1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
|
-----------------------------------------------------------------------------
--
-- Machine-dependent assembly language
--
-- (c) The University of Glasgow 1993-2004
--
-----------------------------------------------------------------------------
#include "HsVersions.h"
#include "nativeGen/NCG.h"
module PPC.Instr (
archWordSize,
RI(..),
Instr(..),
maxSpillSlots,
allocMoreStack,
makeFarBranches
)
where
import PPC.Regs
import PPC.Cond
import Instruction
import Size
import TargetReg
import RegClass
import Reg
import CodeGen.Platform
import BlockId
import DynFlags
import Cmm
import CmmInfo
import FastString
import CLabel
import Outputable
import Platform
import FastBool
import UniqFM (listToUFM, lookupUFM)
import UniqSupply
import Control.Monad (replicateM)
import Data.Maybe (fromMaybe)
--------------------------------------------------------------------------------
-- Size of a PPC memory address, in bytes.
--
archWordSize :: Size
archWordSize = II32
-- | Instruction instance for powerpc
instance Instruction Instr where
regUsageOfInstr = ppc_regUsageOfInstr
patchRegsOfInstr = ppc_patchRegsOfInstr
isJumpishInstr = ppc_isJumpishInstr
jumpDestsOfInstr = ppc_jumpDestsOfInstr
patchJumpInstr = ppc_patchJumpInstr
mkSpillInstr = ppc_mkSpillInstr
mkLoadInstr = ppc_mkLoadInstr
takeDeltaInstr = ppc_takeDeltaInstr
isMetaInstr = ppc_isMetaInstr
mkRegRegMoveInstr _ = ppc_mkRegRegMoveInstr
takeRegRegMoveInstr = ppc_takeRegRegMoveInstr
mkJumpInstr = ppc_mkJumpInstr
mkStackAllocInstr = ppc_mkStackAllocInstr
mkStackDeallocInstr = ppc_mkStackDeallocInstr
ppc_mkStackAllocInstr :: Platform -> Int -> Instr
ppc_mkStackAllocInstr platform amount
= case platformArch platform of
ArchPPC -> -- SUB II32 (OpImm (ImmInt amount)) (OpReg esp)
ADD sp sp (RIImm (ImmInt (-amount)))
arch -> panic $ "ppc_mkStackAllocInstr " ++ show arch
ppc_mkStackDeallocInstr :: Platform -> Int -> Instr
ppc_mkStackDeallocInstr platform amount
= case platformArch platform of
ArchPPC -> -- ADD II32 (OpImm (ImmInt amount)) (OpReg esp)
ADD sp sp (RIImm (ImmInt amount))
arch -> panic $ "ppc_mkStackDeallocInstr " ++ show arch
--
-- See note [extra spill slots] in X86/Instr.hs
--
allocMoreStack
:: Platform
-> Int
-> NatCmmDecl statics PPC.Instr.Instr
-> UniqSM (NatCmmDecl statics PPC.Instr.Instr)
allocMoreStack _ _ top@(CmmData _ _) = return top
allocMoreStack platform slots (CmmProc info lbl live (ListGraph code)) = do
let
infos = mapKeys info
entries = case code of
[] -> infos
BasicBlock entry _ : _ -- first block is the entry point
| entry `elem` infos -> infos
| otherwise -> entry : infos
uniqs <- replicateM (length entries) getUniqueUs
let
delta = ((x + stackAlign - 1) `quot` stackAlign) * stackAlign -- round up
where x = slots * spillSlotSize -- sp delta
alloc = mkStackAllocInstr platform delta
dealloc = mkStackDeallocInstr platform delta
new_blockmap :: BlockEnv BlockId
new_blockmap = mapFromList (zip entries (map mkBlockId uniqs))
insert_stack_insns (BasicBlock id insns)
| Just new_blockid <- mapLookup id new_blockmap
= [ BasicBlock id [alloc, BCC ALWAYS new_blockid]
, BasicBlock new_blockid block'
]
| otherwise
= [ BasicBlock id block' ]
where
block' = foldr insert_dealloc [] insns
insert_dealloc insn r
-- BCTR might or might not be a non-local jump. For
-- "labeled-goto" we use JMP, and for "computed-goto" we
-- use MTCTR followed by BCTR. See 'PPC.CodeGen.genJump'.
= case insn of
JMP _ -> dealloc : insn : r
BCTR [] Nothing -> dealloc : insn : r
BCTR ids label -> BCTR (map (fmap retarget) ids) label : r
BCCFAR cond b -> BCCFAR cond (retarget b) : r
BCC cond b -> BCC cond (retarget b) : r
_ -> insn : r
-- BL and BCTRL are call-like instructions rather than
-- jumps, and are used only for C calls.
retarget :: BlockId -> BlockId
retarget b
= fromMaybe b (mapLookup b new_blockmap)
new_code
= concatMap insert_stack_insns code
-- in
return (CmmProc info lbl live (ListGraph new_code))
-- -----------------------------------------------------------------------------
-- Machine's assembly language
-- We have a few common "instructions" (nearly all the pseudo-ops) but
-- mostly all of 'Instr' is machine-specific.
-- Register or immediate
data RI
= RIReg Reg
| RIImm Imm
data Instr
-- comment pseudo-op
= COMMENT FastString
-- some static data spat out during code
-- generation. Will be extracted before
-- pretty-printing.
| LDATA Section CmmStatics
-- start a new basic block. Useful during
-- codegen, removed later. Preceding
-- instruction should be a jump, as per the
-- invariants for a BasicBlock (see Cmm).
| NEWBLOCK BlockId
-- specify current stack offset for
-- benefit of subsequent passes
| DELTA Int
-- Loads and stores.
| LD Size Reg AddrMode -- Load size, dst, src
| LA Size Reg AddrMode -- Load arithmetic size, dst, src
| ST Size Reg AddrMode -- Store size, src, dst
| STU Size Reg AddrMode -- Store with Update size, src, dst
| LIS Reg Imm -- Load Immediate Shifted dst, src
| LI Reg Imm -- Load Immediate dst, src
| MR Reg Reg -- Move Register dst, src -- also for fmr
| CMP Size Reg RI -- size, src1, src2
| CMPL Size Reg RI -- size, src1, src2
| BCC Cond BlockId
| BCCFAR Cond BlockId
| JMP CLabel -- same as branch,
-- but with CLabel instead of block ID
| MTCTR Reg
| BCTR [Maybe BlockId] (Maybe CLabel) -- with list of local destinations, and jump table location if necessary
| BL CLabel [Reg] -- with list of argument regs
| BCTRL [Reg]
| ADD Reg Reg RI -- dst, src1, src2
| ADDC Reg Reg Reg -- (carrying) dst, src1, src2
| ADDE Reg Reg Reg -- (extend) dst, src1, src2
| ADDIS Reg Reg Imm -- Add Immediate Shifted dst, src1, src2
| SUBF Reg Reg Reg -- dst, src1, src2 ; dst = src2 - src1
| MULLW Reg Reg RI
| DIVW Reg Reg Reg
| DIVWU Reg Reg Reg
| MULLW_MayOflo Reg Reg Reg
-- dst = 1 if src1 * src2 overflows
-- pseudo-instruction; pretty-printed as:
-- mullwo. dst, src1, src2
-- mfxer dst
-- rlwinm dst, dst, 2, 31,31
| AND Reg Reg RI -- dst, src1, src2
| OR Reg Reg RI -- dst, src1, src2
| XOR Reg Reg RI -- dst, src1, src2
| XORIS Reg Reg Imm -- XOR Immediate Shifted dst, src1, src2
| EXTS Size Reg Reg
| NEG Reg Reg
| NOT Reg Reg
| SLW Reg Reg RI -- shift left word
| SRW Reg Reg RI -- shift right word
| SRAW Reg Reg RI -- shift right arithmetic word
| RLWINM Reg Reg Int Int Int -- Rotate Left Word Immediate then AND with Mask
| FADD Size Reg Reg Reg
| FSUB Size Reg Reg Reg
| FMUL Size Reg Reg Reg
| FDIV Size Reg Reg Reg
| FNEG Reg Reg -- negate is the same for single and double prec.
| FCMP Reg Reg
| FCTIWZ Reg Reg -- convert to integer word
| FRSP Reg Reg -- reduce to single precision
-- (but destination is a FP register)
| CRNOR Int Int Int -- condition register nor
| MFCR Reg -- move from condition register
| MFLR Reg -- move from link register
| FETCHPC Reg -- pseudo-instruction:
-- bcl to next insn, mflr reg
| LWSYNC -- memory barrier
-- | Get the registers that are being used by this instruction.
-- regUsage doesn't need to do any trickery for jumps and such.
-- Just state precisely the regs read and written by that insn.
-- The consequences of control flow transfers, as far as register
-- allocation goes, are taken care of by the register allocator.
--
ppc_regUsageOfInstr :: Platform -> Instr -> RegUsage
ppc_regUsageOfInstr platform instr
= case instr of
LD _ reg addr -> usage (regAddr addr, [reg])
LA _ reg addr -> usage (regAddr addr, [reg])
ST _ reg addr -> usage (reg : regAddr addr, [])
STU _ reg addr -> usage (reg : regAddr addr, [])
LIS reg _ -> usage ([], [reg])
LI reg _ -> usage ([], [reg])
MR reg1 reg2 -> usage ([reg2], [reg1])
CMP _ reg ri -> usage (reg : regRI ri,[])
CMPL _ reg ri -> usage (reg : regRI ri,[])
BCC _ _ -> noUsage
BCCFAR _ _ -> noUsage
MTCTR reg -> usage ([reg],[])
BCTR _ _ -> noUsage
BL _ params -> usage (params, callClobberedRegs platform)
BCTRL params -> usage (params, callClobberedRegs platform)
ADD reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
ADDC reg1 reg2 reg3 -> usage ([reg2,reg3], [reg1])
ADDE reg1 reg2 reg3 -> usage ([reg2,reg3], [reg1])
ADDIS reg1 reg2 _ -> usage ([reg2], [reg1])
SUBF reg1 reg2 reg3 -> usage ([reg2,reg3], [reg1])
MULLW reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
DIVW reg1 reg2 reg3 -> usage ([reg2,reg3], [reg1])
DIVWU reg1 reg2 reg3 -> usage ([reg2,reg3], [reg1])
MULLW_MayOflo reg1 reg2 reg3
-> usage ([reg2,reg3], [reg1])
AND reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
OR reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
XOR reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
XORIS reg1 reg2 _ -> usage ([reg2], [reg1])
EXTS _ reg1 reg2 -> usage ([reg2], [reg1])
NEG reg1 reg2 -> usage ([reg2], [reg1])
NOT reg1 reg2 -> usage ([reg2], [reg1])
SLW reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
SRW reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
SRAW reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
RLWINM reg1 reg2 _ _ _ -> usage ([reg2], [reg1])
FADD _ r1 r2 r3 -> usage ([r2,r3], [r1])
FSUB _ r1 r2 r3 -> usage ([r2,r3], [r1])
FMUL _ r1 r2 r3 -> usage ([r2,r3], [r1])
FDIV _ r1 r2 r3 -> usage ([r2,r3], [r1])
FNEG r1 r2 -> usage ([r2], [r1])
FCMP r1 r2 -> usage ([r1,r2], [])
FCTIWZ r1 r2 -> usage ([r2], [r1])
FRSP r1 r2 -> usage ([r2], [r1])
MFCR reg -> usage ([], [reg])
MFLR reg -> usage ([], [reg])
FETCHPC reg -> usage ([], [reg])
_ -> noUsage
where
usage (src, dst) = RU (filter (interesting platform) src)
(filter (interesting platform) dst)
regAddr (AddrRegReg r1 r2) = [r1, r2]
regAddr (AddrRegImm r1 _) = [r1]
regRI (RIReg r) = [r]
regRI _ = []
interesting :: Platform -> Reg -> Bool
interesting _ (RegVirtual _) = True
interesting platform (RegReal (RealRegSingle i))
= isFastTrue (freeReg platform i)
interesting _ (RegReal (RealRegPair{}))
= panic "PPC.Instr.interesting: no reg pairs on this arch"
-- | Apply a given mapping to all the register references in this
-- instruction.
ppc_patchRegsOfInstr :: Instr -> (Reg -> Reg) -> Instr
ppc_patchRegsOfInstr instr env
= case instr of
LD sz reg addr -> LD sz (env reg) (fixAddr addr)
LA sz reg addr -> LA sz (env reg) (fixAddr addr)
ST sz reg addr -> ST sz (env reg) (fixAddr addr)
STU sz reg addr -> STU sz (env reg) (fixAddr addr)
LIS reg imm -> LIS (env reg) imm
LI reg imm -> LI (env reg) imm
MR reg1 reg2 -> MR (env reg1) (env reg2)
CMP sz reg ri -> CMP sz (env reg) (fixRI ri)
CMPL sz reg ri -> CMPL sz (env reg) (fixRI ri)
BCC cond lbl -> BCC cond lbl
BCCFAR cond lbl -> BCCFAR cond lbl
MTCTR reg -> MTCTR (env reg)
BCTR targets lbl -> BCTR targets lbl
BL imm argRegs -> BL imm argRegs -- argument regs
BCTRL argRegs -> BCTRL argRegs -- cannot be remapped
ADD reg1 reg2 ri -> ADD (env reg1) (env reg2) (fixRI ri)
ADDC reg1 reg2 reg3 -> ADDC (env reg1) (env reg2) (env reg3)
ADDE reg1 reg2 reg3 -> ADDE (env reg1) (env reg2) (env reg3)
ADDIS reg1 reg2 imm -> ADDIS (env reg1) (env reg2) imm
SUBF reg1 reg2 reg3 -> SUBF (env reg1) (env reg2) (env reg3)
MULLW reg1 reg2 ri -> MULLW (env reg1) (env reg2) (fixRI ri)
DIVW reg1 reg2 reg3 -> DIVW (env reg1) (env reg2) (env reg3)
DIVWU reg1 reg2 reg3 -> DIVWU (env reg1) (env reg2) (env reg3)
MULLW_MayOflo reg1 reg2 reg3
-> MULLW_MayOflo (env reg1) (env reg2) (env reg3)
AND reg1 reg2 ri -> AND (env reg1) (env reg2) (fixRI ri)
OR reg1 reg2 ri -> OR (env reg1) (env reg2) (fixRI ri)
XOR reg1 reg2 ri -> XOR (env reg1) (env reg2) (fixRI ri)
XORIS reg1 reg2 imm -> XORIS (env reg1) (env reg2) imm
EXTS sz reg1 reg2 -> EXTS sz (env reg1) (env reg2)
NEG reg1 reg2 -> NEG (env reg1) (env reg2)
NOT reg1 reg2 -> NOT (env reg1) (env reg2)
SLW reg1 reg2 ri -> SLW (env reg1) (env reg2) (fixRI ri)
SRW reg1 reg2 ri -> SRW (env reg1) (env reg2) (fixRI ri)
SRAW reg1 reg2 ri -> SRAW (env reg1) (env reg2) (fixRI ri)
RLWINM reg1 reg2 sh mb me
-> RLWINM (env reg1) (env reg2) sh mb me
FADD sz r1 r2 r3 -> FADD sz (env r1) (env r2) (env r3)
FSUB sz r1 r2 r3 -> FSUB sz (env r1) (env r2) (env r3)
FMUL sz r1 r2 r3 -> FMUL sz (env r1) (env r2) (env r3)
FDIV sz r1 r2 r3 -> FDIV sz (env r1) (env r2) (env r3)
FNEG r1 r2 -> FNEG (env r1) (env r2)
FCMP r1 r2 -> FCMP (env r1) (env r2)
FCTIWZ r1 r2 -> FCTIWZ (env r1) (env r2)
FRSP r1 r2 -> FRSP (env r1) (env r2)
MFCR reg -> MFCR (env reg)
MFLR reg -> MFLR (env reg)
FETCHPC reg -> FETCHPC (env reg)
_ -> instr
where
fixAddr (AddrRegReg r1 r2) = AddrRegReg (env r1) (env r2)
fixAddr (AddrRegImm r1 i) = AddrRegImm (env r1) i
fixRI (RIReg r) = RIReg (env r)
fixRI other = other
--------------------------------------------------------------------------------
-- | Checks whether this instruction is a jump/branch instruction.
-- One that can change the flow of control in a way that the
-- register allocator needs to worry about.
ppc_isJumpishInstr :: Instr -> Bool
ppc_isJumpishInstr instr
= case instr of
BCC{} -> True
BCCFAR{} -> True
BCTR{} -> True
BCTRL{} -> True
BL{} -> True
JMP{} -> True
_ -> False
-- | Checks whether this instruction is a jump/branch instruction.
-- One that can change the flow of control in a way that the
-- register allocator needs to worry about.
ppc_jumpDestsOfInstr :: Instr -> [BlockId]
ppc_jumpDestsOfInstr insn
= case insn of
BCC _ id -> [id]
BCCFAR _ id -> [id]
BCTR targets _ -> [id | Just id <- targets]
_ -> []
-- | Change the destination of this jump instruction.
-- Used in the linear allocator when adding fixup blocks for join
-- points.
ppc_patchJumpInstr :: Instr -> (BlockId -> BlockId) -> Instr
ppc_patchJumpInstr insn patchF
= case insn of
BCC cc id -> BCC cc (patchF id)
BCCFAR cc id -> BCCFAR cc (patchF id)
BCTR ids lbl -> BCTR (map (fmap patchF) ids) lbl
_ -> insn
-- -----------------------------------------------------------------------------
-- | An instruction to spill a register into a spill slot.
ppc_mkSpillInstr
:: DynFlags
-> Reg -- register to spill
-> Int -- current stack delta
-> Int -- spill slot to use
-> Instr
ppc_mkSpillInstr dflags reg delta slot
= let platform = targetPlatform dflags
off = spillSlotToOffset slot
in
let sz = case targetClassOfReg platform reg of
RcInteger -> II32
RcDouble -> FF64
_ -> panic "PPC.Instr.mkSpillInstr: no match"
in ST sz reg (AddrRegImm sp (ImmInt (off-delta)))
ppc_mkLoadInstr
:: DynFlags
-> Reg -- register to load
-> Int -- current stack delta
-> Int -- spill slot to use
-> Instr
ppc_mkLoadInstr dflags reg delta slot
= let platform = targetPlatform dflags
off = spillSlotToOffset slot
in
let sz = case targetClassOfReg platform reg of
RcInteger -> II32
RcDouble -> FF64
_ -> panic "PPC.Instr.mkLoadInstr: no match"
in LD sz reg (AddrRegImm sp (ImmInt (off-delta)))
-- | The maximum number of bytes required to spill a register. PPC32
-- has 32-bit GPRs and 64-bit FPRs, while PPC64 has 64-bit GPRs and
-- 64-bit FPRs. So the maximum is 8 regardless of platforms unlike
-- x86. Note that AltiVec's vector registers are 128-bit wide so we
-- must not use this to spill them.
spillSlotSize :: Int
spillSlotSize = 8
-- | The number of spill slots available without allocating more.
maxSpillSlots :: DynFlags -> Int
maxSpillSlots dflags
= ((rESERVED_C_STACK_BYTES dflags - 64) `div` spillSlotSize) - 1
-- = 0 -- useful for testing allocMoreStack
-- | The number of bytes that the stack pointer should be aligned
-- to. This is 16 both on PPC32 and PPC64 at least for Darwin, but I'm
-- not sure this is correct for other OSes.
stackAlign :: Int
stackAlign = 16
-- | Convert a spill slot number to a *byte* offset, with no sign.
spillSlotToOffset :: Int -> Int
spillSlotToOffset slot
= 64 + spillSlotSize * slot
--------------------------------------------------------------------------------
-- | See if this instruction is telling us the current C stack delta
ppc_takeDeltaInstr
:: Instr
-> Maybe Int
ppc_takeDeltaInstr instr
= case instr of
DELTA i -> Just i
_ -> Nothing
ppc_isMetaInstr
:: Instr
-> Bool
ppc_isMetaInstr instr
= case instr of
COMMENT{} -> True
LDATA{} -> True
NEWBLOCK{} -> True
DELTA{} -> True
_ -> False
-- | Copy the value in a register to another one.
-- Must work for all register classes.
ppc_mkRegRegMoveInstr
:: Reg
-> Reg
-> Instr
ppc_mkRegRegMoveInstr src dst
= MR dst src
-- | Make an unconditional jump instruction.
-- For architectures with branch delay slots, its ok to put
-- a NOP after the jump. Don't fill the delay slot with an
-- instruction that references regs or you'll confuse the
-- linear allocator.
ppc_mkJumpInstr
:: BlockId
-> [Instr]
ppc_mkJumpInstr id
= [BCC ALWAYS id]
-- | Take the source and destination from this reg -> reg move instruction
-- or Nothing if it's not one
ppc_takeRegRegMoveInstr :: Instr -> Maybe (Reg,Reg)
ppc_takeRegRegMoveInstr (MR dst src) = Just (src,dst)
ppc_takeRegRegMoveInstr _ = Nothing
-- -----------------------------------------------------------------------------
-- Making far branches
-- Conditional branches on PowerPC are limited to +-32KB; if our Procs get too
-- big, we have to work around this limitation.
makeFarBranches
:: BlockEnv CmmStatics
-> [NatBasicBlock Instr]
-> [NatBasicBlock Instr]
makeFarBranches info_env blocks
| last blockAddresses < nearLimit = blocks
| otherwise = zipWith handleBlock blockAddresses blocks
where
blockAddresses = scanl (+) 0 $ map blockLen blocks
blockLen (BasicBlock _ instrs) = length instrs
handleBlock addr (BasicBlock id instrs)
= BasicBlock id (zipWith makeFar [addr..] instrs)
makeFar _ (BCC ALWAYS tgt) = BCC ALWAYS tgt
makeFar addr (BCC cond tgt)
| abs (addr - targetAddr) >= nearLimit
= BCCFAR cond tgt
| otherwise
= BCC cond tgt
where Just targetAddr = lookupUFM blockAddressMap tgt
makeFar _ other = other
-- 8192 instructions are allowed; let's keep some distance, as
-- we have a few pseudo-insns that are pretty-printed as
-- multiple instructions, and it's just not worth the effort
-- to calculate things exactly
nearLimit = 7000 - mapSize info_env * maxRetInfoTableSizeW
blockAddressMap = listToUFM $ zip (map blockId blocks) blockAddresses
|