summaryrefslogtreecommitdiff
path: root/compiler/nativeGen/PPC/Instr.hs
blob: 55affc6e1edf5d4e1d8a85dba1b73d787713e227 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
-----------------------------------------------------------------------------
--
-- Machine-dependent assembly language
--
-- (c) The University of Glasgow 1993-2004
--
-----------------------------------------------------------------------------

#include "HsVersions.h"
#include "nativeGen/NCG.h"

module PPC.Instr (
	archWordSize,
	RI(..),
	Instr(..),
	maxSpillSlots
)

where

import PPC.Regs
import PPC.Cond
import Instruction
import Size
import RegClass
import Reg

import Constants	(rESERVED_C_STACK_BYTES)
import BlockId
import Cmm
import FastString
import CLabel
import Outputable
import FastBool

--------------------------------------------------------------------------------
-- Size of a PPC memory address, in bytes.
--
archWordSize	:: Size
archWordSize	= II32


-- | Instruction instance for powerpc
instance Instruction Instr where
	regUsageOfInstr		= ppc_regUsageOfInstr
	patchRegsOfInstr	= ppc_patchRegsOfInstr
	isJumpishInstr		= ppc_isJumpishInstr
	jumpDestsOfInstr	= ppc_jumpDestsOfInstr
	patchJumpInstr		= ppc_patchJumpInstr
	mkSpillInstr		= ppc_mkSpillInstr
	mkLoadInstr		= ppc_mkLoadInstr
	takeDeltaInstr		= ppc_takeDeltaInstr
	isMetaInstr		= ppc_isMetaInstr
	mkRegRegMoveInstr	= ppc_mkRegRegMoveInstr
	takeRegRegMoveInstr	= ppc_takeRegRegMoveInstr
	mkJumpInstr		= ppc_mkJumpInstr


-- -----------------------------------------------------------------------------
-- Machine's assembly language

-- We have a few common "instructions" (nearly all the pseudo-ops) but
-- mostly all of 'Instr' is machine-specific.

-- Register or immediate
data RI 
	= RIReg Reg
	| RIImm Imm

data Instr
	-- comment pseudo-op
	= COMMENT FastString		

	-- some static data spat out during code
	-- generation.  Will be extracted before
	-- pretty-printing.
	| LDATA   Section [CmmStatic]	

	-- start a new basic block.  Useful during
	-- codegen, removed later.  Preceding 
	-- instruction should be a jump, as per the
	-- invariants for a BasicBlock (see Cmm).
	| NEWBLOCK BlockId		

	-- specify current stack offset for
        -- benefit of subsequent passes
	| DELTA   Int

	-- Loads and stores.
	| LD	Size Reg AddrMode 	-- Load size, dst, src
	| LA      Size Reg AddrMode 	-- Load arithmetic size, dst, src
	| ST	Size Reg AddrMode 	-- Store size, src, dst 
	| STU	Size Reg AddrMode 	-- Store with Update size, src, dst 
	| LIS	Reg Imm 		-- Load Immediate Shifted dst, src
	| LI	Reg Imm 		-- Load Immediate dst, src
	| MR	Reg Reg 		-- Move Register dst, src -- also for fmr
	      
	| CMP     Size Reg RI 		--- size, src1, src2
	| CMPL    Size Reg RI 		--- size, src1, src2
	      
	| BCC     Cond BlockId
	| BCCFAR  Cond BlockId
	| JMP     CLabel          	-- same as branch,
                                        -- but with CLabel instead of block ID
	| MTCTR	Reg
	| BCTR    [BlockId]       	-- with list of local destinations
	| BL	CLabel [Reg]		-- with list of argument regs
	| BCTRL	[Reg]
	      
	| ADD     Reg Reg RI 		-- dst, src1, src2
	| ADDC    Reg Reg Reg 		-- (carrying) dst, src1, src2
	| ADDE    Reg Reg Reg 		-- (extend) dst, src1, src2
	| ADDIS   Reg Reg Imm 		-- Add Immediate Shifted dst, src1, src2
	| SUBF    Reg Reg Reg 		-- dst, src1, src2 ; dst = src2 - src1  
	| MULLW	Reg Reg RI
	| DIVW	Reg Reg Reg
	| DIVWU	Reg Reg Reg

	| MULLW_MayOflo Reg Reg Reg
                        		-- dst = 1 if src1 * src2 overflows
                        		-- pseudo-instruction; pretty-printed as:
                        		-- mullwo. dst, src1, src2
                        		-- mfxer dst
                        		-- rlwinm dst, dst, 2, 31,31
	      
	| AND	Reg Reg RI 		-- dst, src1, src2
	| OR	Reg Reg RI 		-- dst, src1, src2
	| XOR	Reg Reg RI 		-- dst, src1, src2
	| XORIS	Reg Reg Imm 		-- XOR Immediate Shifted dst, src1, src2
	      
	| EXTS    Size Reg Reg
		  
	| NEG	Reg Reg
	| NOT	Reg Reg
	      
	| SLW	Reg Reg RI		-- shift left word
	| SRW	Reg Reg RI		-- shift right word
	| SRAW	Reg Reg RI		-- shift right arithmetic word
	      
        	        		-- Rotate Left Word Immediate then AND with Mask
	| RLWINM  Reg Reg Int Int Int
	      
	| FADD	Size Reg Reg Reg
	| FSUB	Size Reg Reg Reg
	| FMUL	Size Reg Reg Reg
	| FDIV	Size Reg Reg Reg
	| FNEG	Reg Reg	 		-- negate is the same for single and double prec.
	      
	| FCMP	Reg Reg
	      
	| FCTIWZ	Reg Reg		-- convert to integer word
	| FRSP		Reg Reg		-- reduce to single precision
					-- (but destination is a FP register)
	      
	| CRNOR   Int Int Int    	-- condition register nor
	| MFCR    Reg            	-- move from condition register
	      
	| MFLR    Reg            	-- move from link register
	| FETCHPC Reg          	  	-- pseudo-instruction:
	                         	-- bcl to next insn, mflr reg
	      
	| LWSYNC -- memory barrier


-- | Get the registers that are being used by this instruction.
--	regUsage doesn't need to do any trickery for jumps and such.  
--	Just state precisely the regs read and written by that insn.  
--	The consequences of control flow transfers, as far as register
-- 	allocation goes, are taken care of by the register allocator.
--
ppc_regUsageOfInstr :: Instr -> RegUsage
ppc_regUsageOfInstr instr 
 = case instr of
    LD    _ reg addr  	-> usage (regAddr addr, [reg])
    LA    _ reg addr  	-> usage (regAddr addr, [reg])
    ST    _ reg addr  	-> usage (reg : regAddr addr, [])
    STU    _ reg addr  	-> usage (reg : regAddr addr, [])
    LIS   reg _		-> usage ([], [reg])
    LI    reg _		-> usage ([], [reg])
    MR	  reg1 reg2     -> usage ([reg2], [reg1])
    CMP   _ reg ri	-> usage (reg : regRI ri,[])
    CMPL  _ reg ri	-> usage (reg : regRI ri,[])
    BCC	   _ _		-> noUsage
    BCCFAR _ _		-> noUsage
    MTCTR reg		-> usage ([reg],[])
    BCTR  _		-> noUsage
    BL    _ params	-> usage (params, callClobberedRegs)
    BCTRL params	-> usage (params, callClobberedRegs)
    ADD	  reg1 reg2 ri  -> usage (reg2 : regRI ri, [reg1])
    ADDC  reg1 reg2 reg3-> usage ([reg2,reg3], [reg1])
    ADDE  reg1 reg2 reg3-> usage ([reg2,reg3], [reg1])
    ADDIS reg1 reg2 _   -> usage ([reg2], [reg1])
    SUBF  reg1 reg2 reg3-> usage ([reg2,reg3], [reg1])
    MULLW reg1 reg2 ri  -> usage (reg2 : regRI ri, [reg1])
    DIVW  reg1 reg2 reg3-> usage ([reg2,reg3], [reg1])
    DIVWU reg1 reg2 reg3-> usage ([reg2,reg3], [reg1])
    MULLW_MayOflo reg1 reg2 reg3        
                        -> usage ([reg2,reg3], [reg1])
    AND	  reg1 reg2 ri  -> usage (reg2 : regRI ri, [reg1])
    OR	  reg1 reg2 ri  -> usage (reg2 : regRI ri, [reg1])
    XOR	  reg1 reg2 ri  -> usage (reg2 : regRI ri, [reg1])
    XORIS reg1 reg2 _   -> usage ([reg2], [reg1])
    EXTS  _  reg1 reg2 -> usage ([reg2], [reg1])
    NEG	  reg1 reg2	-> usage ([reg2], [reg1])
    NOT	  reg1 reg2	-> usage ([reg2], [reg1])
    SLW	  reg1 reg2 ri  -> usage (reg2 : regRI ri, [reg1])
    SRW	  reg1 reg2 ri  -> usage (reg2 : regRI ri, [reg1])
    SRAW  reg1 reg2 ri  -> usage (reg2 : regRI ri, [reg1])
    RLWINM reg1 reg2 _ _ _
                        -> usage ([reg2], [reg1])
    FADD  _ r1 r2 r3   -> usage ([r2,r3], [r1])
    FSUB  _ r1 r2 r3   -> usage ([r2,r3], [r1])
    FMUL  _ r1 r2 r3   -> usage ([r2,r3], [r1])
    FDIV  _ r1 r2 r3   -> usage ([r2,r3], [r1])
    FNEG  r1 r2		-> usage ([r2], [r1])
    FCMP  r1 r2		-> usage ([r1,r2], [])
    FCTIWZ r1 r2	-> usage ([r2], [r1])
    FRSP r1 r2		-> usage ([r2], [r1])
    MFCR reg            -> usage ([], [reg])
    MFLR reg            -> usage ([], [reg])
    FETCHPC reg         -> usage ([], [reg])
    _ 	    	    	-> noUsage
  where
    usage (src, dst) = RU (filter interesting src)
    	    	    	  (filter interesting dst)
    regAddr (AddrRegReg r1 r2) = [r1, r2]
    regAddr (AddrRegImm r1 _)  = [r1]

    regRI (RIReg r) = [r]
    regRI  _	= []

interesting :: Reg -> Bool
interesting (VirtualRegI  _)  = True
interesting (VirtualRegHi _)  = True
interesting (VirtualRegF  _)  = True
interesting (VirtualRegD  _)  = True
interesting (RealReg i)       = isFastTrue (freeReg i)




-- | Apply a given mapping to all the register references in this
--	instruction.
ppc_patchRegsOfInstr :: Instr -> (Reg -> Reg) -> Instr
ppc_patchRegsOfInstr instr env 
 = case instr of
    LD    sz reg addr   -> LD sz (env reg) (fixAddr addr)
    LA    sz reg addr   -> LA sz (env reg) (fixAddr addr)
    ST    sz reg addr   -> ST sz (env reg) (fixAddr addr)
    STU    sz reg addr  -> STU sz (env reg) (fixAddr addr)
    LIS   reg imm	-> LIS (env reg) imm
    LI    reg imm	-> LI (env reg) imm
    MR	  reg1 reg2     -> MR (env reg1) (env reg2)
    CMP	  sz reg ri	-> CMP sz (env reg) (fixRI ri)
    CMPL  sz reg ri	-> CMPL sz (env reg) (fixRI ri)
    BCC	  cond lbl	-> BCC cond lbl
    BCCFAR cond lbl	-> BCCFAR cond lbl
    MTCTR reg		-> MTCTR (env reg)
    BCTR  targets	-> BCTR targets
    BL    imm argRegs	-> BL imm argRegs	-- argument regs
    BCTRL argRegs	-> BCTRL argRegs 	-- cannot be remapped
    ADD	  reg1 reg2 ri	-> ADD (env reg1) (env reg2) (fixRI ri)
    ADDC  reg1 reg2 reg3-> ADDC (env reg1) (env reg2) (env reg3)
    ADDE  reg1 reg2 reg3-> ADDE (env reg1) (env reg2) (env reg3)
    ADDIS reg1 reg2 imm -> ADDIS (env reg1) (env reg2) imm
    SUBF  reg1 reg2 reg3-> SUBF (env reg1) (env reg2) (env reg3)
    MULLW reg1 reg2 ri	-> MULLW (env reg1) (env reg2) (fixRI ri)
    DIVW  reg1 reg2 reg3-> DIVW (env reg1) (env reg2) (env reg3)
    DIVWU reg1 reg2 reg3-> DIVWU (env reg1) (env reg2) (env reg3)
    MULLW_MayOflo reg1 reg2 reg3
                        -> MULLW_MayOflo (env reg1) (env reg2) (env reg3)
    AND	  reg1 reg2 ri	-> AND (env reg1) (env reg2) (fixRI ri)
    OR 	  reg1 reg2 ri	-> OR  (env reg1) (env reg2) (fixRI ri)
    XOR	  reg1 reg2 ri	-> XOR (env reg1) (env reg2) (fixRI ri)
    XORIS reg1 reg2 imm -> XORIS (env reg1) (env reg2) imm
    EXTS  sz reg1 reg2 -> EXTS sz (env reg1) (env reg2)
    NEG	  reg1 reg2	-> NEG (env reg1) (env reg2)
    NOT	  reg1 reg2	-> NOT (env reg1) (env reg2)
    SLW	  reg1 reg2 ri	-> SLW (env reg1) (env reg2) (fixRI ri)
    SRW	  reg1 reg2 ri	-> SRW (env reg1) (env reg2) (fixRI ri)
    SRAW  reg1 reg2 ri	-> SRAW (env reg1) (env reg2) (fixRI ri)
    RLWINM reg1 reg2 sh mb me
                        -> RLWINM (env reg1) (env reg2) sh mb me
    FADD  sz r1 r2 r3   -> FADD sz (env r1) (env r2) (env r3)
    FSUB  sz r1 r2 r3   -> FSUB sz (env r1) (env r2) (env r3)
    FMUL  sz r1 r2 r3   -> FMUL sz (env r1) (env r2) (env r3)
    FDIV  sz r1 r2 r3   -> FDIV sz (env r1) (env r2) (env r3)
    FNEG  r1 r2		-> FNEG (env r1) (env r2)
    FCMP  r1 r2		-> FCMP (env r1) (env r2)
    FCTIWZ r1 r2	-> FCTIWZ (env r1) (env r2)
    FRSP r1 r2		-> FRSP (env r1) (env r2)
    MFCR reg            -> MFCR (env reg)
    MFLR reg            -> MFLR (env reg)
    FETCHPC reg         -> FETCHPC (env reg)
    _ -> instr
  where
    fixAddr (AddrRegReg r1 r2) = AddrRegReg (env r1) (env r2)
    fixAddr (AddrRegImm r1 i)  = AddrRegImm (env r1) i

    fixRI (RIReg r) = RIReg (env r)
    fixRI other	= other


--------------------------------------------------------------------------------
-- | Checks whether this instruction is a jump/branch instruction. 
--	One that can change the flow of control in a way that the 
--	register allocator needs to worry about. 
ppc_isJumpishInstr :: Instr -> Bool
ppc_isJumpishInstr instr
 = case instr of
	BCC{}		-> True
	BCCFAR{}	-> True
	BCTR{}		-> True
	BCTRL{}		-> True
	BL{}		-> True
	JMP{}		-> True
	_		-> False


-- | Checks whether this instruction is a jump/branch instruction. 
--	One that can change the flow of control in a way that the 
--	register allocator needs to worry about. 
ppc_jumpDestsOfInstr :: Instr -> [BlockId] 
ppc_jumpDestsOfInstr insn 
  = case insn of
        BCC _ id        -> [id]
        BCCFAR _ id     -> [id]
        BCTR targets    -> targets
	_		-> []
	
	
-- | Change the destination of this jump instruction.
--	Used in the linear allocator when adding fixup blocks for join
--	points.
ppc_patchJumpInstr :: Instr -> (BlockId -> BlockId) -> Instr
ppc_patchJumpInstr insn patchF
  = case insn of
        BCC cc id 	-> BCC cc (patchF id)
        BCCFAR cc id 	-> BCCFAR cc (patchF id)
        BCTR _	 	-> error "Cannot patch BCTR"
	_		-> insn


-- -----------------------------------------------------------------------------

-- | An instruction to spill a register into a spill slot.
ppc_mkSpillInstr
   :: Reg		-- register to spill
   -> Int		-- current stack delta
   -> Int		-- spill slot to use
   -> Instr

ppc_mkSpillInstr reg delta slot
  = let	off     = spillSlotToOffset slot
    in
    let sz = case regClass reg of
                RcInteger -> II32
                RcDouble  -> FF64
		_	  -> panic "PPC.Instr.mkSpillInstr: no match"
    in ST sz reg (AddrRegImm sp (ImmInt (off-delta)))


ppc_mkLoadInstr
   :: Reg		-- register to load
   -> Int		-- current stack delta
   -> Int		-- spill slot to use
   -> Instr

ppc_mkLoadInstr reg delta slot
  = let off     = spillSlotToOffset slot
    in
    let sz = case regClass reg of
                RcInteger -> II32
                RcDouble  -> FF64
		_         -> panic "PPC.Instr.mkLoadInstr: no match"
    in LD sz reg (AddrRegImm sp (ImmInt (off-delta)))


spillSlotSize :: Int
spillSlotSize = 8

maxSpillSlots :: Int
maxSpillSlots = ((rESERVED_C_STACK_BYTES - 64) `div` spillSlotSize) - 1

-- convert a spill slot number to a *byte* offset, with no sign:
-- decide on a per arch basis whether you are spilling above or below
-- the C stack pointer.
spillSlotToOffset :: Int -> Int
spillSlotToOffset slot
   | slot >= 0 && slot < maxSpillSlots
   = 64 + spillSlotSize * slot
   | otherwise
   = pprPanic "spillSlotToOffset:" 
              (   text "invalid spill location: " <> int slot
	      $$  text "maxSpillSlots:          " <> int maxSpillSlots)


--------------------------------------------------------------------------------
-- | See if this instruction is telling us the current C stack delta
ppc_takeDeltaInstr
	:: Instr
	-> Maybe Int
	
ppc_takeDeltaInstr instr
 = case instr of
 	DELTA i		-> Just i
	_		-> Nothing


ppc_isMetaInstr
	:: Instr
	-> Bool
	
ppc_isMetaInstr instr
 = case instr of
 	COMMENT{}	-> True
	LDATA{}		-> True
	NEWBLOCK{}	-> True
	DELTA{}		-> True
	_		-> False


-- | Copy the value in a register to another one.
--	Must work for all register classes.
ppc_mkRegRegMoveInstr
	:: Reg
	-> Reg
	-> Instr

ppc_mkRegRegMoveInstr src dst
	= MR dst src


-- | Make an unconditional jump instruction.
--	For architectures with branch delay slots, its ok to put
--	a NOP after the jump. Don't fill the delay slot with an
--	instruction that references regs or you'll confuse the 
--	linear allocator.
ppc_mkJumpInstr
	:: BlockId
	-> [Instr]

ppc_mkJumpInstr id 
	= [BCC ALWAYS id]


-- | Take the source and destination from this reg -> reg move instruction
--	or Nothing if it's not one
ppc_takeRegRegMoveInstr :: Instr -> Maybe (Reg,Reg)
ppc_takeRegRegMoveInstr (MR dst src) = Just (src,dst)
ppc_takeRegRegMoveInstr _  = Nothing