1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
-- | When there aren't enough registers to hold all the vregs we have to spill
-- some of those vregs to slots on the stack. This module is used modify the
-- code to use those slots.
module RegAlloc.Graph.Spill (
regSpill,
SpillStats(..),
accSpillSL
) where
import RegAlloc.Liveness
import Instruction
import Reg
import Cmm hiding (RegSet)
import BlockId
import MonadUtils
import State
import Unique
import UniqFM
import UniqSet
import UniqSupply
import Outputable
import Platform
import Data.List
import Data.Maybe
import Data.IntSet (IntSet)
import qualified Data.IntSet as IntSet
-- | Spill all these virtual regs to stack slots.
--
-- TODO: See if we can split some of the live ranges instead of just globally
-- spilling the virtual reg. This might make the spill cleaner's job easier.
--
-- TODO: On CISCy x86 and x86_64 we don't nessesarally have to add a mov instruction
-- when making spills. If an instr is using a spilled virtual we may be able to
-- address the spill slot directly.
--
regSpill
:: Instruction instr
=> Platform
-> [LiveCmmDecl statics instr] -- ^ the code
-> UniqSet Int -- ^ available stack slots
-> UniqSet VirtualReg -- ^ the regs to spill
-> UniqSM
([LiveCmmDecl statics instr]
-- code with SPILL and RELOAD meta instructions added.
, UniqSet Int -- left over slots
, SpillStats ) -- stats about what happened during spilling
regSpill platform code slotsFree regs
-- Not enough slots to spill these regs.
| sizeUniqSet slotsFree < sizeUniqSet regs
= pprPanic "regSpill: out of spill slots!"
( text " regs to spill = " <> ppr (sizeUniqSet regs)
$$ text " slots left = " <> ppr (sizeUniqSet slotsFree))
| otherwise
= do
-- Allocate a slot for each of the spilled regs.
let slots = take (sizeUniqSet regs) $ nonDetEltsUFM slotsFree
let regSlotMap = listToUFM
$ zip (nonDetEltsUFM regs) slots
-- This is non-deterministic but we do not
-- currently support deterministic code-generation.
-- See Note [Unique Determinism and code generation]
-- Grab the unique supply from the monad.
us <- getUniqueSupplyM
-- Run the spiller on all the blocks.
let (code', state') =
runState (mapM (regSpill_top platform regSlotMap) code)
(initSpillS us)
return ( code'
, minusUniqSet slotsFree (mkUniqSet slots)
, makeSpillStats state')
-- | Spill some registers to stack slots in a top-level thing.
regSpill_top
:: Instruction instr
=> Platform
-> RegMap Int
-- ^ map of vregs to slots they're being spilled to.
-> LiveCmmDecl statics instr
-- ^ the top level thing.
-> SpillM (LiveCmmDecl statics instr)
regSpill_top platform regSlotMap cmm
= case cmm of
CmmData{}
-> return cmm
CmmProc info label live sccs
| LiveInfo static firstId mLiveVRegsOnEntry liveSlotsOnEntry <- info
-> do
-- We should only passed Cmms with the liveness maps filled in,
-- but we'll create empty ones if they're not there just in case.
let liveVRegsOnEntry = fromMaybe mapEmpty mLiveVRegsOnEntry
-- The liveVRegsOnEntry contains the set of vregs that are live
-- on entry to each basic block. If we spill one of those vregs
-- we remove it from that set and add the corresponding slot
-- number to the liveSlotsOnEntry set. The spill cleaner needs
-- this information to erase unneeded spill and reload instructions
-- after we've done a successful allocation.
let liveSlotsOnEntry' :: BlockMap IntSet
liveSlotsOnEntry'
= mapFoldWithKey patchLiveSlot
liveSlotsOnEntry liveVRegsOnEntry
let info'
= LiveInfo static firstId
(Just liveVRegsOnEntry)
liveSlotsOnEntry'
-- Apply the spiller to all the basic blocks in the CmmProc.
sccs' <- mapM (mapSCCM (regSpill_block platform regSlotMap)) sccs
return $ CmmProc info' label live sccs'
where -- Given a BlockId and the set of registers live in it,
-- if registers in this block are being spilled to stack slots,
-- then record the fact that these slots are now live in those blocks
-- in the given slotmap.
patchLiveSlot
:: BlockId -> RegSet
-> BlockMap IntSet -> BlockMap IntSet
patchLiveSlot blockId regsLive slotMap
= let
-- Slots that are already recorded as being live.
curSlotsLive = fromMaybe IntSet.empty
$ lookupBlockMap blockId slotMap
moreSlotsLive = IntSet.fromList
$ catMaybes
$ map (lookupUFM regSlotMap)
$ nonDetEltsUFM regsLive
-- See Note [Unique Determinism and code generation]
slotMap'
= insertBlockMap blockId (IntSet.union curSlotsLive moreSlotsLive)
slotMap
in slotMap'
-- | Spill some registers to stack slots in a basic block.
regSpill_block
:: Instruction instr
=> Platform
-> UniqFM Int -- ^ map of vregs to slots they're being spilled to.
-> LiveBasicBlock instr
-> SpillM (LiveBasicBlock instr)
regSpill_block platform regSlotMap (BasicBlock i instrs)
= do instrss' <- mapM (regSpill_instr platform regSlotMap) instrs
return $ BasicBlock i (concat instrss')
-- | Spill some registers to stack slots in a single instruction.
-- If the instruction uses registers that need to be spilled, then it is
-- prefixed (or postfixed) with the appropriate RELOAD or SPILL meta
-- instructions.
regSpill_instr
:: Instruction instr
=> Platform
-> UniqFM Int -- ^ map of vregs to slots they're being spilled to.
-> LiveInstr instr
-> SpillM [LiveInstr instr]
regSpill_instr _ _ li@(LiveInstr _ Nothing)
= do return [li]
regSpill_instr platform regSlotMap
(LiveInstr instr (Just _))
= do
-- work out which regs are read and written in this instr
let RU rlRead rlWritten = regUsageOfInstr platform instr
-- sometimes a register is listed as being read more than once,
-- nub this so we don't end up inserting two lots of spill code.
let rsRead_ = nub rlRead
let rsWritten_ = nub rlWritten
-- if a reg is modified, it appears in both lists, want to undo this..
let rsRead = rsRead_ \\ rsWritten_
let rsWritten = rsWritten_ \\ rsRead_
let rsModify = intersect rsRead_ rsWritten_
-- work out if any of the regs being used are currently being spilled.
let rsSpillRead = filter (\r -> elemUFM r regSlotMap) rsRead
let rsSpillWritten = filter (\r -> elemUFM r regSlotMap) rsWritten
let rsSpillModify = filter (\r -> elemUFM r regSlotMap) rsModify
-- rewrite the instr and work out spill code.
(instr1, prepost1) <- mapAccumLM (spillRead regSlotMap) instr rsSpillRead
(instr2, prepost2) <- mapAccumLM (spillWrite regSlotMap) instr1 rsSpillWritten
(instr3, prepost3) <- mapAccumLM (spillModify regSlotMap) instr2 rsSpillModify
let (mPrefixes, mPostfixes) = unzip (prepost1 ++ prepost2 ++ prepost3)
let prefixes = concat mPrefixes
let postfixes = concat mPostfixes
-- final code
let instrs' = prefixes
++ [LiveInstr instr3 Nothing]
++ postfixes
return $ instrs'
-- | Add a RELOAD met a instruction to load a value for an instruction that
-- writes to a vreg that is being spilled.
spillRead
:: Instruction instr
=> UniqFM Int
-> instr
-> Reg
-> SpillM (instr, ([LiveInstr instr'], [LiveInstr instr']))
spillRead regSlotMap instr reg
| Just slot <- lookupUFM regSlotMap reg
= do (instr', nReg) <- patchInstr reg instr
modify $ \s -> s
{ stateSpillSL = addToUFM_C accSpillSL (stateSpillSL s) reg (reg, 0, 1) }
return ( instr'
, ( [LiveInstr (RELOAD slot nReg) Nothing]
, []) )
| otherwise = panic "RegSpill.spillRead: no slot defined for spilled reg"
-- | Add a SPILL meta instruction to store a value for an instruction that
-- writes to a vreg that is being spilled.
spillWrite
:: Instruction instr
=> UniqFM Int
-> instr
-> Reg
-> SpillM (instr, ([LiveInstr instr'], [LiveInstr instr']))
spillWrite regSlotMap instr reg
| Just slot <- lookupUFM regSlotMap reg
= do (instr', nReg) <- patchInstr reg instr
modify $ \s -> s
{ stateSpillSL = addToUFM_C accSpillSL (stateSpillSL s) reg (reg, 1, 0) }
return ( instr'
, ( []
, [LiveInstr (SPILL nReg slot) Nothing]))
| otherwise = panic "RegSpill.spillWrite: no slot defined for spilled reg"
-- | Add both RELOAD and SPILL meta instructions for an instruction that
-- both reads and writes to a vreg that is being spilled.
spillModify
:: Instruction instr
=> UniqFM Int
-> instr
-> Reg
-> SpillM (instr, ([LiveInstr instr'], [LiveInstr instr']))
spillModify regSlotMap instr reg
| Just slot <- lookupUFM regSlotMap reg
= do (instr', nReg) <- patchInstr reg instr
modify $ \s -> s
{ stateSpillSL = addToUFM_C accSpillSL (stateSpillSL s) reg (reg, 1, 1) }
return ( instr'
, ( [LiveInstr (RELOAD slot nReg) Nothing]
, [LiveInstr (SPILL nReg slot) Nothing]))
| otherwise = panic "RegSpill.spillModify: no slot defined for spilled reg"
-- | Rewrite uses of this virtual reg in an instr to use a different
-- virtual reg.
patchInstr
:: Instruction instr
=> Reg -> instr -> SpillM (instr, Reg)
patchInstr reg instr
= do nUnique <- newUnique
-- The register we're rewriting is suppoed to be virtual.
-- If it's not then something has gone horribly wrong.
let nReg
= case reg of
RegVirtual vr
-> RegVirtual (renameVirtualReg nUnique vr)
RegReal{}
-> panic "RegAlloc.Graph.Spill.patchIntr: not patching real reg"
let instr' = patchReg1 reg nReg instr
return (instr', nReg)
patchReg1
:: Instruction instr
=> Reg -> Reg -> instr -> instr
patchReg1 old new instr
= let patchF r
| r == old = new
| otherwise = r
in patchRegsOfInstr instr patchF
-- Spiller monad --------------------------------------------------------------
-- | State monad for the spill code generator.
type SpillM a
= State SpillS a
-- | Spill code generator state.
data SpillS
= SpillS
{ -- | Unique supply for generating fresh vregs.
stateUS :: UniqSupply
-- | Spilled vreg vs the number of times it was loaded, stored.
, stateSpillSL :: UniqFM (Reg, Int, Int) }
-- | Create a new spiller state.
initSpillS :: UniqSupply -> SpillS
initSpillS uniqueSupply
= SpillS
{ stateUS = uniqueSupply
, stateSpillSL = emptyUFM }
-- | Allocate a new unique in the spiller monad.
newUnique :: SpillM Unique
newUnique
= do us <- gets stateUS
case takeUniqFromSupply us of
(uniq, us')
-> do modify $ \s -> s { stateUS = us' }
return uniq
-- | Add a spill/reload count to a stats record for a register.
accSpillSL :: (Reg, Int, Int) -> (Reg, Int, Int) -> (Reg, Int, Int)
accSpillSL (r1, s1, l1) (_, s2, l2)
= (r1, s1 + s2, l1 + l2)
-- Spiller stats --------------------------------------------------------------
-- | Spiller statistics.
-- Tells us what registers were spilled.
data SpillStats
= SpillStats
{ spillStoreLoad :: UniqFM (Reg, Int, Int) }
-- | Extract spiller statistics from the spiller state.
makeSpillStats :: SpillS -> SpillStats
makeSpillStats s
= SpillStats
{ spillStoreLoad = stateSpillSL s }
instance Outputable SpillStats where
ppr stats
= pprUFM (spillStoreLoad stats)
(vcat . map (\(r, s, l) -> ppr r <+> int s <+> int l))
|