1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
|
-- -----------------------------------------------------------------------------
--
-- (c) The University of Glasgow 1994-2004
--
-- -----------------------------------------------------------------------------
module PPC.Regs (
-- squeeze functions
virtualRegSqueeze,
realRegSqueeze,
mkVirtualReg,
regDotColor,
-- immediates
Imm(..),
strImmLit,
litToImm,
-- addressing modes
AddrMode(..),
addrOffset,
-- registers
spRel,
argRegs,
allArgRegs,
callClobberedRegs,
allMachRegNos,
classOfRealReg,
showReg,
-- machine specific
allFPArgRegs,
fits16Bits,
makeImmediate,
fReg,
sp, r3, r4, r27, r28, f1, f20, f21,
-- horrow show
freeReg,
globalRegMaybe,
get_GlobalReg_reg_or_addr,
allocatableRegs
)
where
#include "nativeGen/NCG.h"
#include "HsVersions.h"
#include "../includes/MachRegs.h"
import Reg
import RegClass
import Size
import CgUtils ( get_GlobalReg_addr )
import BlockId
import Cmm
import CLabel ( CLabel )
import Unique
import Pretty
import Outputable ( panic, SDoc )
import qualified Outputable
import Constants
import FastBool
import FastTypes
import Data.Word ( Word8, Word16, Word32 )
import Data.Int ( Int8, Int16, Int32 )
-- squeese functions for the graph allocator -----------------------------------
-- | regSqueeze_class reg
-- Calculuate the maximum number of register colors that could be
-- denied to a node of this class due to having this reg
-- as a neighbour.
--
{-# INLINE virtualRegSqueeze #-}
virtualRegSqueeze :: RegClass -> VirtualReg -> FastInt
virtualRegSqueeze cls vr
= case cls of
RcInteger
-> case vr of
VirtualRegI{} -> _ILIT(1)
VirtualRegHi{} -> _ILIT(1)
VirtualRegD{} -> _ILIT(0)
VirtualRegF{} -> _ILIT(0)
-- We don't use floats on this arch, but we can't
-- return error because the return type is unboxed...
RcFloat
-> case vr of
VirtualRegI{} -> _ILIT(0)
VirtualRegHi{} -> _ILIT(0)
VirtualRegD{} -> _ILIT(0)
VirtualRegF{} -> _ILIT(0)
RcDouble
-> case vr of
VirtualRegI{} -> _ILIT(0)
VirtualRegHi{} -> _ILIT(0)
VirtualRegD{} -> _ILIT(1)
VirtualRegF{} -> _ILIT(0)
{-# INLINE realRegSqueeze #-}
realRegSqueeze :: RegClass -> RealReg -> FastInt
realRegSqueeze cls rr
= case cls of
RcInteger
-> case rr of
RealRegSingle regNo
| regNo < 32 -> _ILIT(1) -- first fp reg is 32
| otherwise -> _ILIT(0)
RealRegPair{} -> _ILIT(0)
-- We don't use floats on this arch, but we can't
-- return error because the return type is unboxed...
RcFloat
-> case rr of
RealRegSingle regNo
| regNo < 32 -> _ILIT(0)
| otherwise -> _ILIT(0)
RealRegPair{} -> _ILIT(0)
RcDouble
-> case rr of
RealRegSingle regNo
| regNo < 32 -> _ILIT(0)
| otherwise -> _ILIT(1)
RealRegPair{} -> _ILIT(0)
mkVirtualReg :: Unique -> Size -> VirtualReg
mkVirtualReg u size
| not (isFloatSize size) = VirtualRegI u
| otherwise
= case size of
FF32 -> VirtualRegD u
FF64 -> VirtualRegD u
_ -> panic "mkVirtualReg"
regDotColor :: RealReg -> SDoc
regDotColor reg
= case classOfRealReg reg of
RcInteger -> Outputable.text "blue"
RcFloat -> Outputable.text "red"
RcDouble -> Outputable.text "green"
-- immediates ------------------------------------------------------------------
data Imm
= ImmInt Int
| ImmInteger Integer -- Sigh.
| ImmCLbl CLabel -- AbstractC Label (with baggage)
| ImmLit Doc -- Simple string
| ImmIndex CLabel Int
| ImmFloat Rational
| ImmDouble Rational
| ImmConstantSum Imm Imm
| ImmConstantDiff Imm Imm
| LO Imm
| HI Imm
| HA Imm {- high halfword adjusted -}
strImmLit :: String -> Imm
strImmLit s = ImmLit (text s)
litToImm :: CmmLit -> Imm
litToImm (CmmInt i w) = ImmInteger (narrowS w i)
-- narrow to the width: a CmmInt might be out of
-- range, but we assume that ImmInteger only contains
-- in-range values. A signed value should be fine here.
litToImm (CmmFloat f W32) = ImmFloat f
litToImm (CmmFloat f W64) = ImmDouble f
litToImm (CmmLabel l) = ImmCLbl l
litToImm (CmmLabelOff l off) = ImmIndex l off
litToImm (CmmLabelDiffOff l1 l2 off)
= ImmConstantSum
(ImmConstantDiff (ImmCLbl l1) (ImmCLbl l2))
(ImmInt off)
litToImm (CmmBlock id) = ImmCLbl (infoTblLbl id)
litToImm _ = panic "PPC.Regs.litToImm: no match"
-- addressing modes ------------------------------------------------------------
data AddrMode
= AddrRegReg Reg Reg
| AddrRegImm Reg Imm
addrOffset :: AddrMode -> Int -> Maybe AddrMode
addrOffset addr off
= case addr of
AddrRegImm r (ImmInt n)
| fits16Bits n2 -> Just (AddrRegImm r (ImmInt n2))
| otherwise -> Nothing
where n2 = n + off
AddrRegImm r (ImmInteger n)
| fits16Bits n2 -> Just (AddrRegImm r (ImmInt (fromInteger n2)))
| otherwise -> Nothing
where n2 = n + toInteger off
_ -> Nothing
-- registers -------------------------------------------------------------------
-- @spRel@ gives us a stack relative addressing mode for volatile
-- temporaries and for excess call arguments. @fpRel@, where
-- applicable, is the same but for the frame pointer.
spRel :: Int -- desired stack offset in words, positive or negative
-> AddrMode
spRel n = AddrRegImm sp (ImmInt (n * wORD_SIZE))
-- argRegs is the set of regs which are read for an n-argument call to C.
-- For archs which pass all args on the stack (x86), is empty.
-- Sparc passes up to the first 6 args in regs.
-- Dunno about Alpha.
argRegs :: RegNo -> [Reg]
argRegs 0 = []
argRegs 1 = map regSingle [3]
argRegs 2 = map regSingle [3,4]
argRegs 3 = map regSingle [3..5]
argRegs 4 = map regSingle [3..6]
argRegs 5 = map regSingle [3..7]
argRegs 6 = map regSingle [3..8]
argRegs 7 = map regSingle [3..9]
argRegs 8 = map regSingle [3..10]
argRegs _ = panic "MachRegs.argRegs(powerpc): don't know about >8 arguments!"
allArgRegs :: [Reg]
allArgRegs = map regSingle [3..10]
-- these are the regs which we cannot assume stay alive over a C call.
callClobberedRegs :: [Reg]
#if defined(darwin_TARGET_OS)
callClobberedRegs
= map regSingle (0:[2..12] ++ map fReg [0..13])
#elif defined(linux_TARGET_OS)
callClobberedRegs
= map regSingle (0:[2..13] ++ map fReg [0..13])
#else
callClobberedRegs
= panic "PPC.Regs.callClobberedRegs: not defined for this architecture"
#endif
allMachRegNos :: [RegNo]
allMachRegNos = [0..63]
{-# INLINE classOfRealReg #-}
classOfRealReg :: RealReg -> RegClass
classOfRealReg (RealRegSingle i)
| i < 32 = RcInteger
| otherwise = RcDouble
classOfRealReg (RealRegPair{})
= panic "regClass(ppr): no reg pairs on this architecture"
showReg :: RegNo -> String
showReg n
| n >= 0 && n <= 31 = "%r" ++ show n
| n >= 32 && n <= 63 = "%f" ++ show (n - 32)
| otherwise = "%unknown_powerpc_real_reg_" ++ show n
-- machine specific ------------------------------------------------------------
allFPArgRegs :: [Reg]
#if defined(darwin_TARGET_OS)
allFPArgRegs = map (regSingle . fReg) [1..13]
#elif defined(linux_TARGET_OS)
allFPArgRegs = map (regSingle . fReg) [1..8]
#else
allFPArgRegs = panic "PPC.Regs.allFPArgRegs: not defined for this architecture"
#endif
fits16Bits :: Integral a => a -> Bool
fits16Bits x = x >= -32768 && x < 32768
makeImmediate :: Integral a => Width -> Bool -> a -> Maybe Imm
makeImmediate rep signed x = fmap ImmInt (toI16 rep signed)
where
narrow W32 False = fromIntegral (fromIntegral x :: Word32)
narrow W16 False = fromIntegral (fromIntegral x :: Word16)
narrow W8 False = fromIntegral (fromIntegral x :: Word8)
narrow W32 True = fromIntegral (fromIntegral x :: Int32)
narrow W16 True = fromIntegral (fromIntegral x :: Int16)
narrow W8 True = fromIntegral (fromIntegral x :: Int8)
narrow _ _ = panic "PPC.Regs.narrow: no match"
narrowed = narrow rep signed
toI16 W32 True
| narrowed >= -32768 && narrowed < 32768 = Just narrowed
| otherwise = Nothing
toI16 W32 False
| narrowed >= 0 && narrowed < 65536 = Just narrowed
| otherwise = Nothing
toI16 _ _ = Just narrowed
{-
The PowerPC has 64 registers of interest; 32 integer registers and 32 floating
point registers.
-}
fReg :: Int -> RegNo
fReg x = (32 + x)
sp, r3, r4, r27, r28, f1, f20, f21 :: Reg
sp = regSingle 1
r3 = regSingle 3
r4 = regSingle 4
r27 = regSingle 27
r28 = regSingle 28
f1 = regSingle $ fReg 1
f20 = regSingle $ fReg 20
f21 = regSingle $ fReg 21
-- horror show -----------------------------------------------------------------
freeReg :: RegNo -> FastBool
globalRegMaybe :: GlobalReg -> Maybe Reg
#if powerpc_TARGET_ARCH
#define r0 0
#define r1 1
#define r2 2
#define r3 3
#define r4 4
#define r5 5
#define r6 6
#define r7 7
#define r8 8
#define r9 9
#define r10 10
#define r11 11
#define r12 12
#define r13 13
#define r14 14
#define r15 15
#define r16 16
#define r17 17
#define r18 18
#define r19 19
#define r20 20
#define r21 21
#define r22 22
#define r23 23
#define r24 24
#define r25 25
#define r26 26
#define r27 27
#define r28 28
#define r29 29
#define r30 30
#define r31 31
#ifdef darwin_TARGET_OS
#define f0 32
#define f1 33
#define f2 34
#define f3 35
#define f4 36
#define f5 37
#define f6 38
#define f7 39
#define f8 40
#define f9 41
#define f10 42
#define f11 43
#define f12 44
#define f13 45
#define f14 46
#define f15 47
#define f16 48
#define f17 49
#define f18 50
#define f19 51
#define f20 52
#define f21 53
#define f22 54
#define f23 55
#define f24 56
#define f25 57
#define f26 58
#define f27 59
#define f28 60
#define f29 61
#define f30 62
#define f31 63
#else
#define fr0 32
#define fr1 33
#define fr2 34
#define fr3 35
#define fr4 36
#define fr5 37
#define fr6 38
#define fr7 39
#define fr8 40
#define fr9 41
#define fr10 42
#define fr11 43
#define fr12 44
#define fr13 45
#define fr14 46
#define fr15 47
#define fr16 48
#define fr17 49
#define fr18 50
#define fr19 51
#define fr20 52
#define fr21 53
#define fr22 54
#define fr23 55
#define fr24 56
#define fr25 57
#define fr26 58
#define fr27 59
#define fr28 60
#define fr29 61
#define fr30 62
#define fr31 63
#endif
freeReg 0 = fastBool False -- Hack: r0 can't be used in all insns, but it's actually free
freeReg 1 = fastBool False -- The Stack Pointer
#if !darwin_TARGET_OS
-- most non-darwin powerpc OSes use r2 as a TOC pointer or something like that
freeReg 2 = fastBool False
#endif
#ifdef REG_Base
freeReg REG_Base = fastBool False
#endif
#ifdef REG_R1
freeReg REG_R1 = fastBool False
#endif
#ifdef REG_R2
freeReg REG_R2 = fastBool False
#endif
#ifdef REG_R3
freeReg REG_R3 = fastBool False
#endif
#ifdef REG_R4
freeReg REG_R4 = fastBool False
#endif
#ifdef REG_R5
freeReg REG_R5 = fastBool False
#endif
#ifdef REG_R6
freeReg REG_R6 = fastBool False
#endif
#ifdef REG_R7
freeReg REG_R7 = fastBool False
#endif
#ifdef REG_R8
freeReg REG_R8 = fastBool False
#endif
#ifdef REG_F1
freeReg REG_F1 = fastBool False
#endif
#ifdef REG_F2
freeReg REG_F2 = fastBool False
#endif
#ifdef REG_F3
freeReg REG_F3 = fastBool False
#endif
#ifdef REG_F4
freeReg REG_F4 = fastBool False
#endif
#ifdef REG_D1
freeReg REG_D1 = fastBool False
#endif
#ifdef REG_D2
freeReg REG_D2 = fastBool False
#endif
#ifdef REG_Sp
freeReg REG_Sp = fastBool False
#endif
#ifdef REG_Su
freeReg REG_Su = fastBool False
#endif
#ifdef REG_SpLim
freeReg REG_SpLim = fastBool False
#endif
#ifdef REG_Hp
freeReg REG_Hp = fastBool False
#endif
#ifdef REG_HpLim
freeReg REG_HpLim = fastBool False
#endif
freeReg _ = fastBool True
-- | Returns 'Nothing' if this global register is not stored
-- in a real machine register, otherwise returns @'Just' reg@, where
-- reg is the machine register it is stored in.
#ifdef REG_Base
globalRegMaybe BaseReg = Just (regSingle REG_Base)
#endif
#ifdef REG_R1
globalRegMaybe (VanillaReg 1 _) = Just (regSingle REG_R1)
#endif
#ifdef REG_R2
globalRegMaybe (VanillaReg 2 _) = Just (regSingle REG_R2)
#endif
#ifdef REG_R3
globalRegMaybe (VanillaReg 3 _) = Just (regSingle REG_R3)
#endif
#ifdef REG_R4
globalRegMaybe (VanillaReg 4 _) = Just (regSingle REG_R4)
#endif
#ifdef REG_R5
globalRegMaybe (VanillaReg 5 _) = Just (regSingle REG_R5)
#endif
#ifdef REG_R6
globalRegMaybe (VanillaReg 6 _) = Just (regSingle REG_R6)
#endif
#ifdef REG_R7
globalRegMaybe (VanillaReg 7 _) = Just (regSingle REG_R7)
#endif
#ifdef REG_R8
globalRegMaybe (VanillaReg 8 _) = Just (regSingle REG_R8)
#endif
#ifdef REG_R9
globalRegMaybe (VanillaReg 9 _) = Just (regSingle REG_R9)
#endif
#ifdef REG_R10
globalRegMaybe (VanillaReg 10 _) = Just (regSingle REG_R10)
#endif
#ifdef REG_F1
globalRegMaybe (FloatReg 1) = Just (regSingle REG_F1)
#endif
#ifdef REG_F2
globalRegMaybe (FloatReg 2) = Just (regSingle REG_F2)
#endif
#ifdef REG_F3
globalRegMaybe (FloatReg 3) = Just (regSingle REG_F3)
#endif
#ifdef REG_F4
globalRegMaybe (FloatReg 4) = Just (regSingle REG_F4)
#endif
#ifdef REG_D1
globalRegMaybe (DoubleReg 1) = Just (regSingle REG_D1)
#endif
#ifdef REG_D2
globalRegMaybe (DoubleReg 2) = Just (regSingle REG_D2)
#endif
#ifdef REG_Sp
globalRegMaybe Sp = Just (regSingle REG_Sp)
#endif
#ifdef REG_Lng1
globalRegMaybe (LongReg 1) = Just (regSingle REG_Lng1)
#endif
#ifdef REG_Lng2
globalRegMaybe (LongReg 2) = Just (regSingle REG_Lng2)
#endif
#ifdef REG_SpLim
globalRegMaybe SpLim = Just (regSingle REG_SpLim)
#endif
#ifdef REG_Hp
globalRegMaybe Hp = Just (regSingle REG_Hp)
#endif
#ifdef REG_HpLim
globalRegMaybe HpLim = Just (regSingle REG_HpLim)
#endif
#ifdef REG_CurrentTSO
globalRegMaybe CurrentTSO = Just (regSingle REG_CurrentTSO)
#endif
#ifdef REG_CurrentNursery
globalRegMaybe CurrentNursery = Just (regSingle REG_CurrentNursery)
#endif
globalRegMaybe _ = Nothing
#else /* powerpc_TARGET_ARCH */
freeReg _ = 0#
globalRegMaybe _ = panic "PPC.Regs.globalRegMaybe: not defined"
#endif /* powerpc_TARGET_ARCH */
-- We map STG registers onto appropriate CmmExprs. Either they map
-- to real machine registers or stored as offsets from BaseReg. Given
-- a GlobalReg, get_GlobalReg_reg_or_addr produces either the real
-- register it is in, on this platform, or a CmmExpr denoting the
-- address in the register table holding it.
-- (See also get_GlobalReg_addr in CgUtils.)
get_GlobalReg_reg_or_addr :: GlobalReg -> Either Reg CmmExpr
get_GlobalReg_reg_or_addr mid
= case globalRegMaybe mid of
Just rr -> Left rr
Nothing -> Right (get_GlobalReg_addr mid)
-- allocatableRegs is allMachRegNos with the fixed-use regs removed.
-- i.e., these are the regs for which we are prepared to allow the
-- register allocator to attempt to map VRegs to.
allocatableRegs :: [RealReg]
allocatableRegs
= let isFree i = isFastTrue (freeReg i)
in map RealRegSingle $ filter isFree allMachRegNos
|