen (CmmData sec dat) = do
return [CmmData sec dat] -- no translation, we just use CmmStatic
basicBlockCodeGen :: CmmBasicBlock -> NatM ([NatBasicBlock],[NatCmmTop])
basicBlockCodeGen (BasicBlock id stmts) = do
instrs <- stmtsToInstrs stmts
-- code generation may introduce new basic block boundaries, which
-- are indicated by the NEWBLOCK instruction. We must split up the
-- instruction stream into basic blocks again. Also, we extract
-- LDATAs here too.
let
(top,other_blocks,statics) = foldrOL mkBlocks ([],[],[]) instrs
mkBlocks (NEWBLOCK id) (instrs,blocks,statics)
= ([], BasicBlock id instrs : blocks, statics)
mkBlocks (LDATA sec dat) (instrs,blocks,statics)
= (instrs, blocks, CmmData sec dat:statics)
mkBlocks instr (instrs,blocks,statics)
= (instr:instrs, blocks, statics)
-- in
return (BasicBlock id top : other_blocks, statics)
stmtsToInstrs :: [CmmStmt] -> NatM InstrBlock
stmtsToInstrs stmts
= do instrss <- mapM stmtToInstrs stmts
return (concatOL instrss)
stmtToInstrs :: CmmStmt -> NatM InstrBlock
stmtToInstrs stmt = case stmt of
CmmNop -> return nilOL
CmmComment s -> return (unitOL (COMMENT s))
CmmAssign reg src
| isFloatingRep kind -> assignReg_FltCode kind reg src
#if WORD_SIZE_IN_BITS==32
| kind == I64 -> assignReg_I64Code reg src
#endif
| otherwise -> assignReg_IntCode kind reg src
where kind = cmmRegRep reg
CmmStore addr src
| isFloatingRep kind -> assignMem_FltCode kind addr src
#if WORD_SIZE_IN_BITS==32
| kind == I64 -> assignMem_I64Code addr src
#endif
| otherwise -> assignMem_IntCode kind addr src
where kind = cmmExprRep src
CmmCall target result_regs args _ _
-> genCCall target result_regs args
CmmBranch id -> genBranch id
CmmCondBranch arg id -> genCondJump id arg
CmmSwitch arg ids -> genSwitch arg ids
CmmJump arg params -> genJump arg
CmmReturn params ->
panic "stmtToInstrs: return statement should have been cps'd away"
-- -----------------------------------------------------------------------------
-- General things for putting together code sequences
-- Expand CmmRegOff. ToDo: should we do it this way around, or convert
-- CmmExprs into CmmRegOff?
mangleIndexTree :: CmmExpr -> CmmExpr
mangleIndexTree (CmmRegOff reg off)
= CmmMachOp (MO_Add rep) [CmmReg reg, CmmLit (CmmInt (fromIntegral off) rep)]
where rep = cmmRegRep reg
-- -----------------------------------------------------------------------------
-- Code gen for 64-bit arithmetic on 32-bit platforms
{-
Simple support for generating 64-bit code (ie, 64 bit values and 64
bit assignments) on 32-bit platforms. Unlike the main code generator
we merely shoot for generating working code as simply as possible, and
pay little attention to code quality. Specifically, there is no
attempt to deal cleverly with the fixed-vs-floating register
distinction; all values are generated into (pairs of) floating
registers, even if this would mean some redundant reg-reg moves as a
result. Only one of the VRegUniques is returned, since it will be
of the VRegUniqueLo form, and the upper-half VReg can be determined
by applying getHiVRegFromLo to it.
-}
data ChildCode64 -- a.k.a "Register64"
= ChildCode64
InstrBlock -- code
Reg -- the lower 32-bit temporary which contains the
-- result; use getHiVRegFromLo to find the other
-- VRegUnique. Rules of this simplified insn
-- selection game are therefore that the returned
-- Reg may be modified
#if WORD_SIZE_IN_BITS==32
assignMem_I64Code :: CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_I64Code :: CmmReg -> CmmExpr -> NatM InstrBlock
#endif
#ifndef x86_64_TARGET_ARCH
iselExpr64 :: CmmExpr -> NatM ChildCode64
#endif
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if i386_TARGET_ARCH
assignMem_I64Code addrTree valueTree = do
Amode addr addr_code <- getAmode addrTree
ChildCode64 vcode rlo <- iselExpr64 valueTree
let
rhi = getHiVRegFromLo rlo
-- Little-endian store
mov_lo = MOV I32 (OpReg rlo) (OpAddr addr)
mov_hi = MOV I32 (OpReg rhi) (OpAddr (fromJust (addrOffset addr 4)))
-- in
return (vcode `appOL` addr_code `snocOL` mov_lo `snocOL` mov_hi)
assignReg_I64Code (CmmLocal (LocalReg u_dst pk _)) valueTree = do
ChildCode64 vcode r_src_lo <- iselExpr64 valueTree
let
r_dst_lo = mkVReg u_dst I32
r_dst_hi = getHiVRegFromLo r_dst_lo
r_src_hi = getHiVRegFromLo r_src_lo
mov_lo = MOV I32 (OpReg r_src_lo) (OpReg r_dst_lo)
mov_hi = MOV I32 (OpReg r_src_hi) (OpReg r_dst_hi)
-- in
return (
vcode `snocOL` mov_lo `snocOL` mov_hi
)
assignReg_I64Code lvalue valueTree
= panic "assignReg_I64Code(i386): invalid lvalue"
------------
iselExpr64 (CmmLit (CmmInt i _)) = do
(rlo,rhi) <- getNewRegPairNat I32
let
r = fromIntegral (fromIntegral i :: Word32)
q = fromIntegral ((fromIntegral i `shiftR` 32) :: Word32)
code = toOL [
MOV I32 (OpImm (ImmInteger r)) (OpReg rlo),
MOV I32 (OpImm (ImmInteger q)) (OpReg rhi)
]
-- in
return (ChildCode64 code rlo)
iselExpr64 (CmmLoad addrTree I64) = do
Amode addr addr_code <- getAmode addrTree
(rlo,rhi) <- getNewRegPairNat I32
let
mov_lo = MOV I32 (OpAddr addr) (OpReg rlo)
mov_hi = MOV I32 (OpAddr (fromJust (addrOffset addr 4))) (OpReg rhi)
-- in
return (
ChildCode64 (addr_code `snocOL` mov_lo `snocOL` mov_hi)
rlo
)
iselExpr64 (CmmReg (CmmLocal (LocalReg vu I64 _)))
= return (ChildCode64 nilOL (mkVReg vu I32))
-- we handle addition, but rather badly
iselExpr64 (CmmMachOp (MO_Add _) [e1, CmmLit (CmmInt i _)]) = do
ChildCode64 code1 r1lo <- iselExpr64 e1
(rlo,rhi) <- getNewRegPairNat I32
let
r = fromIntegral (fromIntegral i :: Word32)
q = fromIntegral ((fromIntegral i `shiftR` 32) :: Word32)
r1hi = getHiVRegFromLo r1lo
code = code1 `appOL`
toOL [ MOV I32 (OpReg r1lo) (OpReg rlo),
ADD I32 (OpImm (ImmInteger r)) (OpReg rlo),
MOV I32 (OpReg r1hi) (OpReg rhi),
ADC I32 (OpImm (ImmInteger q)) (OpReg rhi) ]
-- in
return (ChildCode64 code rlo)
iselExpr64 (CmmMachOp (MO_Add _) [e1,e2]) = do
ChildCode64 code1 r1lo <- iselExpr64 e1
ChildCode64 code2 r2lo <- iselExpr64 e2
(rlo,rhi) <- getNewRegPairNat I32
let
r1hi = getHiVRegFromLo r1lo
r2hi = getHiVRegFromLo r2lo
code = code1 `appOL`
code2 `appOL`
toOL [ MOV I32 (OpReg r1lo) (OpReg rlo),
ADD I32 (OpReg r2lo) (OpReg rlo),
MOV I32 (OpReg r1hi) (OpReg rhi),
ADC I32 (OpReg r2hi) (OpReg rhi) ]
-- in
return (ChildCode64 code rlo)
iselExpr64 (CmmMachOp (MO_U_Conv _ I64) [expr]) = do
fn <- getAnyReg expr
r_dst_lo <- getNewRegNat I32
let r_dst_hi = getHiVRegFromLo r_dst_lo
code = fn r_dst_lo
return (
ChildCode64 (code `snocOL`
MOV I32 (OpImm (ImmInt 0)) (OpReg r_dst_hi))
r_dst_lo
)
iselExpr64 expr
= pprPanic "iselExpr64(i386)" (ppr expr)
#endif /* i386_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if sparc_TARGET_ARCH
assignMem_I64Code addrTree valueTree = do
Amode addr addr_code <- getAmode addrTree
ChildCode64 vcode rlo <- iselExpr64 valueTree
(src, code) <- getSomeReg addrTree
let
rhi = getHiVRegFromLo rlo
-- Big-endian store
mov_hi = ST I32 rhi (AddrRegImm src (ImmInt 0))
mov_lo = ST I32 rlo (AddrRegImm src (ImmInt 4))
return (vcode `appOL` code `snocOL` mov_hi `snocOL` mov_lo)
assignReg_I64Code (CmmLocal (LocalReg u_dst pk _)) valueTree = do
ChildCode64 vcode r_src_lo <- iselExpr64 valueTree
let
r_dst_lo = mkVReg u_dst pk
r_dst_hi = getHiVRegFromLo r_dst_lo
r_src_hi = getHiVRegFromLo r_src_lo
mov_lo = mkMOV r_src_lo r_dst_lo
mov_hi = mkMOV r_src_hi r_dst_hi
mkMOV sreg dreg = OR False g0 (RIReg sreg) dreg
return (vcode `snocOL` mov_hi `snocOL` mov_lo)
assignReg_I64Code lvalue valueTree
= panic "assignReg_I64Code(sparc): invalid lvalue"
-- Don't delete this -- it's very handy for debugging.
--iselExpr64 expr
-- | trace ("iselExpr64: " ++ showSDoc (ppr expr)) False
-- = panic "iselExpr64(???)"
iselExpr64 (CmmLoad addrTree I64) = do
Amode (AddrRegReg r1 r2) addr_code <- getAmode addrTree
rlo <- getNewRegNat I32
let rhi = getHiVRegFromLo rlo
mov_hi = LD I32 (AddrRegImm r1 (ImmInt 0)) rhi
mov_lo = LD I32 (AddrRegImm r1 (ImmInt 4)) rlo
return (
ChildCode64 (addr_code `snocOL` mov_hi `snocOL` mov_lo)
rlo
)
iselExpr64 (CmmReg (CmmLocal (LocalReg uq I64 _))) = do
r_dst_lo <- getNewRegNat I32
let r_dst_hi = getHiVRegFromLo r_dst_lo
r_src_lo = mkVReg uq I32
r_src_hi = getHiVRegFromLo r_src_lo
mov_lo = mkMOV r_src_lo r_dst_lo
mov_hi = mkMOV r_src_hi r_dst_hi
mkMOV sreg dreg = OR False g0 (RIReg sreg) dreg
return (
ChildCode64 (toOL [mov_hi, mov_lo]) r_dst_lo
)
iselExpr64 expr
= pprPanic "iselExpr64(sparc)" (ppr expr)
#endif /* sparc_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if powerpc_TARGET_ARCH
getI64Amodes :: CmmExpr -> NatM (AddrMode, AddrMode, InstrBlock)
getI64Amodes addrTree = do
Amode hi_addr addr_code <- getAmode addrTree
case addrOffset hi_addr 4 of
Just lo_addr -> return (hi_addr, lo_addr, addr_code)
Nothing -> do (hi_ptr, code) <- getSomeReg addrTree
return (AddrRegImm hi_ptr (ImmInt 0),
AddrRegImm hi_ptr (ImmInt 4),
code)
assignMem_I64Code addrTree valueTree = do
(hi_addr, lo_addr, addr_code) <- getI64Amodes addrTree
ChildCode64 vcode rlo <- iselExpr64 valueTree
let
rhi = getHiVRegFromLo rlo
-- Big-endian store
mov_hi = ST I32 rhi hi_addr
mov_lo = ST I32 rlo lo_addr
-- in
return (vcode `appOL` addr_code `snocOL` mov_lo `snocOL` mov_hi)
assignReg_I64Code (CmmLocal (LocalReg u_dst pk _)) valueTree = do
ChildCode64 vcode r_src_lo <- iselExpr64 valueTree
let
r_dst_lo = mkVReg u_dst I32
r_dst_hi = getHiVRegFromLo r_dst_lo
r_src_hi = getHiVRegFromLo r_src_lo
mov_lo = MR r_dst_lo r_src_lo
mov_hi = MR r_dst_hi r_src_hi
-- in
return (
vcode `snocOL` mov_lo `snocOL` mov_hi
)
assignReg_I64Code lvalue valueTree
= panic "assignReg_I64Code(powerpc): invalid lvalue"
-- Don't delete this -- it's very handy for debugging.
--iselExpr64 expr
-- | trace ("iselExpr64: " ++ showSDoc (pprCmmExpr expr)) False
-- = panic "iselExpr64(???)"
iselExpr64 (CmmLoad addrTree I64) = do
(hi_addr, lo_addr, addr_code) <- getI64Amodes addrTree
(rlo, rhi) <- getNewRegPairNat I32
let mov_hi = LD I32 rhi hi_addr
mov_lo = LD I32 rlo lo_addr
return $ ChildCode64 (addr_code `snocOL` mov_lo `snocOL` mov_hi)
rlo
iselExpr64 (CmmReg (CmmLocal (LocalReg vu I64 _)))
= return (ChildCode64 nilOL (mkVReg vu I32))
iselExpr64 (CmmLit (CmmInt i _)) = do
(rlo,rhi) <- getNewRegPairNat I32
let
half0 = fromIntegral (fromIntegral i :: Word16)
half1 = fromIntegral ((fromIntegral i `shiftR` 16) :: Word16)
half2 = fromIntegral ((fromIntegral i `shiftR` 32) :: Word16)
half3 = fromIntegral ((fromIntegral i `shiftR` 48) :: Word16)
code = toOL [
LIS rlo (ImmInt half1),
OR rlo rlo (RIImm $ ImmInt half0),
LIS rhi (ImmInt half3),
OR rlo rlo (RIImm $ ImmInt half2)
]
-- in
return (ChildCode64 code rlo)
iselExpr64 (CmmMachOp (MO_Add _) [e1,e2]) = do
ChildCode64 code1 r1lo <- iselExpr64 e1
ChildCode64 code2 r2lo <- iselExpr64 e2
(rlo,rhi) <- getNewRegPairNat I32
let
r1hi = getHiVRegFromLo r1lo
r2hi = getHiVRegFromLo r2lo
code = code1 `appOL`
code2 `appOL`
toOL [ ADDC rlo r1lo r2lo,
ADDE rhi r1hi r2hi ]
-- in
return (ChildCode64 code rlo)
iselExpr64 (CmmMachOp (MO_U_Conv I32 I64) [expr]) = do
(expr_reg,expr_code) <- getSomeReg expr
(rlo, rhi) <- getNewRegPairNat I32
let mov_hi = LI rhi (ImmInt 0)
mov_lo = MR rlo expr_reg
return $ ChildCode64 (expr_code `snocOL` mov_lo `snocOL` mov_hi)
rlo
iselExpr64 expr
= pprPanic "iselExpr64(powerpc)" (ppr expr)
#endif /* powerpc_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- The 'Register' type
-- 'Register's passed up the tree. If the stix code forces the register
-- to live in a pre-decided machine register, it comes out as @Fixed@;
-- otherwise, it comes out as @Any@, and the parent can decide which
-- register to put it in.
data Register
= Fixed MachRep Reg InstrBlock
| Any MachRep (Reg -> InstrBlock)
swizzleRegisterRep :: Register -> MachRep -> Register
swizzleRegisterRep (Fixed _ reg code) rep = Fixed rep reg code
swizzleRegisterRep (Any _ codefn) rep = Any rep codefn
-- -----------------------------------------------------------------------------
-- Utils based on getRegister, below
-- The dual to getAnyReg: compute an expression into a register, but
-- we don't mind which one it is.
getSomeReg :: CmmExpr -> NatM (Reg, InstrBlock)
getSomeReg expr = do
r <- getRegister expr
case r of
Any rep code -> do
tmp <- getNewRegNat rep
return (tmp, code tmp)
Fixed _ reg code ->
return (reg, code)
-- -----------------------------------------------------------------------------
-- Grab the Reg for a CmmReg
getRegisterReg :: CmmReg -> Reg
getRegisterReg (CmmLocal (LocalReg u pk _))
= mkVReg u pk
getRegisterReg (CmmGlobal mid)
= case get_GlobalReg_reg_or_addr mid of
Left (RealReg rrno) -> RealReg rrno
_other -> pprPanic "getRegisterReg-memory" (ppr $ CmmGlobal mid)
-- By this stage, the only MagicIds remaining should be the
-- ones which map to a real machine register on this
-- platform. Hence ...
-- -----------------------------------------------------------------------------
-- Generate code to get a subtree into a Register
-- Don't delete this -- it's very handy for debugging.
--getRegister expr
-- | trace ("getRegister: " ++ showSDoc (pprCmmExpr expr)) False
-- = panic "getRegister(???)"
getRegister :: CmmExpr -> NatM Register
#if !x86_64_TARGET_ARCH
-- on x86_64, we have %rip for PicBaseReg, but it's not a full-featured
-- register, it can only be used for rip-relative addressing.
getRegister (CmmReg (CmmGlobal PicBaseReg))
= do
reg <- getPicBaseNat wordRep
return (Fixed wordRep reg nilOL)
#endif
getRegister (CmmReg reg)
= return (Fixed (cmmRegRep reg) (getRegisterReg reg) nilOL)
getRegister tree@(CmmRegOff _ _)
= getRegister (mangleIndexTree tree)
#if WORD_SIZE_IN_BITS==32
-- for 32-bit architectuers, support some 64 -> 32 bit conversions:
-- TO_W_(x), TO_W_(x >> 32)
getRegister (CmmMachOp (MO_U_Conv I64 I32)
[CmmMachOp (MO_U_Shr I64) [x,CmmLit (CmmInt 32 _)]]) = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed I32 (getHiVRegFromLo rlo) code
getRegister (CmmMachOp (MO_S_Conv I64 I32)
[CmmMachOp (MO_U_Shr I64) [x,CmmLit (CmmInt 32 _)]]) = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed I32 (getHiVRegFromLo rlo) code
getRegister (CmmMachOp (MO_U_Conv I64 I32) [x]) = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed I32 rlo code
getRegister (CmmMachOp (MO_S_Conv I64 I32) [x]) = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed I32 rlo code
#endif
-- end of machine-"independent" bit; here we go on the rest...
#if alpha_TARGET_ARCH
getRegister (StDouble d)
= getBlockIdNat `thenNat` \ lbl ->
getNewRegNat PtrRep `thenNat` \ tmp ->
let code dst = mkSeqInstrs [
LDATA RoDataSegment lbl [
DATA TF [ImmLab (rational d)]
],
LDA tmp (AddrImm (ImmCLbl lbl)),
LD TF dst (AddrReg tmp)]
in
return (Any F64 code)
getRegister (StPrim primop [x]) -- unary PrimOps
= case primop of
IntNegOp -> trivialUCode (NEG Q False) x
NotOp -> trivialUCode NOT x
FloatNegOp -> trivialUFCode FloatRep (FNEG TF) x
DoubleNegOp -> trivialUFCode F64 (FNEG TF) x
OrdOp -> coerceIntCode IntRep x
ChrOp -> chrCode x
Float2IntOp -> coerceFP2Int x
Int2FloatOp -> coerceInt2FP pr x
Double2IntOp -> coerceFP2Int x
Int2DoubleOp -> coerceInt2FP pr x
Double2FloatOp -> coerceFltCode x
Float2DoubleOp -> coerceFltCode x
other_op -> getRegister (StCall fn CCallConv F64 [x])
where
fn = case other_op of
FloatExpOp -> fsLit "exp"
FloatLogOp -> fsLit "log"
FloatSqrtOp -> fsLit "sqrt"
FloatSinOp -> fsLit "sin"
FloatCosOp -> fsLit "cos"
FloatTanOp -> fsLit "tan"
FloatAsinOp -> fsLit "asin"
FloatAcosOp -> fsLit "acos"
FloatAtanOp -> fsLit "atan"
FloatSinhOp -> fsLit "sinh"
FloatCoshOp -> fsLit "cosh"
FloatTanhOp -> fsLit "tanh"
DoubleExpOp -> fsLit "exp"
DoubleLogOp -> fsLit "log"
DoubleSqrtOp -> fsLit "sqrt"
DoubleSinOp -> fsLit "sin"
DoubleCosOp -> fsLit "cos"
DoubleTanOp -> fsLit "tan"
DoubleAsinOp -> fsLit "asin"
DoubleAcosOp -> fsLit "acos"
DoubleAtanOp -> fsLit "atan"
DoubleSinhOp -> fsLit "sinh"
DoubleCoshOp -> fsLit "cosh"
DoubleTanhOp -> fsLit "tanh"
where
pr = panic "MachCode.getRegister: no primrep needed for Alpha"
getRegister (StPrim primop [x, y]) -- dyadic PrimOps
= case primop of
CharGtOp -> trivialCode (CMP LTT) y x
CharGeOp -> trivialCode (CMP LE) y x
CharEqOp -> trivialCode (CMP EQQ) x y
CharNeOp -> int_NE_code x y
CharLtOp -> trivialCode (CMP LTT) x y
CharLeOp -> trivialCode (CMP LE) x y
IntGtOp -> trivialCode (CMP LTT) y x
IntGeOp -> trivialCode (CMP LE) y x
IntEqOp -> trivialCode (CMP EQQ) x y
IntNeOp -> int_NE_code x y
IntLtOp -> trivialCode (CMP LTT) x y
IntLeOp -> trivialCode (CMP LE) x y
WordGtOp -> trivialCode (CMP ULT) y x
WordGeOp -> trivialCode (CMP ULE) x y
WordEqOp -> trivialCode (CMP EQQ) x y
WordNeOp -> int_NE_code x y
WordLtOp -> trivialCode (CMP ULT) x y
WordLeOp -> trivialCode (CMP ULE) x y
AddrGtOp -> trivialCode (CMP ULT) y x
AddrGeOp -> trivialCode (CMP ULE) y x
AddrEqOp -> trivialCode (CMP EQQ) x y
AddrNeOp -> int_NE_code x y
AddrLtOp -> trivialCode (CMP ULT) x y
AddrLeOp -> trivialCode (CMP ULE) x y
FloatGtOp -> cmpF_code (FCMP TF LE) EQQ x y
FloatGeOp -> cmpF_code (FCMP TF LTT) EQQ x y
FloatEqOp -> cmpF_code (FCMP TF EQQ) NE x y
FloatNeOp -> cmpF_code (FCMP TF EQQ) EQQ x y
FloatLtOp -> cmpF_code (FCMP TF LTT) NE x y
FloatLeOp -> cmpF_code (FCMP TF LE) NE x y
DoubleGtOp -> cmpF_code (FCMP TF LE) EQQ x y
DoubleGeOp -> cmpF_code (FCMP TF LTT) EQQ x y
DoubleEqOp -> cmpF_code (FCMP TF EQQ) NE x y
DoubleNeOp -> cmpF_code (FCMP TF EQQ) EQQ x y
DoubleLtOp -> cmpF_code (FCMP TF LTT) NE x y
DoubleLeOp -> cmpF_code (FCMP TF LE) NE x y
IntAddOp -> trivialCode (ADD Q False) x y
IntSubOp -> trivialCode (SUB Q False) x y
IntMulOp -> trivialCode (MUL Q False) x y
IntQuotOp -> trivialCode (DIV Q False) x y
IntRemOp -> trivialCode (REM Q False) x y
WordAddOp -> trivialCode (ADD Q False) x y
WordSubOp -> trivialCode (SUB Q False) x y
WordMulOp -> trivialCode (MUL Q False) x y
WordQuotOp -> trivialCode (DIV Q True) x y
WordRemOp -> trivialCode (REM Q True) x y
FloatAddOp -> trivialFCode FloatRep (FADD TF) x y
FloatSubOp -> trivialFCode FloatRep (FSUB TF) x y
FloatMulOp -> trivialFCode FloatRep (FMUL TF) x y
FloatDivOp -> trivialFCode FloatRep (FDIV TF) x y
DoubleAddOp -> trivialFCode F64 (FADD TF) x y
DoubleSubOp -> trivialFCode F64 (FSUB TF) x y
DoubleMulOp -> trivialFCode F64 (FMUL TF) x y
DoubleDivOp -> trivialFCode F64 (FDIV TF) x y
AddrAddOp -> trivialCode (ADD Q False) x y
AddrSubOp -> trivialCode (SUB Q False) x y
AddrRemOp -> trivialCode (REM Q True) x y
AndOp -> trivialCode AND x y
OrOp -> trivialCode OR x y
XorOp -> trivialCode XOR x y
SllOp -> trivialCode SLL x y
SrlOp -> trivialCode SRL x y
ISllOp -> trivialCode SLL x y -- was: panic "AlphaGen:isll"
ISraOp -> trivialCode SRA x y -- was: panic "AlphaGen:isra"
ISrlOp -> trivialCode SRL x y -- was: panic "AlphaGen:isrl"
FloatPowerOp -> getRegister (StCall (fsLit "pow") CCallConv F64 [x,y])
DoublePowerOp -> getRegister (StCall (fsLit "pow") CCallConv F64 [x,y])
where
{- ------------------------------------------------------------
Some bizarre special code for getting condition codes into
registers. Integer non-equality is a test for equality
followed by an XOR with 1. (Integer comparisons always set
the result register to 0 or 1.) Floating point comparisons of
any kind leave the result in a floating point register, so we
need to wrangle an integer register out of things.
-}
int_NE_code :: StixTree -> StixTree -> NatM Register
int_NE_code x y
= trivialCode (CMP EQQ) x y `thenNat` \ register ->
getNewRegNat IntRep `thenNat` \ tmp ->
let
code = registerCode register tmp
src = registerName register tmp
code__2 dst = code . mkSeqInstr (XOR src (RIImm (ImmInt 1)) dst)
in
return (Any IntRep code__2)
{- ------------------------------------------------------------
Comments for int_NE_code also apply to cmpF_code
-}
cmpF_code
:: (Reg -> Reg -> Reg -> Instr)
-> Cond
-> StixTree -> StixTree
-> NatM Register
cmpF_code instr cond x y
= trivialFCode pr instr x y `thenNat` \ register ->
getNewRegNat F64 `thenNat` \ tmp ->
getBlockIdNat `thenNat` \ lbl ->
let
code = registerCode register tmp
result = registerName register tmp
code__2 dst = code . mkSeqInstrs [
OR zeroh (RIImm (ImmInt 1)) dst,
BF cond result (ImmCLbl lbl),
OR zeroh (RIReg zeroh) dst,
NEWBLOCK lbl]
in
return (Any IntRep code__2)
where
pr = panic "trivialU?FCode: does not use PrimRep on Alpha"
------------------------------------------------------------
getRegister (CmmLoad pk mem)
= getAmode mem `thenNat` \ amode ->
let
code = amodeCode amode
src = amodeAddr amode
size = primRepToSize pk
code__2 dst = code . mkSeqInstr (LD size dst src)
in
return (Any pk code__2)
getRegister (StInt i)
| fits8Bits i
= let
code dst = mkSeqInstr (OR zeroh (RIImm src) dst)
in
return (Any IntRep code)
| otherwise
= let
code dst = mkSeqInstr (LDI Q dst src)
in
return (Any IntRep code)
where
src = ImmInt (fromInteger i)
getRegister leaf
| isJust imm
= let
code dst = mkSeqInstr (LDA dst (AddrImm imm__2))
in
return (Any PtrRep code)
where
imm = maybeImm leaf
imm__2 = case imm of Just x -> x
#endif /* alpha_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if i386_TARGET_ARCH
getRegister (CmmLit (CmmFloat f F32)) = do
lbl <- getNewLabelNat
dflags <- getDynFlagsNat
dynRef <- cmmMakeDynamicReference dflags addImportNat DataReference lbl
Amode addr addr_code <- getAmode dynRef
let code dst =
LDATA ReadOnlyData
[CmmDataLabel lbl,
CmmStaticLit (CmmFloat f F32)]
`consOL` (addr_code `snocOL`
GLD F32 addr dst)
-- in
return (Any F32 code)
getRegister (CmmLit (CmmFloat d F64))
| d == 0.0
= let code dst = unitOL (GLDZ dst)
in return (Any F64 code)
| d == 1.0
= let code dst = unitOL (GLD1 dst)
in return (Any F64 code)
| otherwise = do
lbl <- getNewLabelNat
dflags <- getDynFlagsNat
dynRef <- cmmMakeDynamicReference dflags addImportNat DataReference lbl
Amode addr addr_code <- getAmode dynRef
let code dst =
LDATA ReadOnlyData
[CmmDataLabel lbl,
CmmStaticLit (CmmFloat d F64)]
`consOL` (addr_code `snocOL`
GLD F64 addr dst)
-- in
return (Any F64 code)
#endif /* i386_TARGET_ARCH */
#if x86_64_TARGET_ARCH
getRegister (CmmLit (CmmFloat 0.0 rep)) = do
let code dst = unitOL (XOR rep (OpReg dst) (OpReg dst))
-- I don't know why there are xorpd, xorps, and pxor instructions.
-- They all appear to do the same thing --SDM
return (Any rep code)
getRegister (CmmLit (CmmFloat f rep)) = do
lbl <- getNewLabelNat
let code dst = toOL [
LDATA ReadOnlyData
[CmmDataLabel lbl,
CmmStaticLit (CmmFloat f rep)],
MOV rep (OpAddr (ripRel (ImmCLbl lbl))) (OpReg dst)
]
-- in
return (Any rep code)
#endif /* x86_64_TARGET_ARCH */
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
-- catch simple cases of zero- or sign-extended load
getRegister (CmmMachOp (MO_U_Conv I8 I32) [CmmLoad addr _]) = do
code <- intLoadCode (MOVZxL I8) addr
return (Any I32 code)
getRegister (CmmMachOp (MO_S_Conv I8 I32) [CmmLoad addr _]) = do
code <- intLoadCode (MOVSxL I8) addr
return (Any I32 code)
getRegister (CmmMachOp (MO_U_Conv I16 I32) [CmmLoad addr _]) = do
code <- intLoadCode (MOVZxL I16) addr
return (Any I32 code)
getRegister (CmmMachOp (MO_S_Conv I16 I32) [CmmLoad addr _]) = do
code <- intLoadCode (MOVSxL I16) addr
return (Any I32 code)
#endif
#if x86_64_TARGET_ARCH
-- catch simple cases of zero- or sign-extended load
getRegister (CmmMachOp (MO_U_Conv I8 I64) [CmmLoad addr _]) = do
code <- intLoadCode (MOVZxL I8) addr
return (Any I64 code)
getRegister (CmmMachOp (MO_S_Conv I8 I64) [CmmLoad addr _]) = do
code <- intLoadCode (MOVSxL I8) addr
return (Any I64 code)
getRegister (CmmMachOp (MO_U_Conv I16 I64) [CmmLoad addr _]) = do
code <- intLoadCode (MOVZxL I16) addr
return (Any I64 code)
getRegister (CmmMachOp (MO_S_Conv I16 I64) [CmmLoad addr _]) = do
code <- intLoadCode (MOVSxL I16) addr
return (Any I64 code)
getRegister (CmmMachOp (MO_U_Conv I32 I64) [CmmLoad addr _]) = do
code <- intLoadCode (MOV I32) addr -- 32-bit loads zero-extend
return (Any I64 code)
getRegister (CmmMachOp (MO_S_Conv I32 I64) [CmmLoad addr _]) = do
code <- intLoadCode (MOVSxL I32) addr
return (Any I64 code)
#endif
#if x86_64_TARGET_ARCH
getRegister (CmmMachOp (MO_Add I64) [CmmReg (CmmGlobal PicBaseReg),
CmmLit displacement])
= return $ Any I64 (\dst -> unitOL $
LEA I64 (OpAddr (ripRel (litToImm displacement))) (OpReg dst))
#endif
#if x86_64_TARGET_ARCH
getRegister (CmmMachOp (MO_S_Neg F32) [x]) = do
x_code <- getAnyReg x
lbl <- getNewLabelNat
let
code dst = x_code dst `appOL` toOL [
-- This is how gcc does it, so it can't be that bad:
LDATA ReadOnlyData16 [
CmmAlign 16,
CmmDataLabel lbl,
CmmStaticLit (CmmInt 0x80000000 I32),
CmmStaticLit (CmmInt 0 I32),
CmmStaticLit (CmmInt 0 I32),
CmmStaticLit (CmmInt 0 I32)
],
XOR F32 (OpAddr (ripRel (ImmCLbl lbl))) (OpReg dst)
-- xorps, so we need the 128-bit constant
-- ToDo: rip-relative
]
--
return (Any F32 code)
getRegister (CmmMachOp (MO_S_Neg F64) [x]) = do
x_code <- getAnyReg x
lbl <- getNewLabelNat
let
-- This is how gcc does it, so it can't be that bad:
code dst = x_code dst `appOL` toOL [
LDATA ReadOnlyData16 [
CmmAlign 16,
CmmDataLabel lbl,
CmmStaticLit (CmmInt 0x8000000000000000 I64),
CmmStaticLit (CmmInt 0 I64)
],
-- gcc puts an unpck here. Wonder if we need it.
XOR F64 (OpAddr (ripRel (ImmCLbl lbl))) (OpReg dst)
-- xorpd, so we need the 128-bit constant
]
--
return (Any F64 code)
#endif
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
getRegister (CmmMachOp mop [x]) -- unary MachOps
= case mop of
#if i386_TARGET_ARCH
MO_S_Neg F32 -> trivialUFCode F32 (GNEG F32) x
MO_S_Neg F64 -> trivialUFCode F64 (GNEG F64) x
#endif
MO_S_Neg rep -> trivialUCode rep (NEGI rep) x
MO_Not rep -> trivialUCode rep (NOT rep) x
-- Nop conversions
MO_U_Conv I32 I8 -> toI8Reg I32 x
MO_S_Conv I32 I8 -> toI8Reg I32 x
MO_U_Conv I16 I8 -> toI8Reg I16 x
MO_S_Conv I16 I8 -> toI8Reg I16 x
MO_U_Conv I32 I16 -> toI16Reg I32 x
MO_S_Conv I32 I16 -> toI16Reg I32 x
#if x86_64_TARGET_ARCH
MO_U_Conv I64 I32 -> conversionNop I64 x
MO_S_Conv I64 I32 -> conversionNop I64 x
MO_U_Conv I64 I16 -> toI16Reg I64 x
MO_S_Conv I64 I16 -> toI16Reg I64 x
MO_U_Conv I64 I8 -> toI8Reg I64 x
MO_S_Conv I64 I8 -> toI8Reg I64 x
#endif
MO_U_Conv rep1 rep2 | rep1 == rep2 -> conversionNop rep1 x
MO_S_Conv rep1 rep2 | rep1 == rep2 -> conversionNop rep1 x
-- widenings
MO_U_Conv I8 I32 -> integerExtend I8 I32 MOVZxL x
MO_U_Conv I16 I32 -> integerExtend I16 I32 MOVZxL x
MO_U_Conv I8 I16 -> integerExtend I8 I16 MOVZxL x
MO_S_Conv I8 I32 -> integerExtend I8 I32 MOVSxL x
MO_S_Conv I16 I32 -> integerExtend I16 I32 MOVSxL x
MO_S_Conv I8 I16 -> integerExtend I8 I16 MOVSxL x
#if x86_64_TARGET_ARCH
MO_U_Conv I8 I64 -> integerExtend I8 I64 MOVZxL x
MO_U_Conv I16 I64 -> integerExtend I16 I64 MOVZxL x
MO_U_Conv I32 I64 -> integerExtend I32 I64 MOVZxL x
MO_S_Conv I8 I64 -> integerExtend I8 I64 MOVSxL x
MO_S_Conv I16 I64 -> integerExtend I16 I64 MOVSxL x
MO_S_Conv I32 I64 -> integerExtend I32 I64 MOVSxL x
-- for 32-to-64 bit zero extension, amd64 uses an ordinary movl.
-- However, we don't want the register allocator to throw it
-- away as an unnecessary reg-to-reg move, so we keep it in
-- the form of a movzl and print it as a movl later.
#endif
#if i386_TARGET_ARCH
MO_S_Conv F32 F64 -> conversionNop F64 x
MO_S_Conv F64 F32 -> conversionNop F32 x
#else
MO_S_Conv F32 F64 -> coerceFP2FP F64 x
MO_S_Conv F64 F32 -> coerceFP2FP F32 x
#endif
MO_S_Conv from to
| isFloatingRep from -> coerceFP2Int from to x
| isFloatingRep to -> coerceInt2FP from to x
other -> pprPanic "getRegister" (pprMachOp mop)
where
-- signed or unsigned extension.
integerExtend from to instr expr = do
(reg,e_code) <- if from == I8 then getByteReg expr
else getSomeReg expr
let
code dst =
e_code `snocOL`
instr from (OpReg reg) (OpReg dst)
return (Any to code)
toI8Reg new_rep expr
= do codefn <- getAnyReg expr
return (Any new_rep codefn)
-- HACK: use getAnyReg to get a byte-addressable register.
-- If the source was a Fixed register, this will add the
-- mov instruction to put it into the desired destination.
-- We're assuming that the destination won't be a fixed
-- non-byte-addressable register; it won't be, because all
-- fixed registers are word-sized.
toI16Reg = toI8Reg -- for now
conversionNop new_rep expr
= do e_code <- getRegister expr
return (swizzleRegisterRep e_code new_rep)
getRegister e@(CmmMachOp mop [x, y]) -- dyadic MachOps
= case mop of
MO_Eq F32 -> condFltReg EQQ x y
MO_Ne F32 -> condFltReg NE x y
MO_S_Gt F32 -> condFltReg GTT x y
MO_S_Ge F32 -> condFltReg GE x y
MO_S_Lt F32 -> condFltReg LTT x y
MO_S_Le F32 -> condFltReg LE x y
MO_Eq F64 -> condFltReg EQQ x y
MO_Ne F64 -> condFltReg NE x y
MO_S_Gt F64 -> condFltReg GTT x y
MO_S_Ge F64 -> condFltReg GE x y
MO_S_Lt F64 -> condFltReg LTT x y
MO_S_Le F64 -> condFltReg LE x y
MO_Eq rep -> condIntReg EQQ x y
MO_Ne rep -> condIntReg NE x y
MO_S_Gt rep -> condIntReg GTT x y
MO_S_Ge rep -> condIntReg GE x y
MO_S_Lt rep -> condIntReg LTT x y
MO_S_Le rep -> condIntReg LE x y
MO_U_Gt rep -> condIntReg GU x y
MO_U_Ge rep -> condIntReg GEU x y
MO_U_Lt rep -> condIntReg LU x y
MO_U_Le rep -> condIntReg LEU x y
#if i386_TARGET_ARCH
MO_Add F32 -> trivialFCode F32 GADD x y
MO_Sub F32 -> trivialFCode F32 GSUB x y
MO_Add F64 -> trivialFCode F64 GADD x y
MO_Sub F64 -> trivialFCode F64 GSUB x y
MO_S_Quot F32 -> trivialFCode F32 GDIV x y
MO_S_Quot F64 -> trivialFCode F64 GDIV x y
#endif
#if x86_64_TARGET_ARCH
MO_Add F32 -> trivialFCode F32 ADD x y
MO_Sub F32 -> trivialFCode F32 SUB x y
MO_Add F64 -> trivialFCode F64 ADD x y
MO_Sub F64 -> trivialFCode F64 SUB x y
MO_S_Quot F32 -> trivialFCode F32 FDIV x y
MO_S_Quot F64 -> trivialFCode F64 FDIV x y
#endif
MO_Add rep -> add_code rep x y
MO_Sub rep -> sub_code rep x y
MO_S_Quot rep -> div_code rep True True x y
MO_S_Rem rep -> div_code rep True False x y
MO_U_Quot rep -> div_code rep False True x y
MO_U_Rem rep -> div_code rep False False x y
#if i386_TARGET_ARCH
MO_Mul F32 -> trivialFCode F32 GMUL x y
MO_Mul F64 -> trivialFCode F64 GMUL x y
#endif
#if x86_64_TARGET_ARCH
MO_Mul F32 -> trivialFCode F32 MUL x y
MO_Mul F64 -> trivialFCode F64 MUL x y
#endif
MO_Mul rep -> let op = IMUL rep in
trivialCode rep op (Just op) x y
MO_S_MulMayOflo rep -> imulMayOflo rep x y
MO_And rep -> let op = AND rep in
trivialCode rep op (Just op) x y
MO_Or rep -> let op = OR rep in
trivialCode rep op (Just op) x y
MO_Xor rep -> let op = XOR rep in
trivialCode rep op (Just op) x y
{- Shift ops on x86s have constraints on their source, it
either has to be Imm, CL or 1
=> trivialCode is not restrictive enough (sigh.)
-}
MO_Shl rep -> shift_code rep (SHL rep) x y {-False-}
MO_U_Shr rep -> shift_code rep (SHR rep) x y {-False-}
MO_S_Shr rep -> shift_code rep (SAR rep) x y {-False-}
other -> pprPanic "getRegister(x86) - binary CmmMachOp (1)" (pprMachOp mop)
where
--------------------
imulMayOflo :: MachRep -> CmmExpr -> CmmExpr -> NatM Register
imulMayOflo rep a b = do
(a_reg, a_code) <- getNonClobberedReg a
b_code <- getAnyReg b
let
shift_amt = case rep of
I32 -> 31
I64 -> 63
_ -> panic "shift_amt"
code = a_code `appOL` b_code eax `appOL`
toOL [
IMUL2 rep (OpReg a_reg), -- result in %edx:%eax
SAR rep (OpImm (ImmInt shift_amt)) (OpReg eax),
-- sign extend lower part
SUB rep (OpReg edx) (OpReg eax)
-- compare against upper
-- eax==0 if high part == sign extended low part
]
-- in
return (Fixed rep eax code)
--------------------
shift_code :: MachRep
-> (Operand -> Operand -> Instr)
-> CmmExpr
-> CmmExpr
-> NatM Register
{- Case1: shift length as immediate -}
shift_code rep instr x y@(CmmLit lit) = do
x_code <- getAnyReg x
let
code dst
= x_code dst `snocOL`
instr (OpImm (litToImm lit)) (OpReg dst)
-- in
return (Any rep code)
{- Case2: shift length is complex (non-immediate)
* y must go in %ecx.
* we cannot do y first *and* put its result in %ecx, because
%ecx might be clobbered by x.
* if we do y second, then x cannot be
in a clobbered reg. Also, we cannot clobber x's reg
with the instruction itself.
* so we can either:
- do y first, put its result in a fresh tmp, then copy it to %ecx later
- do y second and put its result into %ecx. x gets placed in a fresh
tmp. This is likely to be better, becuase the reg alloc can
eliminate this reg->reg move here (it won't eliminate the other one,
because the move is into the fixed %ecx).
-}
shift_code rep instr x y{-amount-} = do
x_code <- getAnyReg x
tmp <- getNewRegNat rep
y_code <- getAnyReg y
let
code = x_code tmp `appOL`
y_code ecx `snocOL`
instr (OpReg ecx) (OpReg tmp)
-- in
return (Fixed rep tmp code)
--------------------
add_code :: MachRep -> CmmExpr -> CmmExpr -> NatM Register
add_code rep x (CmmLit (CmmInt y _))
| is32BitInteger y = add_int rep x y
add_code rep x y = trivialCode rep (ADD rep) (Just (ADD rep)) x y
--------------------
sub_code :: MachRep -> CmmExpr -> CmmExpr -> NatM Register
sub_code rep x (CmmLit (CmmInt y _))
| is32BitInteger (-y) = add_int rep x (-y)
sub_code rep x y = trivialCode rep (SUB rep) Nothing x y
-- our three-operand add instruction:
add_int rep x y = do
(x_reg, x_code) <- getSomeReg x
let
imm = ImmInt (fromInteger y)
code dst
= x_code `snocOL`
LEA rep
(OpAddr (AddrBaseIndex (EABaseReg x_reg) EAIndexNone imm))
(OpReg dst)
--
return (Any rep code)
----------------------
div_code rep signed quotient x y = do
(y_op, y_code) <- getRegOrMem y -- cannot be clobbered
x_code <- getAnyReg x
let
widen | signed = CLTD rep
| otherwise = XOR rep (OpReg edx) (OpReg edx)
instr | signed = IDIV
| otherwise = DIV
code = y_code `appOL`
x_code eax `appOL`
toOL [widen, instr rep y_op]
result | quotient = eax
| otherwise = edx
-- in
return (Fixed rep result code)
getRegister (CmmLoad mem pk)
| isFloatingRep pk
= do
Amode src mem_code <- getAmode mem
let
code dst = mem_code `snocOL`
IF_ARCH_i386(GLD pk src dst,
MOV pk (OpAddr src) (OpReg dst))
--
return (Any pk code)
#if i386_TARGET_ARCH
getRegister (CmmLoad mem pk)
| pk /= I64
= do
code <- intLoadCode (instr pk) mem
return (Any pk code)
where
instr I8 = MOVZxL pk
instr I16 = MOV I16
instr I32 = MOV I32
-- we always zero-extend 8-bit loads, if we
-- can't think of anything better. This is because
-- we can't guarantee access to an 8-bit variant of every register
-- (esi and edi don't have 8-bit variants), so to make things
-- simpler we do our 8-bit arithmetic with full 32-bit registers.
#endif
#if x86_64_TARGET_ARCH
-- Simpler memory load code on x86_64
getRegister (CmmLoad mem pk)
= do
code <- intLoadCode (MOV pk) mem
return (Any pk code)
#endif
getRegister (CmmLit (CmmInt 0 rep))
= let
-- x86_64: 32-bit xor is one byte shorter, and zero-extends to 64 bits
adj_rep = case rep of I64 -> I32; _ -> rep
rep1 = IF_ARCH_i386( rep, adj_rep )
code dst
= unitOL (XOR rep1 (OpReg dst) (OpReg dst))
in
return (Any rep code)
#if x86_64_TARGET_ARCH
-- optimisation for loading small literals on x86_64: take advantage
-- of the automatic zero-extension from 32 to 64 bits, because the 32-bit
-- instruction forms are shorter.
getRegister (CmmLit lit)
| I64 <- cmmLitRep lit, not (isBigLit lit)
= let
imm = litToImm lit
code dst = unitOL (MOV I32 (OpImm imm) (OpReg dst))
in
return (Any I64 code)
where
isBigLit (CmmInt i I64) = i < 0 || i > 0xffffffff
isBigLit _ = False
-- note1: not the same as (not.is32BitLit), because that checks for
-- signed literals that fit in 32 bits, but we want unsigned
-- literals here.
-- note2: all labels are small, because we're assuming the
-- small memory model (see gcc docs, -mcmodel=small).
#endif
getRegister (CmmLit lit)
= let
rep = cmmLitRep lit
imm = litToImm lit
code dst = unitOL (MOV rep (OpImm imm) (OpReg dst))
in
return (Any rep code)
getRegister other = pprPanic "getRegister(x86)" (ppr other)
intLoadCode :: (Operand -> Operand -> Instr) -> CmmExpr
-> NatM (Reg -> InstrBlock)
intLoadCode instr mem = do
Amode src mem_code <- getAmode mem
return (\dst -> mem_code `snocOL` instr (OpAddr src) (OpReg dst))
-- Compute an expression into *any* register, adding the appropriate
-- move instruction if necessary.
getAnyReg :: CmmExpr -> NatM (Reg -> InstrBlock)
getAnyReg expr = do
r <- getRegister expr
anyReg r
anyReg :: Register -> NatM (Reg -> InstrBlock)
anyReg (Any _ code) = return code
anyReg (Fixed rep reg fcode) = return (\dst -> fcode `snocOL` reg2reg rep reg dst)
-- A bit like getSomeReg, but we want a reg that can be byte-addressed.
-- Fixed registers might not be byte-addressable, so we make sure we've
-- got a temporary, inserting an extra reg copy if necessary.
getByteReg :: CmmExpr -> NatM (Reg, InstrBlock)
#if x86_64_TARGET_ARCH
getByteReg = getSomeReg -- all regs are byte-addressable on x86_64
#else
getByteReg expr = do
r <- getRegister expr
case r of
Any rep code -> do
tmp <- getNewRegNat rep
return (tmp, code tmp)
Fixed rep reg code
| isVirtualReg reg -> return (reg,code)
| otherwise -> do
tmp <- getNewRegNat rep
return (tmp, code `snocOL` reg2reg rep reg tmp)
-- ToDo: could optimise slightly by checking for byte-addressable
-- real registers, but that will happen very rarely if at all.
#endif
-- Another variant: this time we want the result in a register that cannot
-- be modified by code to evaluate an arbitrary expression.
getNonClobberedReg :: CmmExpr -> NatM (Reg, InstrBlock)
getNonClobberedReg expr = do
r <- getRegister expr
case r of
Any rep code -> do
tmp <- getNewRegNat rep
return (tmp, code tmp)
Fixed rep reg code
-- only free regs can be clobbered
| RealReg rr <- reg, isFastTrue (freeReg rr) -> do
tmp <- getNewRegNat rep
return (tmp, code `snocOL` reg2reg rep reg tmp)
| otherwise ->
return (reg, code)
reg2reg :: MachRep -> Reg -> Reg -> Instr
reg2reg rep src dst
#if i386_TARGET_ARCH
| isFloatingRep rep = GMOV src dst
#endif
| otherwise = MOV rep (OpReg src) (OpReg dst)
#endif /* i386_TARGET_ARCH || x86_64_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if sparc_TARGET_ARCH
getRegister (CmmLit (CmmFloat f F32)) = do
lbl <- getNewLabelNat
let code dst = toOL [
LDATA ReadOnlyData
[CmmDataLabel lbl,
CmmStaticLit (CmmFloat f F32)],
SETHI (HI (ImmCLbl lbl)) dst,
LD F32 (AddrRegImm dst (LO (ImmCLbl lbl))) dst]
return (Any F32 code)
getRegister (CmmLit (CmmFloat d F64)) = do
lbl <- getNewLabelNat
let code dst = toOL [
LDATA ReadOnlyData
[CmmDataLabel lbl,
CmmStaticLit (CmmFloat d F64)],
SETHI (HI (ImmCLbl lbl)) dst,
LD F64 (AddrRegImm dst (LO (ImmCLbl lbl))) dst]
return (Any F64 code)
getRegister (CmmMachOp mop [x]) -- unary MachOps
= case mop of
MO_S_Neg F32 -> trivialUFCode F32 (FNEG F32) x
MO_S_Neg F64 -> trivialUFCode F64 (FNEG F64) x
MO_S_Neg rep -> trivialUCode rep (SUB False False g0) x
MO_Not rep -> trivialUCode rep (XNOR False g0) x
MO_U_Conv I32 I8 -> trivialCode I8 (AND False) x (CmmLit (CmmInt 255 I8))
MO_U_Conv F64 F32-> coerceDbl2Flt x
MO_U_Conv F32 F64-> coerceFlt2Dbl x
MO_S_Conv F32 I32-> coerceFP2Int F32 I32 x
MO_S_Conv I32 F32-> coerceInt2FP I32 F32 x
MO_S_Conv F64 I32-> coerceFP2Int F64 I32 x
MO_S_Conv I32 F64-> coerceInt2FP I32 F64 x
-- Conversions which are a nop on sparc
MO_U_Conv from to
| from == to -> conversionNop to x
MO_U_Conv I32 to -> conversionNop to x
MO_S_Conv I32 to -> conversionNop to x
-- widenings
MO_U_Conv I8 I32 -> integerExtend False I8 I32 x
MO_U_Conv I16 I32 -> integerExtend False I16 I32 x
MO_U_Conv I8 I16 -> integerExtend False I8 I16 x
MO_S_Conv I16 I32 -> integerExtend True I16 I32 x
other_op -> panic "Unknown unary mach op"
where
-- XXX SLL/SRL?
integerExtend signed from to expr = do
(reg, e_code) <- getSomeReg expr
let
code dst =
e_code `snocOL`
((if signed then SRA else SRL)
reg (RIImm (ImmInt 0)) dst)
return (Any to code)
conversionNop new_rep expr
= do e_code <- getRegister expr
return (swizzleRegisterRep e_code new_rep)
getRegister (CmmMachOp mop [x, y]) -- dyadic PrimOps
= case mop of
MO_Eq F32 -> condFltReg EQQ x y
MO_Ne F32 -> condFltReg NE x y
MO_S_Gt F32 -> condFltReg GTT x y
MO_S_Ge F32 -> condFltReg GE x y
MO_S_Lt F32 -> condFltReg LTT x y
MO_S_Le F32 -> condFltReg LE x y
MO_Eq F64 -> condFltReg EQQ x y
MO_Ne F64 -> condFltReg NE x y
MO_S_Gt F64 -> condFltReg GTT x y
MO_S_Ge F64 -> condFltReg GE x y
MO_S_Lt F64 -> condFltReg LTT x y
MO_S_Le F64 -> condFltReg LE x y
MO_Eq rep -> condIntReg EQQ x y
MO_Ne rep -> condIntReg NE x y
MO_S_Gt rep -> condIntReg GTT x y
MO_S_Ge rep -> condIntReg GE x y
MO_S_Lt rep -> condIntReg LTT x y
MO_S_Le rep -> condIntReg LE x y
MO_U_Gt I32 -> condIntReg GTT x y
MO_U_Ge I32 -> condIntReg GE x y
MO_U_Lt I32 -> condIntReg LTT x y
MO_U_Le I32 -> condIntReg LE x y
MO_U_Gt I16 -> condIntReg GU x y
MO_U_Ge I16 -> condIntReg GEU x y
MO_U_Lt I16 -> condIntReg LU x y
MO_U_Le I16 -> condIntReg LEU x y
MO_Add I32 -> trivialCode I32 (ADD False False) x y
MO_Sub I32 -> trivialCode I32 (SUB False False) x y
MO_S_MulMayOflo rep -> imulMayOflo rep x y
{-
-- ToDo: teach about V8+ SPARC div instructions
MO_S_Quot I32 -> idiv (fsLit ".div") x y
MO_S_Rem I32 -> idiv (fsLit ".rem") x y
MO_U_Quot I32 -> idiv (fsLit ".udiv") x y
MO_U_Rem I32 -> idiv (fsLit ".urem") x y
-}
MO_Add F32 -> trivialFCode F32 FADD x y
MO_Sub F32 -> trivialFCode F32 FSUB x y
MO_Mul F32 -> trivialFCode F32 FMUL x y
MO_S_Quot F32 -> trivialFCode F32 FDIV x y
MO_Add F64 -> trivialFCode F64 FADD x y
MO_Sub F64 -> trivialFCode F64 FSUB x y
MO_Mul F64 -> trivialFCode F64 FMUL x y
MO_S_Quot F64 -> trivialFCode F64 FDIV x y
MO_And rep -> trivialCode rep (AND False) x y
MO_Or rep -> trivialCode rep (OR False) x y
MO_Xor rep -> trivialCode rep (XOR False) x y
MO_Mul rep -> trivialCode rep (SMUL False) x y
MO_Shl rep -> trivialCode rep SLL x y
MO_U_Shr rep -> trivialCode rep SRL x y
MO_S_Shr rep -> trivialCode rep SRA x y
{-
MO_F32_Pwr -> getRegister (StCall (Left (fsLit "pow")) CCallConv F64
[promote x, promote y])
where promote x = CmmMachOp MO_F32_to_Dbl [x]
MO_F64_Pwr -> getRegister (StCall (Left (fsLit "pow")) CCallConv F64
[x, y])
-}
other -> pprPanic "getRegister(sparc) - binary CmmMachOp (1)" (pprMachOp mop)
where
--idiv fn x y = getRegister (StCall (Left fn) CCallConv I32 [x, y])
--------------------
imulMayOflo :: MachRep -> CmmExpr -> CmmExpr -> NatM Register
imulMayOflo rep a b = do
(a_reg, a_code) <- getSomeReg a
(b_reg, b_code) <- getSomeReg b
res_lo <- getNewRegNat I32
res_hi <- getNewRegNat I32
let
shift_amt = case rep of
I32 -> 31
I64 -> 63
_ -> panic "shift_amt"
code dst = a_code `appOL` b_code `appOL`
toOL [
SMUL False a_reg (RIReg b_reg) res_lo,
RDY res_hi,
SRA res_lo (RIImm (ImmInt shift_amt)) res_lo,
SUB False False res_lo (RIReg res_hi) dst
]
return (Any I32 code)
getRegister (CmmLoad mem pk) = do
Amode src code <- getAmode mem
let
code__2 dst = code `snocOL` LD pk src dst
return (Any pk code__2)
getRegister (CmmLit (CmmInt i _))
| fits13Bits i
= let
src = ImmInt (fromInteger i)
code dst = unitOL (OR False g0 (RIImm src) dst)
in
return (Any I32 code)
getRegister (CmmLit lit)
= let rep = cmmLitRep lit
imm = litToImm lit
code dst = toOL [
SETHI (HI imm) dst,
OR False dst (RIImm (LO imm)) dst]
in return (Any I32 code)
#endif /* sparc_TARGET_ARCH */
#if powerpc_TARGET_ARCH
getRegister (CmmLoad mem pk)
| pk /= I64
= do
Amode addr addr_code <- getAmode mem
let code dst = ASSERT((regClass dst == RcDouble) == isFloatingRep pk)
addr_code `snocOL` LD pk dst addr
return (Any pk code)
-- catch simple cases of zero- or sign-extended load
getRegister (CmmMachOp (MO_U_Conv I8 I32) [CmmLoad mem _]) = do
Amode addr addr_code <- getAmode mem
return (Any I32 (\dst -> addr_code `snocOL` LD I8 dst addr))
-- Note: there is no Load Byte Arithmetic instruction, so no signed case here
getRegister (CmmMachOp (MO_U_Conv I16 I32) [CmmLoad mem _]) = do
Amode addr addr_code <- getAmode mem
return (Any I32 (\dst -> addr_code `snocOL` LD I16 dst addr))
getRegister (CmmMachOp (MO_S_Conv I16 I32) [CmmLoad mem _]) = do
Amode addr addr_code <- getAmode mem
return (Any I32 (\dst -> addr_code `snocOL` LA I16 dst addr))
getRegister (CmmMachOp mop [x]) -- unary MachOps
= case mop of
MO_Not rep -> trivialUCode rep NOT x
MO_S_Conv F64 F32 -> trivialUCode F32 FRSP x
MO_S_Conv F32 F64 -> conversionNop F64 x
MO_S_Conv from to
| from == to -> conversionNop to x
| isFloatingRep from -> coerceFP2Int from to x
| isFloatingRep to -> coerceInt2FP from to x
-- narrowing is a nop: we treat the high bits as undefined
MO_S_Conv I32 to -> conversionNop to x
MO_S_Conv I16 I8 -> conversionNop I8 x
MO_S_Conv I8 to -> trivialUCode to (EXTS I8) x
MO_S_Conv I16 to -> trivialUCode to (EXTS I16) x
MO_U_Conv from to
| from == to -> conversionNop to x
-- narrowing is a nop: we treat the high bits as undefined
MO_U_Conv I32 to -> conversionNop to x
MO_U_Conv I16 I8 -> conversionNop I8 x
MO_U_Conv I8 to -> trivialCode to False AND x (CmmLit (CmmInt 255 I32))
MO_U_Conv I16 to -> trivialCode to False AND x (CmmLit (CmmInt 65535 I32))
MO_S_Neg F32 -> trivialUCode F32 FNEG x
MO_S_Neg F64 -> trivialUCode F64 FNEG x
MO_S_Neg rep -> trivialUCode rep NEG x
where
conversionNop new_rep expr
= do e_code <- getRegister expr
return (swizzleRegisterRep e_code new_rep)
getRegister (CmmMachOp mop [x, y]) -- dyadic PrimOps
= case mop of
MO_Eq F32 -> condFltReg EQQ x y
MO_Ne F32 -> condFltReg NE x y
MO_S_Gt F32 -> condFltReg GTT x y
MO_S_Ge F32 -> condFltReg GE x y
MO_S_Lt F32 -> condFltReg LTT x y
MO_S_Le F32 -> condFltReg LE x y
MO_Eq F64 -> condFltReg EQQ x y
MO_Ne F64 -> condFltReg NE x y
MO_S_Gt F64 -> condFltReg GTT x y
MO_S_Ge F64 -> condFltReg GE x y
MO_S_Lt F64 -> condFltReg LTT x y
MO_S_Le F64 -> condFltReg LE x y
MO_Eq rep -> condIntReg EQQ (extendUExpr rep x) (extendUExpr rep y)
MO_Ne rep -> condIntReg NE (extendUExpr rep x) (extendUExpr rep y)
MO_S_Gt rep -> condIntReg GTT (extendSExpr rep x) (extendSExpr rep y)
MO_S_Ge rep -> condIntReg GE (extendSExpr rep x) (extendSExpr rep y)
MO_S_Lt rep -> condIntReg LTT (extendSExpr rep x) (extendSExpr rep y)
MO_S_Le rep -> condIntReg LE (extendSExpr rep x) (extendSExpr rep y)
MO_U_Gt rep -> condIntReg GU (extendUExpr rep x) (extendUExpr rep y)
MO_U_Ge rep -> condIntReg GEU (extendUExpr rep x) (extendUExpr rep y)
MO_U_Lt rep -> condIntReg LU (extendUExpr rep x) (extendUExpr rep y)
MO_U_Le rep -> condIntReg LEU (extendUExpr rep x) (extendUExpr rep y)
MO_Add F32 -> trivialCodeNoImm F32 (FADD F32) x y
MO_Sub F32 -> trivialCodeNoImm F32 (FSUB F32) x y
MO_Mul F32 -> trivialCodeNoImm F32 (FMUL F32) x y
MO_S_Quot F32 -> trivialCodeNoImm F32 (FDIV F32) x y
MO_Add F64 -> trivialCodeNoImm F64 (FADD F64) x y
MO_Sub F64 -> trivialCodeNoImm F64 (FSUB F64) x y
MO_Mul F64 -> trivialCodeNoImm F64 (FMUL F64) x y
MO_S_Quot F64 -> trivialCodeNoImm F64 (FDIV F64) x y
-- optimize addition with 32-bit immediate
-- (needed for PIC)
MO_Add I32 ->
case y of
CmmLit (CmmInt imm immrep) | Just _ <- makeImmediate I32 True (-imm)
-> trivialCode I32 True ADD x (CmmLit $ CmmInt imm immrep)
CmmLit lit
-> do
(src, srcCode) <- getSomeReg x
let imm = litToImm lit
code dst = srcCode `appOL` toOL [
ADDIS dst src (HA imm),
ADD dst dst (RIImm (LO imm))
]
return (Any I32 code)
_ -> trivialCode I32 True ADD x y
MO_Add rep -> trivialCode rep True ADD x y
MO_Sub rep ->
case y of -- subfi ('substract from' with immediate) doesn't exist
CmmLit (CmmInt imm immrep) | Just _ <- makeImmediate rep True (-imm)
-> trivialCode rep True ADD x (CmmLit $ CmmInt (-imm) immrep)
_ -> trivialCodeNoImm rep SUBF y x
MO_Mul rep -> trivialCode rep True MULLW x y
MO_S_MulMayOflo I32 -> trivialCodeNoImm I32 MULLW_MayOflo x y
MO_S_MulMayOflo rep -> panic "S_MulMayOflo (rep /= I32): not implemented"
MO_U_MulMayOflo rep -> panic "U_MulMayOflo: not implemented"
MO_S_Quot rep -> trivialCodeNoImm rep DIVW (extendSExpr rep x) (extendSExpr rep y)
MO_U_Quot rep -> trivialCodeNoImm rep DIVWU (extendUExpr rep x) (extendUExpr rep y)
MO_S_Rem rep -> remainderCode rep DIVW (extendSExpr rep x) (extendSExpr rep y)
MO_U_Rem rep -> remainderCode rep DIVWU (extendUExpr rep x) (extendUExpr rep y)
MO_And rep -> trivialCode rep False AND x y
MO_Or rep -> trivialCode rep False OR x y
MO_Xor rep -> trivialCode rep False XOR x y
MO_Shl rep -> trivialCode rep False SLW x y
MO_S_Shr rep -> trivialCode rep False SRAW (extendSExpr rep x) y
MO_U_Shr rep -> trivialCode rep False SRW (extendUExpr rep x) y
getRegister (CmmLit (CmmInt i rep))
| Just imm <- makeImmediate rep True i
= let
code dst = unitOL (LI dst imm)
in
return (Any rep code)
getRegister (CmmLit (CmmFloat f frep)) = do
lbl <- getNewLabelNat
dflags <- getDynFlagsNat
dynRef <- cmmMakeDynamicReference dflags addImportNat DataReference lbl
Amode addr addr_code <- getAmode dynRef
let code dst =
LDATA ReadOnlyData [CmmDataLabel lbl,
CmmStaticLit (CmmFloat f frep)]
`consOL` (addr_code `snocOL` LD frep dst addr)
return (Any frep code)
getRegister (CmmLit lit)
= let rep = cmmLitRep lit
imm = litToImm lit
code dst = toOL [
LIS dst (HA imm),
ADD dst dst (RIImm (LO imm))
]
in return (Any rep code)
getRegister other = pprPanic "getRegister(ppc)" (pprExpr other)
-- extend?Rep: wrap integer expression of type rep
-- in a conversion to I32
extendSExpr I32 x = x
extendSExpr rep x = CmmMachOp (MO_S_Conv rep I32) [x]
extendUExpr I32 x = x
extendUExpr rep x = CmmMachOp (MO_U_Conv rep I32) [x]
#endif /* powerpc_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- The 'Amode' type: Memory addressing modes passed up the tree.
data Amode = Amode AddrMode InstrBlock
{-
Now, given a tree (the argument to an CmmLoad) that references memory,
produce a suitable addressing mode.
A Rule of the Game (tm) for Amodes: use of the addr bit must
immediately follow use of the code part, since the code part puts
values in registers which the addr then refers to. So you can't put
anything in between, lest it overwrite some of those registers. If
you need to do some other computation between the code part and use of
the addr bit, first store the effective address from the amode in a
temporary, then do the other computation, and then use the temporary:
code
LEA amode, tmp
... other computation ...
... (tmp) ...
-}
getAmode :: CmmExpr -> NatM Amode
getAmode tree@(CmmRegOff _ _) = getAmode (mangleIndexTree tree)
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if alpha_TARGET_ARCH
getAmode (StPrim IntSubOp [x, StInt i])
= getNewRegNat PtrRep `thenNat` \ tmp ->
getRegister x `thenNat` \ register ->
let
code = registerCode register tmp
reg = registerName register tmp
off = ImmInt (-(fromInteger i))
in
return (Amode (AddrRegImm reg off) code)
getAmode (StPrim IntAddOp [x, StInt i])
= getNewRegNat PtrRep `thenNat` \ tmp ->
getRegister x `thenNat` \ register ->
let
code = registerCode register tmp
reg = registerName register tmp
off = ImmInt (fromInteger i)
in
return (Amode (AddrRegImm reg off) code)
getAmode leaf
| isJust imm
= return (Amode (AddrImm imm__2) id)
where
imm = maybeImm leaf
imm__2 = case imm of Just x -> x
getAmode other
= getNewRegNat PtrRep `thenNat` \ tmp ->
getRegister other `thenNat` \ register ->
let
code = registerCode register tmp
reg = registerName register tmp
in
return (Amode (AddrReg reg) code)
#endif /* alpha_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if x86_64_TARGET_ARCH
getAmode (CmmMachOp (MO_Add I64) [CmmReg (CmmGlobal PicBaseReg),
CmmLit displacement])
= return $ Amode (ripRel (litToImm displacement)) nilOL
#endif
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
-- This is all just ridiculous, since it carefully undoes
-- what mangleIndexTree has just done.
getAmode (CmmMachOp (MO_Sub rep) [x, CmmLit lit@(CmmInt i _)])
| is32BitLit lit
-- ASSERT(rep == I32)???
= do (x_reg, x_code) <- getSomeReg x
let off = ImmInt (-(fromInteger i))
return (Amode (AddrBaseIndex (EABaseReg x_reg) EAIndexNone off) x_code)
getAmode (CmmMachOp (MO_Add rep) [x, CmmLit lit@(CmmInt i _)])
| is32BitLit lit
-- ASSERT(rep == I32)???
= do (x_reg, x_code) <- getSomeReg x
let off = ImmInt (fromInteger i)
return (Amode (AddrBaseIndex (EABaseReg x_reg) EAIndexNone off) x_code)
-- Turn (lit1 << n + lit2) into (lit2 + lit1 << n) so it will be
-- recognised by the next rule.
getAmode (CmmMachOp (MO_Add rep) [a@(CmmMachOp (MO_Shl _) _),
b@(CmmLit _)])
= getAmode (CmmMachOp (MO_Add rep) [b,a])
getAmode (CmmMachOp (MO_Add rep) [x, CmmMachOp (MO_Shl _)
[y, CmmLit (CmmInt shift _)]])
| shift == 0 || shift == 1 || shift == 2 || shift == 3
= x86_complex_amode x y shift 0
getAmode (CmmMachOp (MO_Add rep)
[x, CmmMachOp (MO_Add _)
[CmmMachOp (MO_Shl _) [y, CmmLit (CmmInt shift _)],
CmmLit (CmmInt offset _)]])
| shift == 0 || shift == 1 || shift == 2 || shift == 3
&& is32BitInteger offset
= x86_complex_amode x y shift offset
getAmode (CmmMachOp (MO_Add rep) [x,y])
= x86_complex_amode x y 0 0
getAmode (CmmLit lit) | is32BitLit lit
= return (Amode (ImmAddr (litToImm lit) 0) nilOL)
getAmode expr = do
(reg,code) <- getSomeReg expr
return (Amode (AddrBaseIndex (EABaseReg reg) EAIndexNone (ImmInt 0)) code)
x86_complex_amode :: CmmExpr -> CmmExpr -> Integer -> Integer -> NatM Amode
x86_complex_amode base index shift offset
= do (x_reg, x_code) <- getNonClobberedReg base
-- x must be in a temp, because it has to stay live over y_code
-- we could compre x_reg and y_reg and do something better here...
(y_reg, y_code) <- getSomeReg index
let
code = x_code `appOL` y_code
base = case shift of 0 -> 1; 1 -> 2; 2 -> 4; 3 -> 8
return (Amode (AddrBaseIndex (EABaseReg x_reg) (EAIndex y_reg base) (ImmInt (fromIntegral offset)))
code)
#endif /* i386_TARGET_ARCH || x86_64_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if sparc_TARGET_ARCH
getAmode (CmmMachOp (MO_Sub rep) [x, CmmLit (CmmInt i _)])
| fits13Bits (-i)
= do
(reg, code) <- getSomeReg x
let
off = ImmInt (-(fromInteger i))
return (Amode (AddrRegImm reg off) code)
getAmode (CmmMachOp (MO_Add rep) [x, CmmLit (CmmInt i _)])
| fits13Bits i
= do
(reg, code) <- getSomeReg x
let
off = ImmInt (fromInteger i)
return (Amode (AddrRegImm reg off) code)
getAmode (CmmMachOp (MO_Add rep) [x, y])
= do
(regX, codeX) <- getSomeReg x
(regY, codeY) <- getSomeReg y
let
code = codeX `appOL` codeY
return (Amode (AddrRegReg regX regY) code)
-- XXX Is this same as "leaf" in Stix?
getAmode (CmmLit lit)
= do
tmp <- getNewRegNat I32
let
code = unitOL (SETHI (HI imm__2) tmp)
return (Amode (AddrRegImm tmp (LO imm__2)) code)
where
imm__2 = litToImm lit
getAmode other
= do
(reg, code) <- getSomeReg other
let
off = ImmInt 0
return (Amode (AddrRegImm reg off) code)
#endif /* sparc_TARGET_ARCH */
#ifdef powerpc_TARGET_ARCH
getAmode (CmmMachOp (MO_Sub I32) [x, CmmLit (CmmInt i _)])
| Just off <- makeImmediate I32 True (-i)
= do
(reg, code) <- getSomeReg x
return (Amode (AddrRegImm reg off) code)
getAmode (CmmMachOp (MO_Add I32) [x, CmmLit (CmmInt i _)])
| Just off <- makeImmediate I32 True i
= do
(reg, code) <- getSomeReg x
return (Amode (AddrRegImm reg off) code)
-- optimize addition with 32-bit immediate
-- (needed for PIC)
getAmode (CmmMachOp (MO_Add I32) [x, CmmLit lit])
= do
tmp <- getNewRegNat I32
(src, srcCode) <- getSomeReg x
let imm = litToImm lit
code = srcCode `snocOL` ADDIS tmp src (HA imm)
return (Amode (AddrRegImm tmp (LO imm)) code)
getAmode (CmmLit lit)
= do
tmp <- getNewRegNat I32
let imm = litToImm lit
code = unitOL (LIS tmp (HA imm))
return (Amode (AddrRegImm tmp (LO imm)) code)
getAmode (CmmMachOp (MO_Add I32) [x, y])
= do
(regX, codeX) <- getSomeReg x
(regY, codeY) <- getSomeReg y
return (Amode (AddrRegReg regX regY) (codeX `appOL` codeY))
getAmode other
= do
(reg, code) <- getSomeReg other
let
off = ImmInt 0
return (Amode (AddrRegImm reg off) code)
#endif /* powerpc_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- getOperand: sometimes any operand will do.
-- getNonClobberedOperand: the value of the operand will remain valid across
-- the computation of an arbitrary expression, unless the expression
-- is computed directly into a register which the operand refers to
-- (see trivialCode where this function is used for an example).
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
getNonClobberedOperand :: CmmExpr -> NatM (Operand, InstrBlock)
#if x86_64_TARGET_ARCH
getNonClobberedOperand (CmmLit lit)
| isSuitableFloatingPointLit lit = do
lbl <- getNewLabelNat
let code = unitOL (LDATA ReadOnlyData [CmmDataLabel lbl,
CmmStaticLit lit])
return (OpAddr (ripRel (ImmCLbl lbl)), code)
#endif
getNonClobberedOperand (CmmLit lit)
| is32BitLit lit && not (isFloatingRep (cmmLitRep lit)) =
return (OpImm (litToImm lit), nilOL)
getNonClobberedOperand (CmmLoad mem pk)
| IF_ARCH_i386(not (isFloatingRep pk) && pk /= I64, True) = do
Amode src mem_code <- getAmode mem
(src',save_code) <-
if (amodeCouldBeClobbered src)
then do
tmp <- getNewRegNat wordRep
return (AddrBaseIndex (EABaseReg tmp) EAIndexNone (ImmInt 0),
unitOL (LEA I32 (OpAddr src) (OpReg tmp)))
else
return (src, nilOL)
return (OpAddr src', save_code `appOL` mem_code)
getNonClobberedOperand e = do
(reg, code) <- getNonClobberedReg e
return (OpReg reg, code)
amodeCouldBeClobbered :: AddrMode -> Bool
amodeCouldBeClobbered amode = any regClobbered (addrModeRegs amode)
regClobbered (RealReg rr) = isFastTrue (freeReg rr)
regClobbered _ = False
-- getOperand: the operand is not required to remain valid across the
-- computation of an arbitrary expression.
getOperand :: CmmExpr -> NatM (Operand, InstrBlock)
#if x86_64_TARGET_ARCH
getOperand (CmmLit lit)
| isSuitableFloatingPointLit lit = do
lbl <- getNewLabelNat
let code = unitOL (LDATA ReadOnlyData [CmmDataLabel lbl,
CmmStaticLit lit])
return (OpAddr (ripRel (ImmCLbl lbl)), code)
#endif
getOperand (CmmLit lit)
| is32BitLit lit && not (isFloatingRep (cmmLitRep lit)) = do
return (OpImm (litToImm lit), nilOL)
getOperand (CmmLoad mem pk)
| IF_ARCH_i386(not (isFloatingRep pk) && pk /= I64, True) = do
Amode src mem_code <- getAmode mem
return (OpAddr src, mem_code)
getOperand e = do
(reg, code) <- getSomeReg e
return (OpReg reg, code)
isOperand :: CmmExpr -> Bool
isOperand (CmmLoad _ _) = True
isOperand (CmmLit lit) = is32BitLit lit
|| isSuitableFloatingPointLit lit
isOperand _ = False
-- if we want a floating-point literal as an operand, we can
-- use it directly from memory. However, if the literal is
-- zero, we're better off generating it into a register using
-- xor.
isSuitableFloatingPointLit (CmmFloat f _) = f /= 0.0
isSuitableFloatingPointLit _ = False
getRegOrMem :: CmmExpr -> NatM (Operand, InstrBlock)
getRegOrMem (CmmLoad mem pk)
| IF_ARCH_i386(not (isFloatingRep pk) && pk /= I64, True) = do
Amode src mem_code <- getAmode mem
return (OpAddr src, mem_code)
getRegOrMem e = do
(reg, code) <- getNonClobberedReg e
return (OpReg reg, code)
#if x86_64_TARGET_ARCH
is32BitLit (CmmInt i I64) = is32BitInteger i
-- assume that labels are in the range 0-2^31-1: this assumes the
-- small memory model (see gcc docs, -mcmodel=small).
#endif
is32BitLit x = True
#endif
is32BitInteger :: Integer -> Bool
is32BitInteger i = i64 <= 0x7fffffff && i64 >= -0x80000000
where i64 = fromIntegral i :: Int64
-- a CmmInt is intended to be truncated to the appropriate
-- number of bits, so here we truncate it to Int64. This is
-- important because e.g. -1 as a CmmInt might be either
-- -1 or 18446744073709551615.
-- -----------------------------------------------------------------------------
-- The 'CondCode' type: Condition codes passed up the tree.
data CondCode = CondCode Bool Cond InstrBlock
-- Set up a condition code for a conditional branch.
getCondCode :: CmmExpr -> NatM CondCode
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if alpha_TARGET_ARCH
getCondCode = panic "MachCode.getCondCode: not on Alphas"
#endif /* alpha_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH || sparc_TARGET_ARCH
-- yes, they really do seem to want exactly the same!
getCondCode (CmmMachOp mop [x, y])
=
case mop of
MO_Eq F32 -> condFltCode EQQ x y
MO_Ne F32 -> condFltCode NE x y
MO_S_Gt F32 -> condFltCode GTT x y
MO_S_Ge F32 -> condFltCode GE x y
MO_S_Lt F32 -> condFltCode LTT x y
MO_S_Le F32 -> condFltCode LE x y
MO_Eq F64 -> condFltCode EQQ x y
MO_Ne F64 -> condFltCode NE x y
MO_S_Gt F64 -> condFltCode GTT x y
MO_S_Ge F64 -> condFltCode GE x y
MO_S_Lt F64 -> condFltCode LTT x y
MO_S_Le F64 -> condFltCode LE x y
MO_Eq rep -> condIntCode EQQ x y
MO_Ne rep -> condIntCode NE x y
MO_S_Gt rep -> condIntCode GTT x y
MO_S_Ge rep -> condIntCode GE x y
MO_S_Lt rep -> condIntCode LTT x y
MO_S_Le rep -> condIntCode LE x y
MO_U_Gt rep -> condIntCode GU x y
MO_U_Ge rep -> condIntCode GEU x y
MO_U_Lt rep -> condIntCode LU x y
MO_U_Le rep -> condIntCode LEU x y
other -> pprPanic "getCondCode(x86,x86_64,sparc)" (ppr (CmmMachOp mop [x,y]))
getCondCode other = pprPanic "getCondCode(2)(x86,sparc)" (ppr other)
#elif powerpc_TARGET_ARCH
-- almost the same as everywhere else - but we need to
-- extend small integers to 32 bit first
getCondCode (CmmMachOp mop [x, y])
= case mop of
MO_Eq F32 -> condFltCode EQQ x y
MO_Ne F32 -> condFltCode NE x y
MO_S_Gt F32 -> condFltCode GTT x y
MO_S_Ge F32 -> condFltCode GE x y
MO_S_Lt F32 -> condFltCode LTT x y
MO_S_Le F32 -> condFltCode LE x y
MO_Eq F64 -> condFltCode EQQ x y
MO_Ne F64 -> condFltCode NE x y
MO_S_Gt F64 -> condFltCode GTT x y
MO_S_Ge F64 -> condFltCode GE x y
MO_S_Lt F64 -> condFltCode LTT x y
MO_S_Le F64 -> condFltCode LE x y
MO_Eq rep -> condIntCode EQQ (extendUExpr rep x) (extendUExpr rep y)
MO_Ne rep -> condIntCode NE (extendUExpr rep x) (extendUExpr rep y)
MO_S_Gt rep -> condIntCode GTT (extendSExpr rep x) (extendSExpr rep y)
MO_S_Ge rep -> condIntCode GE (extendSExpr rep x) (extendSExpr rep y)
MO_S_Lt rep -> condIntCode LTT (extendSExpr rep x) (extendSExpr rep y)
MO_S_Le rep -> condIntCode LE (extendSExpr rep x) (extendSExpr rep y)
MO_U_Gt rep -> condIntCode GU (extendUExpr rep x) (extendUExpr rep y)
MO_U_Ge rep -> condIntCode GEU (extendUExpr rep x) (extendUExpr rep y)
MO_U_Lt rep -> condIntCode LU (extendUExpr rep x) (extendUExpr rep y)
MO_U_Le rep -> condIntCode LEU (extendUExpr rep x) (extendUExpr rep y)
other -> pprPanic "getCondCode(powerpc)" (pprMachOp mop)
getCondCode other = panic "getCondCode(2)(powerpc)"
#endif
-- @cond(Int|Flt)Code@: Turn a boolean expression into a condition, to be
-- passed back up the tree.
condIntCode, condFltCode :: Cond -> CmmExpr -> CmmExpr -> NatM CondCode
#if alpha_TARGET_ARCH
condIntCode = panic "MachCode.condIntCode: not on Alphas"
condFltCode = panic "MachCode.condFltCode: not on Alphas"
#endif /* alpha_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
-- memory vs immediate
condIntCode cond (CmmLoad x pk) (CmmLit lit) | is32BitLit lit = do
Amode x_addr x_code <- getAmode x
let
imm = litToImm lit
code = x_code `snocOL`
CMP pk (OpImm imm) (OpAddr x_addr)
--
return (CondCode False cond code)
-- anything vs zero, using a mask
-- TODO: Add some sanity checking!!!!
condIntCode cond (CmmMachOp (MO_And rep) [x,o2]) (CmmLit (CmmInt 0 pk))
| (CmmLit lit@(CmmInt mask pk2)) <- o2, is32BitLit lit
= do
(x_reg, x_code) <- getSomeReg x
let
code = x_code `snocOL`
TEST pk (OpImm (ImmInteger mask)) (OpReg x_reg)
--
return (CondCode False cond code)
-- anything vs zero
condIntCode cond x (CmmLit (CmmInt 0 pk)) = do
(x_reg, x_code) <- getSomeReg x
let
code = x_code `snocOL`
TEST pk (OpReg x_reg) (OpReg x_reg)
--
return (CondCode False cond code)
-- anything vs operand
condIntCode cond x y | isOperand y = do
(x_reg, x_code) <- getNonClobberedReg x
(y_op, y_code) <- getOperand y
let
code = x_code `appOL` y_code `snocOL`
CMP (cmmExprRep x) y_op (OpReg x_reg)
-- in
return (CondCode False cond code)
-- anything vs anything
condIntCode cond x y = do
(y_reg, y_code) <- getNonClobberedReg y
(x_op, x_code) <- getRegOrMem x
let
code = y_code `appOL`
x_code `snocOL`
CMP (cmmExprRep x) (OpReg y_reg) x_op
-- in
return (CondCode False cond code)
#endif
#if i386_TARGET_ARCH
condFltCode cond x y
= ASSERT(cond `elem` ([EQQ, NE, LE, LTT, GE, GTT])) do
(x_reg, x_code) <- getNonClobberedReg x
(y_reg, y_code) <- getSomeReg y
let
code = x_code `appOL` y_code `snocOL`
GCMP cond x_reg y_reg
-- The GCMP insn does the test and sets the zero flag if comparable
-- and true. Hence we always supply EQQ as the condition to test.
return (CondCode True EQQ code)
#endif /* i386_TARGET_ARCH */
#if x86_64_TARGET_ARCH
-- in the SSE2 comparison ops (ucomiss, ucomisd) the left arg may be
-- an operand, but the right must be a reg. We can probably do better
-- than this general case...
condFltCode cond x y = do
(x_reg, x_code) <- getNonClobberedReg x
(y_op, y_code) <- getOperand y
let
code = x_code `appOL`
y_code `snocOL`
CMP (cmmExprRep x) y_op (OpReg x_reg)
-- NB(1): we need to use the unsigned comparison operators on the
-- result of this comparison.
-- in
return (CondCode True (condToUnsigned cond) code)
#endif
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if sparc_TARGET_ARCH
condIntCode cond x (CmmLit (CmmInt y rep))
| fits13Bits y
= do
(src1, code) <- getSomeReg x
let
src2 = ImmInt (fromInteger y)
code' = code `snocOL` SUB False True src1 (RIImm src2) g0
return (CondCode False cond code')
condIntCode cond x y = do
(src1, code1) <- getSomeReg x
(src2, code2) <- getSomeReg y
let
code__2 = code1 `appOL` code2 `snocOL`
SUB False True src1 (RIReg src2) g0
return (CondCode False cond code__2)
-----------
condFltCode cond x y = do
(src1, code1) <- getSomeReg x
(src2, code2) <- getSomeReg y
tmp <- getNewRegNat F64
let
promote x = FxTOy F32 F64 x tmp
pk1 = cmmExprRep x
pk2 = cmmExprRep y
code__2 =
if pk1 == pk2 then
code1 `appOL` code2 `snocOL`
FCMP True pk1 src1 src2
else if pk1 == F32 then
code1 `snocOL` promote src1 `appOL` code2 `snocOL`
FCMP True F64 tmp src2
else
code1 `appOL` code2 `snocOL` promote src2 `snocOL`
FCMP True F64 src1 tmp
return (CondCode True cond code__2)
#endif /* sparc_TARGET_ARCH */
#if powerpc_TARGET_ARCH
-- ###FIXME: I16 and I8!
condIntCode cond x (CmmLit (CmmInt y rep))
| Just src2 <- makeImmediate rep (not $ condUnsigned cond) y
= do
(src1, code) <- getSomeReg x
let
code' = code `snocOL`
(if condUnsigned cond then CMPL else CMP) I32 src1 (RIImm src2)
return (CondCode False cond code')
condIntCode cond x y = do
(src1, code1) <- getSomeReg x
(src2, code2) <- getSomeReg y
let
code' = code1 `appOL` code2 `snocOL`
(if condUnsigned cond then CMPL else CMP) I32 src1 (RIReg src2)
return (CondCode False cond code')
condFltCode cond x y = do
(src1, code1) <- getSomeReg x
(src2, code2) <- getSomeReg y
let
code' = code1 `appOL` code2 `snocOL` FCMP src1 src2
code'' = case cond of -- twiddle CR to handle unordered case
GE -> code' `snocOL` CRNOR ltbit eqbit gtbit
LE -> code' `snocOL` CRNOR gtbit eqbit ltbit
_ -> code'
where
ltbit = 0 ; eqbit = 2 ; gtbit = 1
return (CondCode True cond code'')
#endif /* powerpc_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- Generating assignments
-- Assignments are really at the heart of the whole code generation
-- business. Almost all top-level nodes of any real importance are
-- assignments, which correspond to loads, stores, or register
-- transfers. If we're really lucky, some of the register transfers
-- will go away, because we can use the destination register to
-- complete the code generation for the right hand side. This only
-- fails when the right hand side is forced into a fixed register
-- (e.g. the result of a call).
assignMem_IntCode :: MachRep -> CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_IntCode :: MachRep -> CmmReg -> CmmExpr -> NatM InstrBlock
assignMem_FltCode :: MachRep -> CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_FltCode :: MachRep -> CmmReg -> CmmExpr -> NatM InstrBlock
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if alpha_TARGET_ARCH
assignIntCode pk (CmmLoad dst _) src
= getNewRegNat IntRep `thenNat` \ tmp ->
getAmode dst `thenNat` \ amode ->
getRegister src `thenNat` \ register ->
let
code1 = amodeCode amode []
dst__2 = amodeAddr amode
code2 = registerCode register tmp []
src__2 = registerName register tmp
sz = primRepToSize pk
code__2 = asmSeqThen [code1, code2] . mkSeqInstr (ST sz src__2 dst__2)
in
return code__2
assignIntCode pk dst src
= getRegister dst `thenNat` \ register1 ->
getRegister src `thenNat` \ register2 ->
let
dst__2 = registerName register1 zeroh
code = registerCode register2 dst__2
src__2 = registerName register2 dst__2
code__2 = if isFixed register2
then code . mkSeqInstr (OR src__2 (RIReg src__2) dst__2)
else code
in
return code__2
#endif /* alpha_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
-- integer assignment to memory
-- specific case of adding/subtracting an integer to a particular address.
-- ToDo: catch other cases where we can use an operation directly on a memory
-- address.
assignMem_IntCode pk addr (CmmMachOp op [CmmLoad addr2 _,
CmmLit (CmmInt i _)])
| addr == addr2, pk /= I64 || is32BitInteger i,
Just instr <- check op
= do Amode amode code_addr <- getAmode addr
let code = code_addr `snocOL`
instr pk (OpImm (ImmInt (fromIntegral i))) (OpAddr amode)
return code
where
check (MO_Add _) = Just ADD
check (MO_Sub _) = Just SUB
check _ = Nothing
-- ToDo: more?
-- general case
assignMem_IntCode pk addr src = do
Amode addr code_addr <- getAmode addr
(code_src, op_src) <- get_op_RI src
let
code = code_src `appOL`
code_addr `snocOL`
MOV pk op_src (OpAddr addr)
-- NOTE: op_src is stable, so it will still be valid
-- after code_addr. This may involve the introduction
-- of an extra MOV to a temporary register, but we hope
-- the register allocator will get rid of it.
--
return code
where
get_op_RI :: CmmExpr -> NatM (InstrBlock,Operand) -- code, operator
get_op_RI (CmmLit lit) | is32BitLit lit
= return (nilOL, OpImm (litToImm lit))
get_op_RI op
= do (reg,code) <- getNonClobberedReg op
return (code, OpReg reg)
-- Assign; dst is a reg, rhs is mem
assignReg_IntCode pk reg (CmmLoad src _) = do
load_code <- intLoadCode (MOV pk) src
return (load_code (getRegisterReg reg))
-- dst is a reg, but src could be anything
assignReg_IntCode pk reg src = do
code <- getAnyReg src
return (code (getRegisterReg reg))
#endif /* i386_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if sparc_TARGET_ARCH
assignMem_IntCode pk addr src = do
(srcReg, code) <- getSomeReg src
Amode dstAddr addr_code <- getAmode addr
return $ code `appOL` addr_code `snocOL` ST pk srcReg dstAddr
assignReg_IntCode pk reg src = do
r <- getRegister src
return $ case r of
Any _ code -> code dst
Fixed _ freg fcode -> fcode `snocOL` OR False g0 (RIReg dst) freg
where
dst = getRegisterReg reg
#endif /* sparc_TARGET_ARCH */
#if powerpc_TARGET_ARCH
assignMem_IntCode pk addr src = do
(srcReg, code) <- getSomeReg src
Amode dstAddr addr_code <- getAmode addr
return $ code `appOL` addr_code `snocOL` ST pk srcReg dstAddr
-- dst is a reg, but src could be anything
assignReg_IntCode pk reg src
= do
r <- getRegister src
return $ case r of
Any _ code -> code dst
Fixed _ freg fcode -> fcode `snocOL` MR dst freg
where
dst = getRegisterReg reg
#endif /* powerpc_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- Floating-point assignments
#if alpha_TARGET_ARCH
assignFltCode pk (CmmLoad dst _) src
= getNewRegNat pk `thenNat` \ tmp ->
getAmode dst `thenNat` \ amode ->
getRegister src `thenNat` \ register ->
let
code1 = amodeCode amode []
dst__2 = amodeAddr amode
code2 = registerCode register tmp []
src__2 = registerName register tmp
sz = primRepToSize pk
code__2 = asmSeqThen [code1, code2] . mkSeqInstr (ST sz src__2 dst__2)
in
return code__2
assignFltCode pk dst src
= getRegister dst `thenNat` \ register1 ->
getRegister src `thenNat` \ register2 ->
let
dst__2 = registerName register1 zeroh
code = registerCode register2 dst__2
src__2 = registerName register2 dst__2
code__2 = if isFixed register2
then code . mkSeqInstr (FMOV src__2 dst__2)
else code
in
return code__2
#endif /* alpha_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
-- Floating point assignment to memory
assignMem_FltCode pk addr src = do
(src_reg, src_code) <- getNonClobberedReg src
Amode addr addr_code <- getAmode addr
let
code = src_code `appOL`
addr_code `snocOL`
IF_ARCH_i386(GST pk src_reg addr,
MOV pk (OpReg src_reg) (OpAddr addr))
return code
-- Floating point assignment to a register/temporary
assignReg_FltCode pk reg src = do
src_code <- getAnyReg src
return (src_code (getRegisterReg reg))
#endif /* i386_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if sparc_TARGET_ARCH
-- Floating point assignment to memory
assignMem_FltCode pk addr src = do
Amode dst__2 code1 <- getAmode addr
(src__2, code2) <- getSomeReg src
tmp1 <- getNewRegNat pk
let
pk__2 = cmmExprRep src
code__2 = code1 `appOL` code2 `appOL`
if pk == pk__2
then unitOL (ST pk src__2 dst__2)
else toOL [FxTOy pk__2 pk src__2 tmp1, ST pk tmp1 dst__2]
return code__2
-- Floating point assignment to a register/temporary
-- ToDo: Verify correctness
assignReg_FltCode pk reg src = do
r <- getRegister src
v1 <- getNewRegNat pk
return $ case r of
Any _ code -> code dst
Fixed _ freg fcode -> fcode `snocOL` FMOV pk freg v1
where
dst = getRegisterReg reg
#endif /* sparc_TARGET_ARCH */
#if powerpc_TARGET_ARCH
-- Easy, isn't it?
assignMem_FltCode = assignMem_IntCode
assignReg_FltCode = assignReg_IntCode
#endif /* powerpc_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- Generating an non-local jump
-- (If applicable) Do not fill the delay slots here; you will confuse the
-- register allocator.
genJump :: CmmExpr{-the branch target-} -> NatM InstrBlock
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if alpha_TARGET_ARCH
genJump (CmmLabel lbl)
| isAsmTemp lbl = returnInstr (BR target)
| otherwise = returnInstrs [LDA pv (AddrImm target), JMP zeroh (AddrReg pv) 0]
where
target = ImmCLbl lbl
genJump tree
= getRegister tree `thenNat` \ register ->
getNewRegNat PtrRep `thenNat` \ tmp ->
let
dst = registerName register pv
code = registerCode register pv
target = registerName register pv
in
if isFixed register then
returnSeq code [OR dst (RIReg dst) pv, JMP zeroh (AddrReg pv) 0]
else
return (code . mkSeqInstr (JMP zeroh (AddrReg pv) 0))
#endif /* alpha_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
genJump (CmmLoad mem pk) = do
Amode target code <- getAmode mem
return (code `snocOL` JMP (OpAddr target))
genJump (CmmLit lit) = do
return (unitOL (JMP (OpImm (litToImm lit))))
genJump expr = do
(reg,code) <- getSomeReg expr
return (code `snocOL` JMP (OpReg reg))
#endif /* i386_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if sparc_TARGET_ARCH
genJump (CmmLit (CmmLabel lbl))
= return (toOL [CALL (Left target) 0 True, NOP])
where
target = ImmCLbl lbl
genJump tree
= do
(target, code) <- getSomeReg tree
return (code `snocOL` JMP (AddrRegReg target g0) `snocOL` NOP)
#endif /* sparc_TARGET_ARCH */
#if powerpc_TARGET_ARCH
genJump (CmmLit (CmmLabel lbl))
= return (unitOL $ JMP lbl)
genJump tree
= do
(target,code) <- getSomeReg tree
return (code `snocOL` MTCTR target `snocOL` BCTR [])
#endif /* powerpc_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- Unconditional branches
genBranch :: BlockId -> NatM InstrBlock
genBranch = return . toOL . mkBranchInstr
-- -----------------------------------------------------------------------------
-- Conditional jumps
{-
Conditional jumps are always to local labels, so we can use branch
instructions. We peek at the arguments to decide what kind of
comparison to do.
ALPHA: For comparisons with 0, we're laughing, because we can just do
the desired conditional branch.
I386: First, we have to ensure that the condition
codes are set according to the supplied comparison operation.
SPARC: First, we have to ensure that the condition codes are set
according to the supplied comparison operation. We generate slightly
different code for floating point comparisons, because a floating
point operation cannot directly precede a @BF@. We assume the worst
and fill that slot with a @NOP@.
SPARC: Do not fill the delay slots here; you will confuse the register
allocator.
-}
genCondJump
:: BlockId -- the branch target
-> CmmExpr -- the condition on which to branch
-> NatM InstrBlock
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if alpha_TARGET_ARCH
genCondJump id (StPrim op [x, StInt 0])
= getRegister x `thenNat` \ register ->
getNewRegNat (registerRep register)
`thenNat` \ tmp ->
let
code = registerCode register tmp
value = registerName register tmp
pk = registerRep register
target = ImmCLbl lbl
in
returnSeq code [BI (cmpOp op) value target]
where
cmpOp CharGtOp = GTT
cmpOp CharGeOp = GE
cmpOp CharEqOp = EQQ
cmpOp CharNeOp = NE
cmpOp CharLtOp = LTT
cmpOp CharLeOp = LE
cmpOp IntGtOp = GTT
cmpOp IntGeOp = GE
cmpOp IntEqOp = EQQ
cmpOp IntNeOp = NE
cmpOp IntLtOp = LTT
cmpOp IntLeOp = LE
cmpOp WordGtOp = NE
cmpOp WordGeOp = ALWAYS
cmpOp WordEqOp = EQQ
cmpOp WordNeOp = NE
cmpOp WordLtOp = NEVER
cmpOp WordLeOp = EQQ
cmpOp AddrGtOp = NE
cmpOp AddrGeOp = ALWAYS
cmpOp AddrEqOp = EQQ
cmpOp AddrNeOp = NE
cmpOp AddrLtOp = NEVER
cmpOp AddrLeOp = EQQ
genCondJump lbl (StPrim op [x, StDouble 0.0])
= getRegister x `thenNat` \ register ->
getNewRegNat (registerRep register)
`thenNat` \ tmp ->
let
code = registerCode register tmp
value = registerName register tmp
pk = registerRep register
target = ImmCLbl lbl
in
return (code . mkSeqInstr (BF (cmpOp op) value target))
where
cmpOp FloatGtOp = GTT
cmpOp FloatGeOp = GE
cmpOp FloatEqOp = EQQ
cmpOp FloatNeOp = NE
cmpOp FloatLtOp = LTT
cmpOp FloatLeOp = LE
cmpOp DoubleGtOp = GTT
cmpOp DoubleGeOp = GE
cmpOp DoubleEqOp = EQQ
cmpOp DoubleNeOp = NE
cmpOp DoubleLtOp = LTT
cmpOp DoubleLeOp = LE
genCondJump lbl (StPrim op [x, y])
| fltCmpOp op
= trivialFCode pr instr x y `thenNat` \ register ->
getNewRegNat F64 `thenNat` \ tmp ->
let
code = registerCode register tmp
result = registerName register tmp
target = ImmCLbl lbl
in
return (code . mkSeqInstr (BF cond result target))
where
pr = panic "trivialU?FCode: does not use PrimRep on Alpha"
fltCmpOp op = case op of
FloatGtOp -> True
FloatGeOp -> True
FloatEqOp -> True
FloatNeOp -> True
FloatLtOp -> True
FloatLeOp -> True
DoubleGtOp -> True
DoubleGeOp -> True
DoubleEqOp -> True
DoubleNeOp -> True
DoubleLtOp -> True
DoubleLeOp -> True
_ -> False
(instr, cond) = case op of
FloatGtOp -> (FCMP TF LE, EQQ)
FloatGeOp -> (FCMP TF LTT, EQQ)
FloatEqOp -> (FCMP TF EQQ, NE)
FloatNeOp -> (FCMP TF EQQ, EQQ)
FloatLtOp -> (FCMP TF LTT, NE)
FloatLeOp -> (FCMP TF LE, NE)
DoubleGtOp -> (FCMP TF LE, EQQ)
DoubleGeOp -> (FCMP TF LTT, EQQ)
DoubleEqOp -> (FCMP TF EQQ, NE)
DoubleNeOp -> (FCMP TF EQQ, EQQ)
DoubleLtOp -> (FCMP TF LTT, NE)
DoubleLeOp -> (FCMP TF LE, NE)
genCondJump lbl (StPrim op [x, y])
= trivialCode instr x y `thenNat` \ register ->
getNewRegNat IntRep `thenNat` \ tmp ->
let
code = registerCode register tmp
result = registerName register tmp
target = ImmCLbl lbl
in
return (code . mkSeqInstr (BI cond result target))
where
(instr, cond) = case op of
CharGtOp -> (CMP LE, EQQ)
CharGeOp -> (CMP LTT, EQQ)
CharEqOp -> (CMP EQQ, NE)
CharNeOp -> (CMP EQQ, EQQ)
CharLtOp -> (CMP LTT, NE)
CharLeOp -> (CMP LE, NE)
IntGtOp -> (CMP LE, EQQ)
IntGeOp -> (CMP LTT, EQQ)
IntEqOp -> (CMP EQQ, NE)
IntNeOp -> (CMP EQQ, EQQ)
IntLtOp -> (CMP LTT, NE)
IntLeOp -> (CMP LE, NE)
WordGtOp -> (CMP ULE, EQQ)
WordGeOp -> (CMP ULT, EQQ)
WordEqOp -> (CMP EQQ, NE)
WordNeOp -> (CMP EQQ, EQQ)
WordLtOp -> (CMP ULT, NE)
WordLeOp -> (CMP ULE, NE)
AddrGtOp -> (CMP ULE, EQQ)
AddrGeOp -> (CMP ULT, EQQ)
AddrEqOp -> (CMP EQQ, NE)
AddrNeOp -> (CMP EQQ, EQQ)
AddrLtOp -> (CMP ULT, NE)
AddrLeOp -> (CMP ULE, NE)
#endif /* alpha_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if i386_TARGET_ARCH
genCondJump id bool = do
CondCode _ cond code <- getCondCode bool
return (code `snocOL` JXX cond id)
#endif
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if x86_64_TARGET_ARCH
genCondJump id bool = do
CondCode is_float cond cond_code <- getCondCode bool
if not is_float
then
return (cond_code `snocOL` JXX cond id)
else do
lbl <- getBlockIdNat
-- see comment with condFltReg
let code = case cond of
NE -> or_unordered
GU -> plain_test
GEU -> plain_test
_ -> and_ordered
plain_test = unitOL (
JXX cond id
)
or_unordered = toOL [
JXX cond id,
JXX PARITY id
]
and_ordered = toOL [
JXX PARITY lbl,
JXX cond id,
JXX ALWAYS lbl,
NEWBLOCK lbl
]
return (cond_code `appOL` code)
#endif
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if sparc_TARGET_ARCH
genCondJump (BlockId id) bool = do
CondCode is_float cond code <- getCondCode bool
return (
code `appOL`
toOL (
if is_float
then [NOP, BF cond False (ImmCLbl (mkAsmTempLabel id)), NOP]
else [BI cond False (ImmCLbl (mkAsmTempLabel id)), NOP]
)
)
#endif /* sparc_TARGET_ARCH */
#if powerpc_TARGET_ARCH
genCondJump id bool = do
CondCode is_float cond code <- getCondCode bool
return (code `snocOL` BCC cond id)
#endif /* powerpc_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- Generating C calls
-- Now the biggest nightmare---calls. Most of the nastiness is buried in
-- @get_arg@, which moves the arguments to the correct registers/stack
-- locations. Apart from that, the code is easy.
--
-- (If applicable) Do not fill the delay slots here; you will confuse the
-- register allocator.
genCCall
:: CmmCallTarget -- function to call
-> CmmFormals -- where to put the result
-> CmmActuals -- arguments (of mixed type)
-> NatM InstrBlock
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if alpha_TARGET_ARCH
ccallResultRegs =
genCCall fn cconv result_regs args
= mapAccumLNat get_arg (allArgRegs, eXTRA_STK_ARGS_HERE) args
`thenNat` \ ((unused,_), argCode) ->
let
nRegs = length allArgRegs - length unused
code = asmSeqThen (map ($ []) argCode)
in
returnSeq code [
LDA pv (AddrImm (ImmLab (ptext fn))),
JSR ra (AddrReg pv) nRegs,
LDGP gp (AddrReg ra)]
where
------------------------
{- Try to get a value into a specific register (or registers) for
a call. The first 6 arguments go into the appropriate
argument register (separate registers for integer and floating
point arguments, but used in lock-step), and the remaining
arguments are dumped to the stack, beginning at 0(sp). Our
first argument is a pair of the list of remaining argument
registers to be assigned for this call and the next stack
offset to use for overflowing arguments. This way,
@get_Arg@ can be applied to all of a call's arguments using
@mapAccumLNat@.
-}
get_arg
:: ([(Reg,Reg)], Int) -- Argument registers and stack offset (accumulator)
-> StixTree -- Current argument
-> NatM (([(Reg,Reg)],Int), InstrBlock) -- Updated accumulator and code
-- We have to use up all of our argument registers first...
get_arg ((iDst,fDst):dsts, offset) arg
= getRegister arg `thenNat` \ register ->
let
reg = if isFloatingRep pk then fDst else iDst
code = registerCode register reg
src = registerName register reg
pk = registerRep register
in
return (
if isFloatingRep pk then
((dsts, offset), if isFixed register then
code . mkSeqInstr (FMOV src fDst)
else code)
else
((dsts, offset), if isFixed register then
code . mkSeqInstr (OR src (RIReg src) iDst)
else code))
-- Once we have run out of argument registers, we move to the
-- stack...
get_arg ([], offset) arg
= getRegister arg `thenNat` \ register ->
getNewRegNat (registerRep register)
`thenNat` \ tmp ->
let
code = registerCode register tmp
src = registerName register tmp
pk = registerRep register
sz = primRepToSize pk
in
return (([], offset + 1), code . mkSeqInstr (ST sz src (spRel offset)))
#endif /* alpha_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if i386_TARGET_ARCH
genCCall (CmmPrim MO_WriteBarrier) _ _ = return nilOL
-- write barrier compiles to no code on x86/x86-64;
-- we keep it this long in order to prevent earlier optimisations.
-- we only cope with a single result for foreign calls
genCCall (CmmPrim op) [CmmKinded r _] args = do
l1 <- getNewLabelNat
l2 <- getNewLabelNat
case op of
MO_F32_Sqrt -> actuallyInlineFloatOp F32 (GSQRT F32) args
MO_F64_Sqrt -> actuallyInlineFloatOp F64 (GSQRT F64) args
MO_F32_Sin -> actuallyInlineFloatOp F32 (GSIN F32 l1 l2) args
MO_F64_Sin -> actuallyInlineFloatOp F64 (GSIN F64 l1 l2) args
MO_F32_Cos -> actuallyInlineFloatOp F32 (GCOS F32 l1 l2) args
MO_F64_Cos -> actuallyInlineFloatOp F64 (GCOS F64 l1 l2) args
MO_F32_Tan -> actuallyInlineFloatOp F32 (GTAN F32 l1 l2) args
MO_F64_Tan -> actuallyInlineFloatOp F64 (GTAN F64 l1 l2) args
other_op -> outOfLineFloatOp op r args
where
actuallyInlineFloatOp rep instr [CmmKinded x _]
= do res <- trivialUFCode rep instr x
any <- anyReg res
return (any (getRegisterReg (CmmLocal r)))
genCCall target dest_regs args = do
let
sizes = map (arg_size . cmmExprRep . kindlessCmm) (reverse args)
#if !darwin_TARGET_OS
tot_arg_size = sum sizes
#else
raw_arg_size = sum sizes
tot_arg_size = roundTo 16 raw_arg_size
arg_pad_size = tot_arg_size - raw_arg_size
delta0 <- getDeltaNat
setDeltaNat (delta0 - arg_pad_size)
#endif
push_codes <- mapM push_arg (reverse args)
delta <- getDeltaNat
-- in
-- deal with static vs dynamic call targets
(callinsns,cconv) <-
case target of
-- CmmPrim -> ...
CmmCallee (CmmLit (CmmLabel lbl)) conv
-> -- ToDo: stdcall arg sizes
return (unitOL (CALL (Left fn_imm) []), conv)
where fn_imm = ImmCLbl lbl
CmmCallee expr conv
-> do (dyn_c, dyn_r, dyn_rep) <- get_op expr
ASSERT(dyn_rep == I32)
return (dyn_c `snocOL` CALL (Right dyn_r) [], conv)
let push_code
#if darwin_TARGET_OS
| arg_pad_size /= 0
= toOL [SUB I32 (OpImm (ImmInt arg_pad_size)) (OpReg esp),
DELTA (delta0 - arg_pad_size)]
`appOL` concatOL push_codes
| otherwise
#endif
= concatOL push_codes
call = callinsns `appOL`
toOL (
-- Deallocate parameters after call for ccall;
-- but not for stdcall (callee does it)
(if cconv == StdCallConv || tot_arg_size==0 then [] else
[ADD I32 (OpImm (ImmInt tot_arg_size)) (OpReg esp)])
++
[DELTA (delta + tot_arg_size)]
)
-- in
setDeltaNat (delta + tot_arg_size)
let
-- assign the results, if necessary
assign_code [] = nilOL
assign_code [CmmKinded dest _hint] =
case rep of
I64 -> toOL [MOV I32 (OpReg eax) (OpReg r_dest),
MOV I32 (OpReg edx) (OpReg r_dest_hi)]
F32 -> unitOL (GMOV fake0 r_dest)
F64 -> unitOL (GMOV fake0 r_dest)
rep -> unitOL (MOV rep (OpReg eax) (OpReg r_dest))
where
r_dest_hi = getHiVRegFromLo r_dest
rep = localRegRep dest
r_dest = getRegisterReg (CmmLocal dest)
assign_code many = panic "genCCall.assign_code many"
return (push_code `appOL`
call `appOL`
assign_code dest_regs)
where
arg_size F64 = 8
arg_size F32 = 4
arg_size I64 = 8
arg_size _ = 4
roundTo a x | x `mod` a == 0 = x
| otherwise = x + a - (x `mod` a)
push_arg :: (CmmKinded CmmExpr){-current argument-}
-> NatM InstrBlock -- code
push_arg (CmmKinded arg _hint) -- we don't need the hints on x86
| arg_rep == I64 = do
ChildCode64 code r_lo <- iselExpr64 arg
delta <- getDeltaNat
setDeltaNat (delta - 8)
let
r_hi = getHiVRegFromLo r_lo
-- in
return ( code `appOL`
toOL [PUSH I32 (OpReg r_hi), DELTA (delta - 4),
PUSH I32 (OpReg r_lo), DELTA (delta - 8),
DELTA (delta-8)]
)
| otherwise = do
(code, reg, sz) <- get_op arg
delta <- getDeltaNat
let size = arg_size sz
setDeltaNat (delta-size)
if (case sz of F64 -> True; F32 -> True; _ -> False)
then return (code `appOL`
toOL [SUB I32 (OpImm (ImmInt size)) (OpReg esp),
DELTA (delta-size),
GST sz reg (AddrBaseIndex (EABaseReg esp)
EAIndexNone
(ImmInt 0))]
)
else return (code `snocOL`
PUSH I32 (OpReg reg) `snocOL`
DELTA (delta-size)
)
where
arg_rep = cmmExprRep arg
------------
get_op :: CmmExpr -> NatM (InstrBlock, Reg, MachRep) -- code, reg, size
get_op op = do
(reg,code) <- getSomeReg op
return (code, reg, cmmExprRep op)
#endif /* i386_TARGET_ARCH */
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
outOfLineFloatOp :: CallishMachOp -> CmmFormalWithoutKind -> CmmActuals
-> NatM InstrBlock
outOfLineFloatOp mop res args
= do
dflags <- getDynFlagsNat
targetExpr <- cmmMakeDynamicReference dflags addImportNat CallReference lbl
let target = CmmCallee targetExpr CCallConv
if localRegRep res == F64
then
stmtToInstrs (CmmCall target [CmmKinded res FloatHint] args CmmUnsafe CmmMayReturn)
else do
uq <- getUniqueNat
let
tmp = LocalReg uq F64 GCKindNonPtr
-- in
code1 <- stmtToInstrs (CmmCall target [CmmKinded tmp FloatHint] args CmmUnsafe CmmMayReturn)
code2 <- stmtToInstrs (CmmAssign (CmmLocal res) (CmmReg (CmmLocal tmp)))
return (code1 `appOL` code2)
where
lbl = mkForeignLabel fn Nothing False
fn = case mop of
MO_F32_Sqrt -> fsLit "sqrtf"
MO_F32_Sin -> fsLit "sinf"
MO_F32_Cos -> fsLit "cosf"
MO_F32_Tan -> fsLit "tanf"
MO_F32_Exp -> fsLit "expf"
MO_F32_Log -> fsLit "logf"
MO_F32_Asin -> fsLit "asinf"
MO_F32_Acos -> fsLit "acosf"
MO_F32_Atan -> fsLit "atanf"
MO_F32_Sinh -> fsLit "sinhf"
MO_F32_Cosh -> fsLit "coshf"
MO_F32_Tanh -> fsLit "tanhf"
MO_F32_Pwr -> fsLit "powf"
MO_F64_Sqrt -> fsLit "sqrt"
MO_F64_Sin -> fsLit "sin"
MO_F64_Cos -> fsLit "cos"
MO_F64_Tan -> fsLit "tan"
MO_F64_Exp -> fsLit "exp"
MO_F64_Log -> fsLit "log"
MO_F64_Asin -> fsLit "asin"
MO_F64_Acos -> fsLit "acos"
MO_F64_Atan -> fsLit "atan"
MO_F64_Sinh -> fsLit "sinh"
MO_F64_Cosh -> fsLit "cosh"
MO_F64_Tanh -> fsLit "tanh"
MO_F64_Pwr -> fsLit "pow"
#endif /* i386_TARGET_ARCH || x86_64_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if x86_64_TARGET_ARCH
genCCall (CmmPrim MO_WriteBarrier) _ _ = return nilOL
-- write barrier compiles to no code on x86/x86-64;
-- we keep it this long in order to prevent earlier optimisations.
genCCall (CmmPrim op) [CmmKinded r _] args =
outOfLineFloatOp op r args
genCCall target dest_regs args = do
-- load up the register arguments
(stack_args, aregs, fregs, load_args_code)
<- load_args args allArgRegs allFPArgRegs nilOL
let
fp_regs_used = reverse (drop (length fregs) (reverse allFPArgRegs))
int_regs_used = reverse (drop (length aregs) (reverse allArgRegs))
arg_regs = [eax] ++ int_regs_used ++ fp_regs_used
-- for annotating the call instruction with
sse_regs = length fp_regs_used
tot_arg_size = arg_size * length stack_args
-- On entry to the called function, %rsp should be aligned
-- on a 16-byte boundary +8 (i.e. the first stack arg after
-- the return address is 16-byte aligned). In STG land
-- %rsp is kept 16-byte aligned (see StgCRun.c), so we just
-- need to make sure we push a multiple of 16-bytes of args,
-- plus the return address, to get the correct alignment.
-- Urg, this is hard. We need to feed the delta back into
-- the arg pushing code.
(real_size, adjust_rsp) <-
if tot_arg_size `rem` 16 == 0
then return (tot_arg_size, nilOL)
else do -- we need to adjust...
delta <- getDeltaNat
setDeltaNat (delta-8)
return (tot_arg_size+8, toOL [
SUB I64 (OpImm (ImmInt 8)) (OpReg rsp),
DELTA (delta-8)
])
-- push the stack args, right to left
push_code <- push_args (reverse stack_args) nilOL
delta <- getDeltaNat
-- deal with static vs dynamic call targets
(callinsns,cconv) <-
case target of
-- CmmPrim -> ...
CmmCallee (CmmLit (CmmLabel lbl)) conv
-> -- ToDo: stdcall arg sizes
return (unitOL (CALL (Left fn_imm) arg_regs), conv)
where fn_imm = ImmCLbl lbl
CmmCallee expr conv
-> do (dyn_r, dyn_c) <- getSomeReg expr
return (dyn_c `snocOL` CALL (Right dyn_r) arg_regs, conv)
let
-- The x86_64 ABI requires us to set %al to the number of SSE
-- registers that contain arguments, if the called routine
-- is a varargs function. We don't know whether it's a
-- varargs function or not, so we have to assume it is.
--
-- It's not safe to omit this assignment, even if the number
-- of SSE regs in use is zero. If %al is larger than 8
-- on entry to a varargs function, seg faults ensue.
assign_eax n = unitOL (MOV I32 (OpImm (ImmInt n)) (OpReg eax))
let call = callinsns `appOL`
toOL (
-- Deallocate parameters after call for ccall;
-- but not for stdcall (callee does it)
(if cconv == StdCallConv || real_size==0 then [] else
[ADD wordRep (OpImm (ImmInt real_size)) (OpReg esp)])
++
[DELTA (delta + real_size)]
)
-- in
setDeltaNat (delta + real_size)
let
-- assign the results, if necessary
assign_code [] = nilOL
assign_code [CmmKinded dest _hint] =
case rep of
F32 -> unitOL (MOV rep (OpReg xmm0) (OpReg r_dest))
F64 -> unitOL (MOV rep (OpReg xmm0) (OpReg r_dest))
rep -> unitOL (MOV rep (OpReg rax) (OpReg r_dest))
where
rep = localRegRep dest
r_dest = getRegisterReg (CmmLocal dest)
assign_code many = panic "genCCall.assign_code many"
return (load_args_code `appOL`
adjust_rsp `appOL`
push_code `appOL`
assign_eax sse_regs `appOL`
call `appOL`
assign_code dest_regs)
where
arg_size = 8 -- always, at the mo
load_args :: [CmmKinded CmmExpr]
-> [Reg] -- int regs avail for args
-> [Reg] -- FP regs avail for args
-> InstrBlock
-> NatM ([CmmKinded CmmExpr],[Reg],[Reg],InstrBlock)
load_args args [] [] code = return (args, [], [], code)
-- no more regs to use
load_args [] aregs fregs code = return ([], aregs, fregs, code)
-- no more args to push
load_args ((CmmKinded arg hint) : rest) aregs fregs code
| isFloatingRep arg_rep =
case fregs of
[] -> push_this_arg
(r:rs) -> do
arg_code <- getAnyReg arg
load_args rest aregs rs (code `appOL` arg_code r)
| otherwise =
case aregs of
[] -> push_this_arg
(r:rs) -> do
arg_code <- getAnyReg arg
load_args rest rs fregs (code `appOL` arg_code r)
where
arg_rep = cmmExprRep arg
push_this_arg = do
(args',ars,frs,code') <- load_args rest aregs fregs code
return ((CmmKinded arg hint):args', ars, frs, code')
push_args [] code = return code
push_args ((CmmKinded arg hint):rest) code
| isFloatingRep arg_rep = do
(arg_reg, arg_code) <- getSomeReg arg
delta <- getDeltaNat
setDeltaNat (delta-arg_size)
let code' = code `appOL` arg_code `appOL` toOL [
SUB wordRep (OpImm (ImmInt arg_size)) (OpReg rsp) ,
DELTA (delta-arg_size),
MOV arg_rep (OpReg arg_reg) (OpAddr (spRel 0))]
push_args rest code'
| otherwise = do
-- we only ever generate word-sized function arguments. Promotion
-- has already happened: our Int8# type is kept sign-extended
-- in an Int#, for example.
ASSERT(arg_rep == I64) return ()
(arg_op, arg_code) <- getOperand arg
delta <- getDeltaNat
setDeltaNat (delta-arg_size)
let code' = code `appOL` toOL [PUSH I64 arg_op,
DELTA (delta-arg_size)]
push_args rest code'
where
arg_rep = cmmExprRep arg
#endif
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if sparc_TARGET_ARCH
{-
The SPARC calling convention is an absolute
nightmare. The first 6x32 bits of arguments are mapped into
%o0 through %o5, and the remaining arguments are dumped to the
stack, beginning at [%sp+92]. (Note that %o6 == %sp.)
If we have to put args on the stack, move %o6==%sp down by
the number of words to go on the stack, to ensure there's enough space.
According to Fraser and Hanson's lcc book, page 478, fig 17.2,
16 words above the stack pointer is a word for the address of
a structure return value. I use this as a temporary location
for moving values from float to int regs. Certainly it isn't
safe to put anything in the 16 words starting at %sp, since
this area can get trashed at any time due to window overflows
caused by signal handlers.
A final complication (if the above isn't enough) is that
we can't blithely calculate the arguments one by one into
%o0 .. %o5. Consider the following nested calls:
fff a (fff b c)
Naive code moves a into %o0, and (fff b c) into %o1. Unfortunately
the inner call will itself use %o0, which trashes the value put there
in preparation for the outer call. Upshot: we need to calculate the
args into temporary regs, and move those to arg regs or onto the
stack only immediately prior to the call proper. Sigh.
-}
genCCall target dest_regs argsAndHints = do
let
args = map kindlessCmm argsAndHints
argcode_and_vregs <- mapM arg_to_int_vregs args
let
(argcodes, vregss) = unzip argcode_and_vregs
n_argRegs = length allArgRegs
n_argRegs_used = min (length vregs) n_argRegs
vregs = concat vregss
-- deal with static vs dynamic call targets
callinsns <- (case target of
CmmCallee (CmmLit (CmmLabel lbl)) conv -> do
return (unitOL (CALL (Left (litToImm (CmmLabel lbl))) n_argRegs_used False))
CmmCallee expr conv -> do
(dyn_c, [dyn_r]) <- arg_to_int_vregs expr
return (dyn_c `snocOL` CALL (Right dyn_r) n_argRegs_used False)
CmmPrim mop -> do
(res, reduce) <- outOfLineFloatOp mop
lblOrMopExpr <- case res of
Left lbl -> do
return (unitOL (CALL (Left (litToImm (CmmLabel lbl))) n_argRegs_used False))
Right mopExpr -> do
(dyn_c, [dyn_r]) <- arg_to_int_vregs mopExpr
return (dyn_c `snocOL` CALL (Right dyn_r) n_argRegs_used False)
if reduce then panic "genCCall(sparc): can not reduce" else return lblOrMopExpr
)
let
argcode = concatOL argcodes
(move_sp_down, move_sp_up)
= let diff = length vregs - n_argRegs
nn = if odd diff then diff + 1 else diff -- keep 8-byte alignment
in if nn <= 0
then (nilOL, nilOL)
else (unitOL (moveSp (-1*nn)), unitOL (moveSp (1*nn)))
transfer_code
= toOL (move_final vregs allArgRegs eXTRA_STK_ARGS_HERE)
return (argcode `appOL`
move_sp_down `appOL`
transfer_code `appOL`
callinsns `appOL`
unitOL NOP `appOL`
move_sp_up)
where
-- move args from the integer vregs into which they have been
-- marshalled, into %o0 .. %o5, and the rest onto the stack.
move_final :: [Reg] -> [Reg] -> Int -> [Instr]
move_final [] _ offset -- all args done
= []
move_final (v:vs) [] offset -- out of aregs; move to stack
= ST I32 v (spRel offset)
: move_final vs [] (offset+1)
move_final (v:vs) (a:az) offset -- move into an arg (%o[0..5]) reg
= OR False g0 (RIReg v) a
: move_final vs az offset
-- generate code to calculate an argument, and move it into one
-- or two integer vregs.
arg_to_int_vregs :: CmmExpr -> NatM (OrdList Instr, [Reg])
arg_to_int_vregs arg
| (cmmExprRep arg) == I64
= do
(ChildCode64 code r_lo) <- iselExpr64 arg
let
r_hi = getHiVRegFromLo r_lo
return (code, [r_hi, r_lo])
| otherwise
= do
(src, code) <- getSomeReg arg
tmp <- getNewRegNat (cmmExprRep arg)
let
pk = cmmExprRep arg
case pk of
F64 -> do
v1 <- getNewRegNat I32
v2 <- getNewRegNat I32
return (
code `snocOL`
FMOV F64 src f0 `snocOL`
ST F32 f0 (spRel 16) `snocOL`
LD I32 (spRel 16) v1 `snocOL`
ST F32 (fPair f0) (spRel 16) `snocOL`
LD I32 (spRel 16) v2
,
[v1,v2]
)
F32 -> do
v1 <- getNewRegNat I32
return (
code `snocOL`
ST F32 src (spRel 16) `snocOL`
LD I32 (spRel 16) v1
,
[v1]
)
other -> do
v1 <- getNewRegNat I32
return (
code `snocOL` OR False g0 (RIReg src) v1
,
[v1]
)
outOfLineFloatOp mop =
do
dflags <- getDynFlagsNat
mopExpr <- cmmMakeDynamicReference dflags addImportNat CallReference $
mkForeignLabel functionName Nothing True
let mopLabelOrExpr = case mopExpr of
CmmLit (CmmLabel lbl) -> Left lbl
_ -> Right mopExpr
return (mopLabelOrExpr, reduce)
where
(reduce, functionName) = case mop of
MO_F32_Exp -> (True, fsLit "exp")
MO_F32_Log -> (True, fsLit "log")
MO_F32_Sqrt -> (True, fsLit "sqrt")
MO_F32_Sin -> (True, fsLit "sin")
MO_F32_Cos -> (True, fsLit "cos")
MO_F32_Tan -> (True, fsLit "tan")
MO_F32_Asin -> (True, fsLit "asin")
MO_F32_Acos -> (True, fsLit "acos")
MO_F32_Atan -> (True, fsLit "atan")
MO_F32_Sinh -> (True, fsLit "sinh")
MO_F32_Cosh -> (True, fsLit "cosh")
MO_F32_Tanh -> (True, fsLit "tanh")
MO_F64_Exp -> (False, fsLit "exp")
MO_F64_Log -> (False, fsLit "log")
MO_F64_Sqrt -> (False, fsLit "sqrt")
MO_F64_Sin -> (False, fsLit "sin")
MO_F64_Cos -> (False, fsLit "cos")
MO_F64_Tan -> (False, fsLit "tan")
MO_F64_Asin -> (False, fsLit "asin")
MO_F64_Acos -> (False, fsLit "acos")
MO_F64_Atan -> (False, fsLit "atan")
MO_F64_Sinh -> (False, fsLit "sinh")
MO_F64_Cosh -> (False, fsLit "cosh")
MO_F64_Tanh -> (False, fsLit "tanh")
other -> pprPanic "outOfLineFloatOp(sparc) "
(pprCallishMachOp mop)
#endif /* sparc_TARGET_ARCH */
#if powerpc_TARGET_ARCH
#if darwin_TARGET_OS || linux_TARGET_OS
{-
The PowerPC calling convention for Darwin/Mac OS X
is described in Apple's document
"Inside Mac OS X - Mach-O Runtime Architecture".
PowerPC Linux uses the System V Release 4 Calling Convention
for PowerPC. It is described in the
"System V Application Binary Interface PowerPC Processor Supplement".
Both conventions are similar:
Parameters may be passed in general-purpose registers starting at r3, in
floating point registers starting at f1, or on the stack.
But there are substantial differences:
* The number of registers used for parameter passing and the exact set of
nonvolatile registers differs (see MachRegs.lhs).
* On Darwin, stack space is always reserved for parameters, even if they are
passed in registers. The called routine may choose to save parameters from
registers to the corresponding space on the stack.
* On Darwin, a corresponding amount of GPRs is skipped when a floating point
parameter is passed in an FPR.
* SysV insists on either passing I64 arguments on the stack, or in two GPRs,
starting with an odd-numbered GPR. It may skip a GPR to achieve this.
Darwin just treats an I64 like two separate I32s (high word first).
* I64 and F64 arguments are 8-byte aligned on the stack for SysV, but only
4-byte aligned like everything else on Darwin.
* The SysV spec claims that F32 is represented as F64 on the stack. GCC on
PowerPC Linux does not agree, so neither do we.
According to both conventions, The parameter area should be part of the
caller's stack frame, allocated in the caller's prologue code (large enough
to hold the parameter lists for all called routines). The NCG already
uses the stack for register spilling, leaving 64 bytes free at the top.
If we need a larger parameter area than that, we just allocate a new stack
frame just before ccalling.
-}
genCCall (CmmPrim MO_WriteBarrier) _ _
= return $ unitOL LWSYNC
genCCall target dest_regs argsAndHints
= ASSERT (not $ any (`elem` [I8,I16]) argReps)
-- we rely on argument promotion in the codeGen
do
(finalStack,passArgumentsCode,usedRegs) <- passArguments
(zip args argReps)
allArgRegs allFPArgRegs
initialStackOffset
(toOL []) []
(labelOrExpr, reduceToF32) <- case target of
CmmCallee (CmmLit (CmmLabel lbl)) conv -> return (Left lbl, False)
CmmCallee expr conv -> return (Right expr, False)
CmmPrim mop -> outOfLineFloatOp mop
let codeBefore = move_sp_down finalStack `appOL` passArgumentsCode
codeAfter = move_sp_up finalStack `appOL` moveResult reduceToF32
case labelOrExpr of
Left lbl -> do
return ( codeBefore
`snocOL` BL lbl usedRegs
`appOL` codeAfter)
Right dyn -> do
(dynReg, dynCode) <- getSomeReg dyn
return ( dynCode
`snocOL` MTCTR dynReg
`appOL` codeBefore
`snocOL` BCTRL usedRegs
`appOL` codeAfter)
where
#if darwin_TARGET_OS
initialStackOffset = 24
-- size of linkage area + size of arguments, in bytes
stackDelta _finalStack = roundTo 16 $ (24 +) $ max 32 $ sum $
map machRepByteWidth argReps
#elif linux_TARGET_OS
initialStackOffset = 8
stackDelta finalStack = roundTo 16 finalStack
#endif
args = map kindlessCmm argsAndHints
argReps = map cmmExprRep args
roundTo a x | x `mod` a == 0 = x
| otherwise = x + a - (x `mod` a)
move_sp_down finalStack
| delta > 64 =
toOL [STU I32 sp (AddrRegImm sp (ImmInt (-delta))),
DELTA (-delta)]
| otherwise = nilOL
where delta = stackDelta finalStack
move_sp_up finalStack
| delta > 64 =
toOL [ADD sp sp (RIImm (ImmInt delta)),
DELTA 0]
| otherwise = nilOL
where delta = stackDelta finalStack
passArguments [] _ _ stackOffset accumCode accumUsed = return (stackOffset, accumCode, accumUsed)
passArguments ((arg,I64):args) gprs fprs stackOffset
accumCode accumUsed =
do
ChildCode64 code vr_lo <- iselExpr64 arg
let vr_hi = getHiVRegFromLo vr_lo
#if darwin_TARGET_OS
passArguments args
(drop 2 gprs)
fprs
(stackOffset+8)
(accumCode `appOL` code
`snocOL` storeWord vr_hi gprs stackOffset
`snocOL` storeWord vr_lo (drop 1 gprs) (stackOffset+4))
((take 2 gprs) ++ accumUsed)
where
storeWord vr (gpr:_) offset = MR gpr vr
storeWord vr [] offset = ST I32 vr (AddrRegImm sp (ImmInt offset))
#elif linux_TARGET_OS
let stackOffset' = roundTo 8 stackOffset
stackCode = accumCode `appOL` code
`snocOL` ST I32 vr_hi (AddrRegImm sp (ImmInt stackOffset'))
`snocOL` ST I32 vr_lo (AddrRegImm sp (ImmInt (stackOffset'+4)))
regCode hireg loreg =
accumCode `appOL` code
`snocOL` MR hireg vr_hi
`snocOL` MR loreg vr_lo
case gprs of
hireg : loreg : regs | even (length gprs) ->
passArguments args regs fprs stackOffset
(regCode hireg loreg) (hireg : loreg : accumUsed)
_skipped : hireg : loreg : regs ->
passArguments args regs fprs stackOffset
(regCode hireg loreg) (hireg : loreg : accumUsed)
_ -> -- only one or no regs left
passArguments args [] fprs (stackOffset'+8)
stackCode accumUsed
#endif
passArguments ((arg,rep):args) gprs fprs stackOffset accumCode accumUsed
| reg : _ <- regs = do
register <- getRegister arg
let code = case register of
Fixed _ freg fcode -> fcode `snocOL` MR reg freg
Any _ acode -> acode reg
passArguments args
(drop nGprs gprs)
(drop nFprs fprs)
#if darwin_TARGET_OS
-- The Darwin ABI requires that we reserve stack slots for register parameters
(stackOffset + stackBytes)
#elif linux_TARGET_OS
-- ... the SysV ABI doesn't.
stackOffset
#endif
(accumCode `appOL` code)
(reg : accumUsed)
| otherwise = do
(vr, code) <- getSomeReg arg
passArguments args
(drop nGprs gprs)
(drop nFprs fprs)
(stackOffset' + stackBytes)
(accumCode `appOL` code `snocOL` ST rep vr stackSlot)
accumUsed
where
#if darwin_TARGET_OS
-- stackOffset is at least 4-byte aligned
-- The Darwin ABI is happy with that.
stackOffset' = stackOffset
#else
-- ... the SysV ABI requires 8-byte alignment for doubles.
stackOffset' | rep == F64 = roundTo 8 stackOffset
| otherwise = stackOffset
#endif
stackSlot = AddrRegImm sp (ImmInt stackOffset')
(nGprs, nFprs, stackBytes, regs) = case rep of
I32 -> (1, 0, 4, gprs)
#if darwin_TARGET_OS
-- The Darwin ABI requires that we skip a corresponding number of GPRs when
-- we use the FPRs.
F32 -> (1, 1, 4, fprs)
F64 -> (2, 1, 8, fprs)
#elif linux_TARGET_OS
-- ... the SysV ABI doesn't.
F32 -> (0, 1, 4, fprs)
F64 -> (0, 1, 8, fprs)
#endif
moveResult reduceToF32 =
case dest_regs of
[] -> nilOL
[CmmKinded dest _hint]
| reduceToF32 && rep == F32 -> unitOL (FRSP r_dest f1)
| rep == F32 || rep == F64 -> unitOL (MR r_dest f1)
| rep == I64 -> toOL [MR (getHiVRegFromLo r_dest) r3,
MR r_dest r4]
| otherwise -> unitOL (MR r_dest r3)
where rep = cmmRegRep (CmmLocal dest)
r_dest = getRegisterReg (CmmLocal dest)
outOfLineFloatOp mop =
do
dflags <- getDynFlagsNat
mopExpr <- cmmMakeDynamicReference dflags addImportNat CallReference $
mkForeignLabel functionName Nothing True
let mopLabelOrExpr = case mopExpr of
CmmLit (CmmLabel lbl) -> Left lbl
_ -> Right mopExpr
return (mopLabelOrExpr, reduce)
where
(functionName, reduce) = case mop of
MO_F32_Exp -> (fsLit "exp", True)
MO_F32_Log -> (fsLit "log", True)
MO_F32_Sqrt -> (fsLit "sqrt", True)
MO_F32_Sin -> (fsLit "sin", True)
MO_F32_Cos -> (fsLit "cos", True)
MO_F32_Tan -> (fsLit "tan", True)
MO_F32_Asin -> (fsLit "asin", True)
MO_F32_Acos -> (fsLit "acos", True)
MO_F32_Atan -> (fsLit "atan", True)
MO_F32_Sinh -> (fsLit "sinh", True)
MO_F32_Cosh -> (fsLit "cosh", True)
MO_F32_Tanh -> (fsLit "tanh", True)
MO_F32_Pwr -> (fsLit "pow", True)
MO_F64_Exp -> (fsLit "exp", False)
MO_F64_Log -> (fsLit "log", False)
MO_F64_Sqrt -> (fsLit "sqrt", False)
MO_F64_Sin -> (fsLit "sin", False)
MO_F64_Cos -> (fsLit "cos", False)
MO_F64_Tan -> (fsLit "tan", False)
MO_F64_Asin -> (fsLit "asin", False)
MO_F64_Acos -> (fsLit "acos", False)
MO_F64_Atan -> (fsLit "atan", False)
MO_F64_Sinh -> (fsLit "sinh", False)
MO_F64_Cosh -> (fsLit "cosh", False)
MO_F64_Tanh -> (fsLit "tanh", False)
MO_F64_Pwr -> (fsLit "pow", False)
other -> pprPanic "genCCall(ppc): unknown callish op"
(pprCallishMachOp other)
#endif /* darwin_TARGET_OS || linux_TARGET_OS */
#endif /* powerpc_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- Generating a table-branch
genSwitch :: CmmExpr -> [Maybe BlockId] -> NatM InstrBlock
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
genSwitch expr ids
| opt_PIC
= do
(reg,e_code) <- getSomeReg expr
lbl <- getNewLabelNat
dflags <- getDynFlagsNat
dynRef <- cmmMakeDynamicReference dflags addImportNat DataReference lbl
(tableReg,t_code) <- getSomeReg $ dynRef
let
jumpTable = map jumpTableEntryRel ids
jumpTableEntryRel Nothing
= CmmStaticLit (CmmInt 0 wordRep)
jumpTableEntryRel (Just (BlockId id))
= CmmStaticLit (CmmLabelDiffOff blockLabel lbl 0)
where blockLabel = mkAsmTempLabel id
op = OpAddr (AddrBaseIndex (EABaseReg tableReg)
(EAIndex reg wORD_SIZE) (ImmInt 0))
#if x86_64_TARGET_ARCH
#if darwin_TARGET_OS
-- on Mac OS X/x86_64, put the jump table in the text section
-- to work around a limitation of the linker.
-- ld64 is unable to handle the relocations for
-- .quad L1 - L0
-- if L0 is not preceded by a non-anonymous label in its section.
code = e_code `appOL` t_code `appOL` toOL [
ADD wordRep op (OpReg tableReg),
JMP_TBL (OpReg tableReg) [ id | Just id <- ids ],
LDATA Text (CmmDataLabel lbl : jumpTable)
]
#else
-- HACK: On x86_64 binutils<2.17 is only able to generate PC32
-- relocations, hence we only get 32-bit offsets in the jump
-- table. As these offsets are always negative we need to properly
-- sign extend them to 64-bit. This hack should be removed in
-- conjunction with the hack in PprMach.hs/pprDataItem once
-- binutils 2.17 is standard.
code = e_code `appOL` t_code `appOL` toOL [
LDATA ReadOnlyData (CmmDataLabel lbl : jumpTable),
MOVSxL I32
(OpAddr (AddrBaseIndex (EABaseReg tableReg)
(EAIndex reg wORD_SIZE) (ImmInt 0)))
(OpReg reg),
ADD wordRep (OpReg reg) (OpReg tableReg),
JMP_TBL (OpReg tableReg) [ id | Just id <- ids ]
]
#endif
#else
code = e_code `appOL` t_code `appOL` toOL [
LDATA ReadOnlyData (CmmDataLabel lbl : jumpTable),
ADD wordRep op (OpReg tableReg),
JMP_TBL (OpReg tableReg) [ id | Just id <- ids ]
]
#endif
return code
| otherwise
= do
(reg,e_code) <- getSomeReg expr
lbl <- getNewLabelNat
let
jumpTable = map jumpTableEntry ids
op = OpAddr (AddrBaseIndex EABaseNone (EAIndex reg wORD_SIZE) (ImmCLbl lbl))
code = e_code `appOL` toOL [
LDATA ReadOnlyData (CmmDataLabel lbl : jumpTable),
JMP_TBL op [ id | Just id <- ids ]
]
-- in
return code
#elif powerpc_TARGET_ARCH
genSwitch expr ids
| opt_PIC
= do
(reg,e_code) <- getSomeReg expr
tmp <- getNewRegNat I32
lbl <- getNewLabelNat
dflags <- getDynFlagsNat
dynRef <- cmmMakeDynamicReference dflags addImportNat DataReference lbl
(tableReg,t_code) <- getSomeReg $ dynRef
let
jumpTable = map jumpTableEntryRel ids
jumpTableEntryRel Nothing
= CmmStaticLit (CmmInt 0 wordRep)
jumpTableEntryRel (Just (BlockId id))
= CmmStaticLit (CmmLabelDiffOff blockLabel lbl 0)
where blockLabel = mkAsmTempLabel id
code = e_code `appOL` t_code `appOL` toOL [
LDATA ReadOnlyData (CmmDataLabel lbl : jumpTable),
SLW tmp reg (RIImm (ImmInt 2)),
LD I32 tmp (AddrRegReg tableReg tmp),
ADD tmp tmp (RIReg tableReg),
MTCTR tmp,
BCTR [ id | Just id <- ids ]
]
return code
| otherwise
= do
(reg,e_code) <- getSomeReg expr
tmp <- getNewRegNat I32
lbl <- getNewLabelNat
let
jumpTable = map jumpTableEntry ids
code = e_code `appOL` toOL [
LDATA ReadOnlyData (CmmDataLabel lbl : jumpTable),
SLW tmp reg (RIImm (ImmInt 2)),
ADDIS tmp tmp (HA (ImmCLbl lbl)),
LD I32 tmp (AddrRegImm tmp (LO (ImmCLbl lbl))),
MTCTR tmp,
BCTR [ id | Just id <- ids ]
]
return code
#else
#error "ToDo: genSwitch"
#endif
jumpTableEntry Nothing = CmmStaticLit (CmmInt 0 wordRep)
jumpTableEntry (Just (BlockId id)) = CmmStaticLit (CmmLabel blockLabel)
where blockLabel = mkAsmTempLabel id
-- -----------------------------------------------------------------------------
-- Support bits
-- -----------------------------------------------------------------------------
-- -----------------------------------------------------------------------------
-- 'condIntReg' and 'condFltReg': condition codes into registers
-- Turn those condition codes into integers now (when they appear on
-- the right hand side of an assignment).
--
-- (If applicable) Do not fill the delay slots here; you will confuse the
-- register allocator.
condIntReg, condFltReg :: Cond -> CmmExpr -> CmmExpr -> NatM Register
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if alpha_TARGET_ARCH
condIntReg = panic "MachCode.condIntReg (not on Alpha)"
condFltReg = panic "MachCode.condFltReg (not on Alpha)"
#endif /* alpha_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
condIntReg cond x y = do
CondCode _ cond cond_code <- condIntCode cond x y
tmp <- getNewRegNat I8
let
code dst = cond_code `appOL` toOL [
SETCC cond (OpReg tmp),
MOVZxL I8 (OpReg tmp) (OpReg dst)
]
-- in
return (Any I32 code)
#endif
#if i386_TARGET_ARCH
condFltReg cond x y = do
CondCode _ cond cond_code <- condFltCode cond x y
tmp <- getNewRegNat I8
let
code dst = cond_code `appOL` toOL [
SETCC cond (OpReg tmp),
MOVZxL I8 (OpReg tmp) (OpReg dst)
]
-- in
return (Any I32 code)
#endif
#if x86_64_TARGET_ARCH
condFltReg cond x y = do
CondCode _ cond cond_code <- condFltCode cond x y
tmp1 <- getNewRegNat wordRep
tmp2 <- getNewRegNat wordRep
let
-- We have to worry about unordered operands (eg. comparisons
-- against NaN). If the operands are unordered, the comparison
-- sets the parity flag, carry flag and zero flag.
-- All comparisons are supposed to return false for unordered
-- operands except for !=, which returns true.
--
-- Optimisation: we don't have to test the parity flag if we
-- know the test has already excluded the unordered case: eg >
-- and >= test for a zero carry flag, which can only occur for
-- ordered operands.
--
-- ToDo: by reversing comparisons we could avoid testing the
-- parity flag in more cases.
code dst =
cond_code `appOL`
(case cond of
NE -> or_unordered dst
GU -> plain_test dst
GEU -> plain_test dst
_ -> and_ordered dst)
plain_test dst = toOL [
SETCC cond (OpReg tmp1),
MOVZxL I8 (OpReg tmp1) (OpReg dst)
]
or_unordered dst = toOL [
SETCC cond (OpReg tmp1),
SETCC PARITY (OpReg tmp2),
OR I8 (OpReg tmp1) (OpReg tmp2),
MOVZxL I8 (OpReg tmp2) (OpReg dst)
]
and_ordered dst = toOL [
SETCC cond (OpReg tmp1),
SETCC NOTPARITY (OpReg tmp2),
AND I8 (OpReg tmp1) (OpReg tmp2),
MOVZxL I8 (OpReg tmp2) (OpReg dst)
]
-- in
return (Any I32 code)
#endif
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if sparc_TARGET_ARCH
condIntReg EQQ x (CmmLit (CmmInt 0 d)) = do
(src, code) <- getSomeReg x
tmp <- getNewRegNat I32
let
code__2 dst = code `appOL` toOL [
SUB False True g0 (RIReg src) g0,
SUB True False g0 (RIImm (ImmInt (-1))) dst]
return (Any I32 code__2)
condIntReg EQQ x y = do
(src1, code1) <- getSomeReg x
(src2, code2) <- getSomeReg y
tmp1 <- getNewRegNat I32
tmp2 <- getNewRegNat I32
let
code__2 dst = code1 `appOL` code2 `appOL` toOL [
XOR False src1 (RIReg src2) dst,
SUB False True g0 (RIReg dst) g0,
SUB True False g0 (RIImm (ImmInt (-1))) dst]
return (Any I32 code__2)
condIntReg NE x (CmmLit (CmmInt 0 d)) = do
(src, code) <- getSomeReg x
tmp <- getNewRegNat I32
let
code__2 dst = code `appOL` toOL [
SUB False True g0 (RIReg src) g0,
ADD True False g0 (RIImm (ImmInt 0)) dst]
return (Any I32 code__2)
condIntReg NE x y = do
(src1, code1) <- getSomeReg x
(src2, code2) <- getSomeReg y
tmp1 <- getNewRegNat I32
tmp2 <- getNewRegNat I32
let
code__2 dst = code1 `appOL` code2 `appOL` toOL [
XOR False src1 (RIReg src2) dst,
SUB False True g0 (RIReg dst) g0,
ADD True False g0 (RIImm (ImmInt 0)) dst]
return (Any I32 code__2)
condIntReg cond x y = do
BlockId lbl1 <- getBlockIdNat
BlockId lbl2 <- getBlockIdNat
CondCode _ cond cond_code <- condIntCode cond x y
let
code__2 dst = cond_code `appOL` toOL [
BI cond False (ImmCLbl (mkAsmTempLabel lbl1)), NOP,
OR False g0 (RIImm (ImmInt 0)) dst,
BI ALWAYS False (ImmCLbl (mkAsmTempLabel lbl2)), NOP,
NEWBLOCK (BlockId lbl1),
OR False g0 (RIImm (ImmInt 1)) dst,
NEWBLOCK (BlockId lbl2)]
return (Any I32 code__2)
condFltReg cond x y = do
BlockId lbl1 <- getBlockIdNat
BlockId lbl2 <- getBlockIdNat
CondCode _ cond cond_code <- condFltCode cond x y
let
code__2 dst = cond_code `appOL` toOL [
NOP,
BF cond False (ImmCLbl (mkAsmTempLabel lbl1)), NOP,
OR False g0 (RIImm (ImmInt 0)) dst,
BI ALWAYS False (ImmCLbl (mkAsmTempLabel lbl2)), NOP,
NEWBLOCK (BlockId lbl1),
OR False g0 (RIImm (ImmInt 1)) dst,
NEWBLOCK (BlockId lbl2)]
return (Any I32 code__2)
#endif /* sparc_TARGET_ARCH */
#if powerpc_TARGET_ARCH
condReg getCond = do
lbl1 <- getBlockIdNat
lbl2 <- getBlockIdNat
CondCode _ cond cond_code <- getCond
let
{- code dst = cond_code `appOL` toOL [
BCC cond lbl1,
LI dst (ImmInt 0),
BCC ALWAYS lbl2,
NEWBLOCK lbl1,
LI dst (ImmInt 1),
BCC ALWAYS lbl2,
NEWBLOCK lbl2
]-}
code dst = cond_code
`appOL` negate_code
`appOL` toOL [
MFCR dst,
RLWINM dst dst (bit + 1) 31 31
]
negate_code | do_negate = unitOL (CRNOR bit bit bit)
| otherwise = nilOL
(bit, do_negate) = case cond of
LTT -> (0, False)
LE -> (1, True)
EQQ -> (2, False)
GE -> (0, True)
GTT -> (1, False)
NE -> (2, True)
LU -> (0, False)
LEU -> (1, True)
GEU -> (0, True)
GU -> (1, False)
return (Any I32 code)
condIntReg cond x y = condReg (condIntCode cond x y)
condFltReg cond x y = condReg (condFltCode cond x y)
#endif /* powerpc_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- 'trivial*Code': deal with trivial instructions
-- Trivial (dyadic: 'trivialCode', floating-point: 'trivialFCode',
-- unary: 'trivialUCode', unary fl-pt:'trivialUFCode') instructions.
-- Only look for constants on the right hand side, because that's
-- where the generic optimizer will have put them.
-- Similarly, for unary instructions, we don't have to worry about
-- matching an StInt as the argument, because genericOpt will already
-- have handled the constant-folding.
trivialCode
:: MachRep
-> IF_ARCH_alpha((Reg -> RI -> Reg -> Instr)
,IF_ARCH_i386 ((Operand -> Operand -> Instr)
-> Maybe (Operand -> Operand -> Instr)
,IF_ARCH_x86_64 ((Operand -> Operand -> Instr)
-> Maybe (Operand -> Operand -> Instr)
,IF_ARCH_sparc((Reg -> RI -> Reg -> Instr)
,IF_ARCH_powerpc(Bool -> (Reg -> Reg -> RI -> Instr)
,)))))
-> CmmExpr -> CmmExpr -- the two arguments
-> NatM Register
#ifndef powerpc_TARGET_ARCH
trivialFCode
:: MachRep
-> IF_ARCH_alpha((Reg -> Reg -> Reg -> Instr)
,IF_ARCH_sparc((MachRep -> Reg -> Reg -> Reg -> Instr)
,IF_ARCH_i386 ((MachRep -> Reg -> Reg -> Reg -> Instr)
,IF_ARCH_x86_64 ((MachRep -> Operand -> Operand -> Instr)
,))))
-> CmmExpr -> CmmExpr -- the two arguments
-> NatM Register
#endif
trivialUCode
:: MachRep
-> IF_ARCH_alpha((RI -> Reg -> Instr)
,IF_ARCH_i386 ((Operand -> Instr)
,IF_ARCH_x86_64 ((Operand -> Instr)
,IF_ARCH_sparc((RI -> Reg -> Instr)
,IF_ARCH_powerpc((Reg -> Reg -> Instr)
,)))))
-> CmmExpr -- the one argument
-> NatM Register
#ifndef powerpc_TARGET_ARCH
trivialUFCode
:: MachRep
-> IF_ARCH_alpha((Reg -> Reg -> Instr)
,IF_ARCH_i386 ((Reg -> Reg -> Instr)
,IF_ARCH_x86_64 ((Reg -> Reg -> Instr)
,IF_ARCH_sparc((Reg -> Reg -> Instr)
,))))
-> CmmExpr -- the one argument
-> NatM Register
#endif
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if alpha_TARGET_ARCH
trivialCode instr x (StInt y)
| fits8Bits y
= getRegister x `thenNat` \ register ->
getNewRegNat IntRep `thenNat` \ tmp ->
let
code = registerCode register tmp
src1 = registerName register tmp
src2 = ImmInt (fromInteger y)
code__2 dst = code . mkSeqInstr (instr src1 (RIImm src2) dst)
in
return (Any IntRep code__2)
trivialCode instr x y
= getRegister x `thenNat` \ register1 ->
getRegister y `thenNat` \ register2 ->
getNewRegNat IntRep `thenNat` \ tmp1 ->
getNewRegNat IntRep `thenNat` \ tmp2 ->
let
code1 = registerCode register1 tmp1 []
src1 = registerName register1 tmp1
code2 = registerCode register2 tmp2 []
src2 = registerName register2 tmp2
code__2 dst = asmSeqThen [code1, code2] .
mkSeqInstr (instr src1 (RIReg src2) dst)
in
return (Any IntRep code__2)
------------
trivialUCode instr x
= getRegister x `thenNat` \ register ->
getNewRegNat IntRep `thenNat` \ tmp ->
let
code = registerCode register tmp
src = registerName register tmp
code__2 dst = code . mkSeqInstr (instr (RIReg src) dst)
in
return (Any IntRep code__2)
------------
trivialFCode _ instr x y
= getRegister x `thenNat` \ register1 ->
getRegister y `thenNat` \ register2 ->
getNewRegNat F64 `thenNat` \ tmp1 ->
getNewRegNat F64 `thenNat` \ tmp2 ->
let
code1 = registerCode register1 tmp1
src1 = registerName register1 tmp1
code2 = registerCode register2 tmp2
src2 = registerName register2 tmp2
code__2 dst = asmSeqThen [code1 [], code2 []] .
mkSeqInstr (instr src1 src2 dst)
in
return (Any F64 code__2)
trivialUFCode _ instr x
= getRegister x `thenNat` \ register ->
getNewRegNat F64 `thenNat` \ tmp ->
let
code = registerCode register tmp
src = registerName register tmp
code__2 dst = code . mkSeqInstr (instr src dst)
in
return (Any F64 code__2)
#endif /* alpha_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
{-
The Rules of the Game are:
* You cannot assume anything about the destination register dst;
it may be anything, including a fixed reg.
* You may compute an operand into a fixed reg, but you may not
subsequently change the contents of that fixed reg. If you
want to do so, first copy the value either to a temporary
or into dst. You are free to modify dst even if it happens
to be a fixed reg -- that's not your problem.
* You cannot assume that a fixed reg will stay live over an
arbitrary computation. The same applies to the dst reg.
* Temporary regs obtained from getNewRegNat are distinct from
each other and from all other regs, and stay live over
arbitrary computations.
--------------------
SDM's version of The Rules:
* If getRegister returns Any, that means it can generate correct
code which places the result in any register, period. Even if that
register happens to be read during the computation.
Corollary #1: this means that if you are generating code for an
operation with two arbitrary operands, you cannot assign the result
of the first operand into the destination register before computing
the second operand. The second operand might require the old value
of the destination register.
Corollary #2: A function might be able to generate more efficient
code if it knows the destination register is a new temporary (and
therefore not read by any of the sub-computations).
* If getRegister returns Any, then the code it generates may modify only:
(a) fresh temporaries
(b) the destination register
(c) known registers (eg. %ecx is used by shifts)
In particular, it may *not* modify global registers, unless the global
register happens to be the destination register.
-}
trivialCode rep instr (Just revinstr) (CmmLit lit_a) b
| is32BitLit lit_a = do
b_code <- getAnyReg b
let
code dst
= b_code dst `snocOL`
revinstr (OpImm (litToImm lit_a)) (OpReg dst)
-- in
return (Any rep code)
trivialCode rep instr maybe_revinstr a b = genTrivialCode rep instr a b
-- This is re-used for floating pt instructions too.
genTrivialCode rep instr a b = do
(b_op, b_code) <- getNonClobberedOperand b
a_code <- getAnyReg a
tmp <- getNewRegNat rep
let
-- We want the value of b to stay alive across the computation of a.
-- But, we want to calculate a straight into the destination register,
-- because the instruction only has two operands (dst := dst `op` src).
-- The troublesome case is when the result of b is in the same register
-- as the destination reg. In this case, we have to save b in a
-- new temporary across the computation of a.
code dst
| dst `regClashesWithOp` b_op =
b_code `appOL`
unitOL (MOV rep b_op (OpReg tmp)) `appOL`
a_code dst `snocOL`
instr (OpReg tmp) (OpReg dst)
| otherwise =
b_code `appOL`
a_code dst `snocOL`
instr b_op (OpReg dst)
-- in
return (Any rep code)
reg `regClashesWithOp` OpReg reg2 = reg == reg2
reg `regClashesWithOp` OpAddr amode = any (==reg) (addrModeRegs amode)
reg `regClashesWithOp` _ = False
-----------
trivialUCode rep instr x = do
x_code <- getAnyReg x
let
code dst =
x_code dst `snocOL`
instr (OpReg dst)
-- in
return (Any rep code)
-----------
#if i386_TARGET_ARCH
trivialFCode pk instr x y = do
(x_reg, x_code) <- getNonClobberedReg x -- these work for float regs too
(y_reg, y_code) <- getSomeReg y
let
code dst =
x_code `appOL`
y_code `snocOL`
instr pk x_reg y_reg dst
-- in
return (Any pk code)
#endif
#if x86_64_TARGET_ARCH
trivialFCode pk instr x y = genTrivialCode pk (instr pk) x y
#endif
-------------
trivialUFCode rep instr x = do
(x_reg, x_code) <- getSomeReg x
let
code dst =
x_code `snocOL`
instr x_reg dst
-- in
return (Any rep code)
#endif /* i386_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if sparc_TARGET_ARCH
trivialCode pk instr x (CmmLit (CmmInt y d))
| fits13Bits y
= do
(src1, code) <- getSomeReg x
tmp <- getNewRegNat I32
let
src2 = ImmInt (fromInteger y)
code__2 dst = code `snocOL` instr src1 (RIImm src2) dst
return (Any I32 code__2)
trivialCode pk instr x y = do
(src1, code1) <- getSomeReg x
(src2, code2) <- getSomeReg y
tmp1 <- getNewRegNat I32
tmp2 <- getNewRegNat I32
let
code__2 dst = code1 `appOL` code2 `snocOL`
instr src1 (RIReg src2) dst
return (Any I32 code__2)
------------
trivialFCode pk instr x y = do
(src1, code1) <- getSomeReg x
(src2, code2) <- getSomeReg y
tmp1 <- getNewRegNat (cmmExprRep x)
tmp2 <- getNewRegNat (cmmExprRep y)
tmp <- getNewRegNat F64
let
promote x = FxTOy F32 F64 x tmp
pk1 = cmmExprRep x
pk2 = cmmExprRep y
code__2 dst =
if pk1 == pk2 then
code1 `appOL` code2 `snocOL`
instr pk src1 src2 dst
else if pk1 == F32 then
code1 `snocOL` promote src1 `appOL` code2 `snocOL`
instr F64 tmp src2 dst
else
code1 `appOL` code2 `snocOL` promote src2 `snocOL`
instr F64 src1 tmp dst
return (Any (if pk1 == pk2 then pk1 else F64) code__2)
------------
trivialUCode pk instr x = do
(src, code) <- getSomeReg x
tmp <- getNewRegNat pk
let
code__2 dst = code `snocOL` instr (RIReg src) dst
return (Any pk code__2)
-------------
trivialUFCode pk instr x = do
(src, code) <- getSomeReg x
tmp <- getNewRegNat pk
let
code__2 dst = code `snocOL` instr src dst
return (Any pk code__2)
#endif /* sparc_TARGET_ARCH */
#if powerpc_TARGET_ARCH
{-
Wolfgang's PowerPC version of The Rules:
A slightly modified version of The Rules to take advantage of the fact
that PowerPC instructions work on all registers and don't implicitly
clobber any fixed registers.
* The only expression for which getRegister returns Fixed is (CmmReg reg).
* If getRegister returns Any, then the code it generates may modify only:
(a) fresh temporaries
(b) the destination register
It may *not* modify global registers, unless the global
register happens to be the destination register.
It may not clobber any other registers. In fact, only ccalls clobber any
fixed registers.
Also, it may not modify the counter register (used by genCCall).
Corollary: If a getRegister for a subexpression returns Fixed, you need
not move it to a fresh temporary before evaluating the next subexpression.
The Fixed register won't be modified.
Therefore, we don't need a counterpart for the x86's getStableReg on PPC.
* SDM's First Rule is valid for PowerPC, too: subexpressions can depend on
the value of the destination register.
-}
trivialCode rep signed instr x (CmmLit (CmmInt y _))
| Just imm <- makeImmediate rep signed y
= do
(src1, code1) <- getSomeReg x
let code dst = code1 `snocOL` instr dst src1 (RIImm imm)
return (Any rep code)
trivialCode rep signed instr x y = do
(src1, code1) <- getSomeReg x
(src2, code2) <- getSomeReg y
let code dst = code1 `appOL` code2 `snocOL` instr dst src1 (RIReg src2)
return (Any rep code)
trivialCodeNoImm :: MachRep -> (Reg -> Reg -> Reg -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
trivialCodeNoImm rep instr x y = do
(src1, code1) <- getSomeReg x
(src2, code2) <- getSomeReg y
let code dst = code1 `appOL` code2 `snocOL` instr dst src1 src2
return (Any rep code)
trivialUCode rep instr x = do
(src, code) <- getSomeReg x
let code' dst = code `snocOL` instr dst src
return (Any rep code')
-- There is no "remainder" instruction on the PPC, so we have to do
-- it the hard way.
-- The "div" parameter is the division instruction to use (DIVW or DIVWU)
remainderCode :: MachRep -> (Reg -> Reg -> Reg -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
remainderCode rep div x y = do
(src1, code1) <- getSomeReg x
(src2, code2) <- getSomeReg y
let code dst = code1 `appOL` code2 `appOL` toOL [
div dst src1 src2,
MULLW dst dst (RIReg src2),
SUBF dst dst src1
]
return (Any rep code)
#endif /* powerpc_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- Coercing to/from integer/floating-point...
-- When going to integer, we truncate (round towards 0).
-- @coerce(Int2FP|FP2Int)@ are more complicated integer/float
-- conversions. We have to store temporaries in memory to move
-- between the integer and the floating point register sets.
-- @coerceDbl2Flt@ and @coerceFlt2Dbl@ are done this way because we
-- pretend, on sparc at least, that double and float regs are seperate
-- kinds, so the value has to be computed into one kind before being
-- explicitly "converted" to live in the other kind.
coerceInt2FP :: MachRep -> MachRep -> CmmExpr -> NatM Register
coerceFP2Int :: MachRep -> MachRep -> CmmExpr -> NatM Register
#if sparc_TARGET_ARCH
coerceDbl2Flt :: CmmExpr -> NatM Register
coerceFlt2Dbl :: CmmExpr -> NatM Register
#endif
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if alpha_TARGET_ARCH
coerceInt2FP _ x
= getRegister x `thenNat` \ register ->
getNewRegNat IntRep `thenNat` \ reg ->
let
code = registerCode register reg
src = registerName register reg
code__2 dst = code . mkSeqInstrs [
ST Q src (spRel 0),
LD TF dst (spRel 0),
CVTxy Q TF dst dst]
in
return (Any F64 code__2)
-------------
coerceFP2Int x
= getRegister x `thenNat` \ register ->
getNewRegNat F64 `thenNat` \ tmp ->
let
code = registerCode register tmp
src = registerName register tmp
code__2 dst = code . mkSeqInstrs [
CVTxy TF Q src tmp,
ST TF tmp (spRel 0),
LD Q dst (spRel 0)]
in
return (Any IntRep code__2)
#endif /* alpha_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if i386_TARGET_ARCH
coerceInt2FP from to x = do
(x_reg, x_code) <- getSomeReg x
let
opc = case to of F32 -> GITOF; F64 -> GITOD
code dst = x_code `snocOL` opc x_reg dst
-- ToDo: works for non-I32 reps?
-- in
return (Any to code)
------------
coerceFP2Int from to x = do
(x_reg, x_code) <- getSomeReg x
let
opc = case from of F32 -> GFTOI; F64 -> GDTOI
code dst = x_code `snocOL` opc x_reg dst
-- ToDo: works for non-I32 reps?
-- in
return (Any to code)
#endif /* i386_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if x86_64_TARGET_ARCH
coerceFP2Int from to x = do
(x_op, x_code) <- getOperand x -- ToDo: could be a safe operand
let
opc = case from of F32 -> CVTTSS2SIQ; F64 -> CVTTSD2SIQ
code dst = x_code `snocOL` opc x_op dst
-- in
return (Any to code) -- works even if the destination rep is <I32
coerceInt2FP from to x = do
(x_op, x_code) <- getOperand x -- ToDo: could be a safe operand
let
opc = case to of F32 -> CVTSI2SS; F64 -> CVTSI2SD
code dst = x_code `snocOL` opc x_op dst
-- in
return (Any to code) -- works even if the destination rep is <I32
coerceFP2FP :: MachRep -> CmmExpr -> NatM Register
coerceFP2FP to x = do
(x_reg, x_code) <- getSomeReg x
let
opc = case to of F32 -> CVTSD2SS; F64 -> CVTSS2SD
code dst = x_code `snocOL` opc x_reg dst
-- in
return (Any to code)
#endif
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if sparc_TARGET_ARCH
coerceInt2FP pk1 pk2 x = do
(src, code) <- getSomeReg x
let
code__2 dst = code `appOL` toOL [
ST pk1 src (spRel (-2)),
LD pk1 (spRel (-2)) dst,
FxTOy pk1 pk2 dst dst]
return (Any pk2 code__2)
------------
coerceFP2Int pk fprep x = do
(src, code) <- getSomeReg x
reg <- getNewRegNat fprep
tmp <- getNewRegNat pk
let
code__2 dst = ASSERT(fprep == F64 || fprep == F32)
code `appOL` toOL [
FxTOy fprep pk src tmp,
ST pk tmp (spRel (-2)),
LD pk (spRel (-2)) dst]
return (Any pk code__2)
------------
coerceDbl2Flt x = do
(src, code) <- getSomeReg x
return (Any F32 (\dst -> code `snocOL` FxTOy F64 F32 src dst))
------------
coerceFlt2Dbl x = do
(src, code) <- getSomeReg x
return (Any F64 (\dst -> code `snocOL` FxTOy F32 F64 src dst))
#endif /* sparc_TARGET_ARCH */
#if powerpc_TARGET_ARCH
coerceInt2FP fromRep toRep x = do
(src, code) <- getSomeReg x
lbl <- getNewLabelNat
itmp <- getNewRegNat I32
ftmp <- getNewRegNat F64
dflags <- getDynFlagsNat
dynRef <- cmmMakeDynamicReference dflags addImportNat DataReference lbl
Amode addr addr_code <- getAmode dynRef
let
code' dst = code `appOL` maybe_exts `appOL` toOL [
LDATA ReadOnlyData
[CmmDataLabel lbl,
CmmStaticLit (CmmInt 0x43300000 I32),
CmmStaticLit (CmmInt 0x80000000 I32)],
XORIS itmp src (ImmInt 0x8000),
ST I32 itmp (spRel 3),
LIS itmp (ImmInt 0x4330),
ST I32 itmp (spRel 2),
LD F64 ftmp (spRel 2)
] `appOL` addr_code `appOL` toOL [
LD F64 dst addr,
FSUB F64 dst ftmp dst
] `appOL` maybe_frsp dst
maybe_exts = case fromRep of
I8 -> unitOL $ EXTS I8 src src
I16 -> unitOL $ EXTS I16 src src
I32 -> nilOL
maybe_frsp dst = case toRep of
F32 -> unitOL $ FRSP dst dst
F64 -> nilOL
return (Any toRep code')
coerceFP2Int fromRep toRep x = do
-- the reps don't really matter: F*->F64 and I32->I* are no-ops
(src, code) <- getSomeReg x
tmp <- getNewRegNat F64
let
code' dst = code `appOL` toOL [
-- convert to int in FP reg
FCTIWZ tmp src,
-- store value (64bit) from FP to stack
ST F64 tmp (spRel 2),
-- read low word of value (high word is undefined)
LD I32 dst (spRel 3)]
return (Any toRep code')
#endif /* powerpc_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- eXTRA_STK_ARGS_HERE
-- We (allegedly) put the first six C-call arguments in registers;
-- where do we start putting the rest of them?
-- Moved from MachInstrs (SDM):
#if alpha_TARGET_ARCH || sparc_TARGET_ARCH
eXTRA_STK_ARGS_HERE :: Int
eXTRA_STK_ARGS_HERE
= IF_ARCH_alpha(0, IF_ARCH_sparc(23, ???))
#endif
|