1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
|
{-# LANGUAGE BangPatterns, CPP, ScopedTypeVariables #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
-----------------------------------------------------------------------------
--
-- The register allocator
--
-- (c) The University of Glasgow 2004
--
-----------------------------------------------------------------------------
{-
The algorithm is roughly:
1) Compute strongly connected components of the basic block list.
2) Compute liveness (mapping from pseudo register to
point(s) of death?).
3) Walk instructions in each basic block. We keep track of
(a) Free real registers (a bitmap?)
(b) Current assignment of temporaries to machine registers and/or
spill slots (call this the "assignment").
(c) Partial mapping from basic block ids to a virt-to-loc mapping.
When we first encounter a branch to a basic block,
we fill in its entry in this table with the current mapping.
For each instruction:
(a) For each temporary *read* by the instruction:
If the temporary does not have a real register allocation:
- Allocate a real register from the free list. If
the list is empty:
- Find a temporary to spill. Pick one that is
not used in this instruction (ToDo: not
used for a while...)
- generate a spill instruction
- If the temporary was previously spilled,
generate an instruction to read the temp from its spill loc.
(optimisation: if we can see that a real register is going to
be used soon, then don't use it for allocation).
(b) For each real register clobbered by this instruction:
If a temporary resides in it,
If the temporary is live after this instruction,
Move the temporary to another (non-clobbered & free) reg,
or spill it to memory. Mark the temporary as residing
in both memory and a register if it was spilled (it might
need to be read by this instruction).
(ToDo: this is wrong for jump instructions?)
We do this after step (a), because if we start with
movq v1, %rsi
which is an instruction that clobbers %rsi, if v1 currently resides
in %rsi we want to get
movq %rsi, %freereg
movq %rsi, %rsi -- will disappear
instead of
movq %rsi, %freereg
movq %freereg, %rsi
(c) Update the current assignment
(d) If the instruction is a branch:
if the destination block already has a register assignment,
Generate a new block with fixup code and redirect the
jump to the new block.
else,
Update the block id->assignment mapping with the current
assignment.
(e) Delete all register assignments for temps which are read
(only) and die here. Update the free register list.
(f) Mark all registers clobbered by this instruction as not free,
and mark temporaries which have been spilled due to clobbering
as in memory (step (a) marks then as in both mem & reg).
(g) For each temporary *written* by this instruction:
Allocate a real register as for (b), spilling something
else if necessary.
- except when updating the assignment, drop any memory
locations that the temporary was previously in, since
they will be no longer valid after this instruction.
(h) Delete all register assignments for temps which are
written and die here (there should rarely be any). Update
the free register list.
(i) Rewrite the instruction with the new mapping.
(j) For each spilled reg known to be now dead, re-add its stack slot
to the free list.
-}
module RegAlloc.Linear.Main (
regAlloc,
module RegAlloc.Linear.Base,
module RegAlloc.Linear.Stats
) where
#include "HsVersions.h"
import GhcPrelude
import RegAlloc.Linear.State
import RegAlloc.Linear.Base
import RegAlloc.Linear.StackMap
import RegAlloc.Linear.FreeRegs
import RegAlloc.Linear.Stats
import RegAlloc.Linear.JoinToTargets
import qualified RegAlloc.Linear.PPC.FreeRegs as PPC
import qualified RegAlloc.Linear.SPARC.FreeRegs as SPARC
import qualified RegAlloc.Linear.X86.FreeRegs as X86
import qualified RegAlloc.Linear.X86_64.FreeRegs as X86_64
import TargetReg
import RegAlloc.Liveness
import Instruction
import Reg
import GHC.Cmm.BlockId
import GHC.Cmm.Dataflow.Collections
import GHC.Cmm hiding (RegSet)
import Digraph
import GHC.Driver.Session
import Unique
import UniqSet
import UniqFM
import UniqSupply
import Outputable
import GHC.Platform
import Data.Maybe
import Data.List
import Control.Monad
-- -----------------------------------------------------------------------------
-- Top level of the register allocator
-- Allocate registers
regAlloc
:: (Outputable instr, Instruction instr)
=> DynFlags
-> LiveCmmDecl statics instr
-> UniqSM ( NatCmmDecl statics instr
, Maybe Int -- number of extra stack slots required,
-- beyond maxSpillSlots
, Maybe RegAllocStats
)
regAlloc _ (CmmData sec d)
= return
( CmmData sec d
, Nothing
, Nothing )
regAlloc _ (CmmProc (LiveInfo info _ _ _) lbl live [])
= return ( CmmProc info lbl live (ListGraph [])
, Nothing
, Nothing )
regAlloc dflags (CmmProc static lbl live sccs)
| LiveInfo info entry_ids@(first_id:_) block_live _ <- static
= do
-- do register allocation on each component.
(final_blocks, stats, stack_use)
<- linearRegAlloc dflags entry_ids block_live sccs
-- make sure the block that was first in the input list
-- stays at the front of the output
let ((first':_), rest')
= partition ((== first_id) . blockId) final_blocks
let max_spill_slots = maxSpillSlots dflags
extra_stack
| stack_use > max_spill_slots
= Just (stack_use - max_spill_slots)
| otherwise
= Nothing
return ( CmmProc info lbl live (ListGraph (first' : rest'))
, extra_stack
, Just stats)
-- bogus. to make non-exhaustive match warning go away.
regAlloc _ (CmmProc _ _ _ _)
= panic "RegAllocLinear.regAlloc: no match"
-- -----------------------------------------------------------------------------
-- Linear sweep to allocate registers
-- | Do register allocation on some basic blocks.
-- But be careful to allocate a block in an SCC only if it has
-- an entry in the block map or it is the first block.
--
linearRegAlloc
:: (Outputable instr, Instruction instr)
=> DynFlags
-> [BlockId] -- ^ entry points
-> BlockMap RegSet
-- ^ live regs on entry to each basic block
-> [SCC (LiveBasicBlock instr)]
-- ^ instructions annotated with "deaths"
-> UniqSM ([NatBasicBlock instr], RegAllocStats, Int)
linearRegAlloc dflags entry_ids block_live sccs
= case platformArch platform of
ArchX86 -> go $ (frInitFreeRegs platform :: X86.FreeRegs)
ArchX86_64 -> go $ (frInitFreeRegs platform :: X86_64.FreeRegs)
ArchS390X -> panic "linearRegAlloc ArchS390X"
ArchSPARC -> go $ (frInitFreeRegs platform :: SPARC.FreeRegs)
ArchSPARC64 -> panic "linearRegAlloc ArchSPARC64"
ArchPPC -> go $ (frInitFreeRegs platform :: PPC.FreeRegs)
ArchARM _ _ _ -> panic "linearRegAlloc ArchARM"
ArchARM64 -> panic "linearRegAlloc ArchARM64"
ArchPPC_64 _ -> go $ (frInitFreeRegs platform :: PPC.FreeRegs)
ArchAlpha -> panic "linearRegAlloc ArchAlpha"
ArchMipseb -> panic "linearRegAlloc ArchMipseb"
ArchMipsel -> panic "linearRegAlloc ArchMipsel"
ArchJavaScript -> panic "linearRegAlloc ArchJavaScript"
ArchUnknown -> panic "linearRegAlloc ArchUnknown"
where
go f = linearRegAlloc' dflags f entry_ids block_live sccs
platform = targetPlatform dflags
linearRegAlloc'
:: (FR freeRegs, Outputable instr, Instruction instr)
=> DynFlags
-> freeRegs
-> [BlockId] -- ^ entry points
-> BlockMap RegSet -- ^ live regs on entry to each basic block
-> [SCC (LiveBasicBlock instr)] -- ^ instructions annotated with "deaths"
-> UniqSM ([NatBasicBlock instr], RegAllocStats, Int)
linearRegAlloc' dflags initFreeRegs entry_ids block_live sccs
= do us <- getUniqueSupplyM
let (_, stack, stats, blocks) =
runR dflags mapEmpty initFreeRegs emptyRegMap (emptyStackMap dflags) us
$ linearRA_SCCs entry_ids block_live [] sccs
return (blocks, stats, getStackUse stack)
linearRA_SCCs :: (FR freeRegs, Instruction instr, Outputable instr)
=> [BlockId]
-> BlockMap RegSet
-> [NatBasicBlock instr]
-> [SCC (LiveBasicBlock instr)]
-> RegM freeRegs [NatBasicBlock instr]
linearRA_SCCs _ _ blocksAcc []
= return $ reverse blocksAcc
linearRA_SCCs entry_ids block_live blocksAcc (AcyclicSCC block : sccs)
= do blocks' <- processBlock block_live block
linearRA_SCCs entry_ids block_live
((reverse blocks') ++ blocksAcc)
sccs
linearRA_SCCs entry_ids block_live blocksAcc (CyclicSCC blocks : sccs)
= do
blockss' <- process entry_ids block_live blocks [] (return []) False
linearRA_SCCs entry_ids block_live
(reverse (concat blockss') ++ blocksAcc)
sccs
{- from John Dias's patch 2008/10/16:
The linear-scan allocator sometimes allocates a block
before allocating one of its predecessors, which could lead to
inconsistent allocations. Make it so a block is only allocated
if a predecessor has set the "incoming" assignments for the block, or
if it's the procedure's entry block.
BL 2009/02: Careful. If the assignment for a block doesn't get set for
some reason then this function will loop. We should probably do some
more sanity checking to guard against this eventuality.
-}
process :: (FR freeRegs, Instruction instr, Outputable instr)
=> [BlockId]
-> BlockMap RegSet
-> [GenBasicBlock (LiveInstr instr)]
-> [GenBasicBlock (LiveInstr instr)]
-> [[NatBasicBlock instr]]
-> Bool
-> RegM freeRegs [[NatBasicBlock instr]]
process _ _ [] [] accum _
= return $ reverse accum
process entry_ids block_live [] next_round accum madeProgress
| not madeProgress
{- BUGS: There are so many unreachable blocks in the code the warnings are overwhelming.
pprTrace "RegAlloc.Linear.Main.process: no progress made, bailing out."
( text "Unreachable blocks:"
$$ vcat (map ppr next_round)) -}
= return $ reverse accum
| otherwise
= process entry_ids block_live
next_round [] accum False
process entry_ids block_live (b@(BasicBlock id _) : blocks)
next_round accum madeProgress
= do
block_assig <- getBlockAssigR
if isJust (mapLookup id block_assig)
|| id `elem` entry_ids
then do
b' <- processBlock block_live b
process entry_ids block_live blocks
next_round (b' : accum) True
else process entry_ids block_live blocks
(b : next_round) accum madeProgress
-- | Do register allocation on this basic block
--
processBlock
:: (FR freeRegs, Outputable instr, Instruction instr)
=> BlockMap RegSet -- ^ live regs on entry to each basic block
-> LiveBasicBlock instr -- ^ block to do register allocation on
-> RegM freeRegs [NatBasicBlock instr] -- ^ block with registers allocated
processBlock block_live (BasicBlock id instrs)
= do initBlock id block_live
(instrs', fixups)
<- linearRA block_live [] [] id instrs
return $ BasicBlock id instrs' : fixups
-- | Load the freeregs and current reg assignment into the RegM state
-- for the basic block with this BlockId.
initBlock :: FR freeRegs
=> BlockId -> BlockMap RegSet -> RegM freeRegs ()
initBlock id block_live
= do dflags <- getDynFlags
let platform = targetPlatform dflags
block_assig <- getBlockAssigR
case mapLookup id block_assig of
-- no prior info about this block: we must consider
-- any fixed regs to be allocated, but we can ignore
-- virtual regs (presumably this is part of a loop,
-- and we'll iterate again). The assignment begins
-- empty.
Nothing
-> do -- pprTrace "initFreeRegs" (text $ show initFreeRegs) (return ())
case mapLookup id block_live of
Nothing ->
setFreeRegsR (frInitFreeRegs platform)
Just live ->
setFreeRegsR $ foldl' (flip $ frAllocateReg platform) (frInitFreeRegs platform)
[ r | RegReal r <- nonDetEltsUniqSet live ]
-- See Note [Unique Determinism and code generation]
setAssigR emptyRegMap
-- load info about register assignments leading into this block.
Just (freeregs, assig)
-> do setFreeRegsR freeregs
setAssigR assig
-- | Do allocation for a sequence of instructions.
linearRA
:: (FR freeRegs, Outputable instr, Instruction instr)
=> BlockMap RegSet -- ^ map of what vregs are live on entry to each block.
-> [instr] -- ^ accumulator for instructions already processed.
-> [NatBasicBlock instr] -- ^ accumulator for blocks of fixup code.
-> BlockId -- ^ id of the current block, for debugging.
-> [LiveInstr instr] -- ^ liveness annotated instructions in this block.
-> RegM freeRegs
( [instr] -- instructions after register allocation
, [NatBasicBlock instr]) -- fresh blocks of fixup code.
linearRA _ accInstr accFixup _ []
= return
( reverse accInstr -- instrs need to be returned in the correct order.
, accFixup) -- it doesn't matter what order the fixup blocks are returned in.
linearRA block_live accInstr accFixups id (instr:instrs)
= do
(accInstr', new_fixups) <- raInsn block_live accInstr id instr
linearRA block_live accInstr' (new_fixups ++ accFixups) id instrs
-- | Do allocation for a single instruction.
raInsn
:: (FR freeRegs, Outputable instr, Instruction instr)
=> BlockMap RegSet -- ^ map of what vregs are love on entry to each block.
-> [instr] -- ^ accumulator for instructions already processed.
-> BlockId -- ^ the id of the current block, for debugging
-> LiveInstr instr -- ^ the instr to have its regs allocated, with liveness info.
-> RegM freeRegs
( [instr] -- new instructions
, [NatBasicBlock instr]) -- extra fixup blocks
raInsn _ new_instrs _ (LiveInstr ii Nothing)
| Just n <- takeDeltaInstr ii
= do setDeltaR n
return (new_instrs, [])
raInsn _ new_instrs _ (LiveInstr ii@(Instr i) Nothing)
| isMetaInstr ii
= return (i : new_instrs, [])
raInsn block_live new_instrs id (LiveInstr (Instr instr) (Just live))
= do
assig <- getAssigR
-- If we have a reg->reg move between virtual registers, where the
-- src register is not live after this instruction, and the dst
-- register does not already have an assignment,
-- and the source register is assigned to a register, not to a spill slot,
-- then we can eliminate the instruction.
-- (we can't eliminate it if the source register is on the stack, because
-- we do not want to use one spill slot for different virtual registers)
case takeRegRegMoveInstr instr of
Just (src,dst) | src `elementOfUniqSet` (liveDieRead live),
isVirtualReg dst,
not (dst `elemUFM` assig),
isRealReg src || isInReg src assig -> do
case src of
(RegReal rr) -> setAssigR (addToUFM assig dst (InReg rr))
-- if src is a fixed reg, then we just map dest to this
-- reg in the assignment. src must be an allocatable reg,
-- otherwise it wouldn't be in r_dying.
_virt -> case lookupUFM assig src of
Nothing -> panic "raInsn"
Just loc ->
setAssigR (addToUFM (delFromUFM assig src) dst loc)
-- we have eliminated this instruction
{-
freeregs <- getFreeRegsR
assig <- getAssigR
pprTrace "raInsn" (text "ELIMINATED: " <> docToSDoc (pprInstr instr)
$$ ppr r_dying <+> ppr w_dying $$ text (show freeregs) $$ ppr assig) $ do
-}
return (new_instrs, [])
_ -> genRaInsn block_live new_instrs id instr
(nonDetEltsUniqSet $ liveDieRead live)
(nonDetEltsUniqSet $ liveDieWrite live)
-- See Note [Unique Determinism and code generation]
raInsn _ _ _ instr
= pprPanic "raInsn" (text "no match for:" <> ppr instr)
-- ToDo: what can we do about
--
-- R1 = x
-- jump I64[x] // [R1]
--
-- where x is mapped to the same reg as R1. We want to coalesce x and
-- R1, but the register allocator doesn't know whether x will be
-- assigned to again later, in which case x and R1 should be in
-- different registers. Right now we assume the worst, and the
-- assignment to R1 will clobber x, so we'll spill x into another reg,
-- generating another reg->reg move.
isInReg :: Reg -> RegMap Loc -> Bool
isInReg src assig | Just (InReg _) <- lookupUFM assig src = True
| otherwise = False
genRaInsn :: (FR freeRegs, Instruction instr, Outputable instr)
=> BlockMap RegSet
-> [instr]
-> BlockId
-> instr
-> [Reg]
-> [Reg]
-> RegM freeRegs ([instr], [NatBasicBlock instr])
genRaInsn block_live new_instrs block_id instr r_dying w_dying = do
dflags <- getDynFlags
let platform = targetPlatform dflags
case regUsageOfInstr platform instr of { RU read written ->
do
let real_written = [ rr | (RegReal rr) <- written ]
let virt_written = [ vr | (RegVirtual vr) <- written ]
-- we don't need to do anything with real registers that are
-- only read by this instr. (the list is typically ~2 elements,
-- so using nub isn't a problem).
let virt_read = nub [ vr | (RegVirtual vr) <- read ]
-- debugging
{- freeregs <- getFreeRegsR
assig <- getAssigR
pprDebugAndThen (defaultDynFlags Settings{ sTargetPlatform=platform } undefined) trace "genRaInsn"
(ppr instr
$$ text "r_dying = " <+> ppr r_dying
$$ text "w_dying = " <+> ppr w_dying
$$ text "virt_read = " <+> ppr virt_read
$$ text "virt_written = " <+> ppr virt_written
$$ text "freeregs = " <+> text (show freeregs)
$$ text "assig = " <+> ppr assig)
$ do
-}
-- (a), (b) allocate real regs for all regs read by this instruction.
(r_spills, r_allocd) <-
allocateRegsAndSpill True{-reading-} virt_read [] [] virt_read
-- (c) save any temporaries which will be clobbered by this instruction
clobber_saves <- saveClobberedTemps real_written r_dying
-- (d) Update block map for new destinations
-- NB. do this before removing dead regs from the assignment, because
-- these dead regs might in fact be live in the jump targets (they're
-- only dead in the code that follows in the current basic block).
(fixup_blocks, adjusted_instr)
<- joinToTargets block_live block_id instr
-- Debugging - show places where the reg alloc inserted
-- assignment fixup blocks.
-- when (not $ null fixup_blocks) $
-- pprTrace "fixup_blocks" (ppr fixup_blocks) (return ())
-- (e) Delete all register assignments for temps which are read
-- (only) and die here. Update the free register list.
releaseRegs r_dying
-- (f) Mark regs which are clobbered as unallocatable
clobberRegs real_written
-- (g) Allocate registers for temporaries *written* (only)
(w_spills, w_allocd) <-
allocateRegsAndSpill False{-writing-} virt_written [] [] virt_written
-- (h) Release registers for temps which are written here and not
-- used again.
releaseRegs w_dying
let
-- (i) Patch the instruction
patch_map
= listToUFM
[ (t, RegReal r)
| (t, r) <- zip virt_read r_allocd
++ zip virt_written w_allocd ]
patched_instr
= patchRegsOfInstr adjusted_instr patchLookup
patchLookup x
= case lookupUFM patch_map x of
Nothing -> x
Just y -> y
-- (j) free up stack slots for dead spilled regs
-- TODO (can't be bothered right now)
-- erase reg->reg moves where the source and destination are the same.
-- If the src temp didn't die in this instr but happened to be allocated
-- to the same real reg as the destination, then we can erase the move anyway.
let squashed_instr = case takeRegRegMoveInstr patched_instr of
Just (src, dst)
| src == dst -> []
_ -> [patched_instr]
let code = squashed_instr ++ w_spills ++ reverse r_spills
++ clobber_saves ++ new_instrs
-- pprTrace "patched-code" ((vcat $ map (docToSDoc . pprInstr) code)) $ do
-- pprTrace "pached-fixup" ((ppr fixup_blocks)) $ do
return (code, fixup_blocks)
}
-- -----------------------------------------------------------------------------
-- releaseRegs
releaseRegs :: FR freeRegs => [Reg] -> RegM freeRegs ()
releaseRegs regs = do
dflags <- getDynFlags
let platform = targetPlatform dflags
assig <- getAssigR
free <- getFreeRegsR
let loop assig !free [] = do setAssigR assig; setFreeRegsR free; return ()
loop assig !free (RegReal rr : rs) = loop assig (frReleaseReg platform rr free) rs
loop assig !free (r:rs) =
case lookupUFM assig r of
Just (InBoth real _) -> loop (delFromUFM assig r)
(frReleaseReg platform real free) rs
Just (InReg real) -> loop (delFromUFM assig r)
(frReleaseReg platform real free) rs
_ -> loop (delFromUFM assig r) free rs
loop assig free regs
-- -----------------------------------------------------------------------------
-- Clobber real registers
-- For each temp in a register that is going to be clobbered:
-- - if the temp dies after this instruction, do nothing
-- - otherwise, put it somewhere safe (another reg if possible,
-- otherwise spill and record InBoth in the assignment).
-- - for allocateRegs on the temps *read*,
-- - clobbered regs are allocatable.
--
-- for allocateRegs on the temps *written*,
-- - clobbered regs are not allocatable.
--
saveClobberedTemps
:: (Instruction instr, FR freeRegs)
=> [RealReg] -- real registers clobbered by this instruction
-> [Reg] -- registers which are no longer live after this insn
-> RegM freeRegs [instr] -- return: instructions to spill any temps that will
-- be clobbered.
saveClobberedTemps [] _
= return []
saveClobberedTemps clobbered dying
= do
assig <- getAssigR
let to_spill
= [ (temp,reg)
| (temp, InReg reg) <- nonDetUFMToList assig
-- This is non-deterministic but we do not
-- currently support deterministic code-generation.
-- See Note [Unique Determinism and code generation]
, any (realRegsAlias reg) clobbered
, temp `notElem` map getUnique dying ]
(instrs,assig') <- clobber assig [] to_spill
setAssigR assig'
return instrs
where
clobber assig instrs []
= return (instrs, assig)
clobber assig instrs ((temp, reg) : rest)
= do dflags <- getDynFlags
let platform = targetPlatform dflags
freeRegs <- getFreeRegsR
let regclass = targetClassOfRealReg platform reg
freeRegs_thisClass = frGetFreeRegs platform regclass freeRegs
case filter (`notElem` clobbered) freeRegs_thisClass of
-- (1) we have a free reg of the right class that isn't
-- clobbered by this instruction; use it to save the
-- clobbered value.
(my_reg : _) -> do
setFreeRegsR (frAllocateReg platform my_reg freeRegs)
let new_assign = addToUFM assig temp (InReg my_reg)
let instr = mkRegRegMoveInstr platform
(RegReal reg) (RegReal my_reg)
clobber new_assign (instr : instrs) rest
-- (2) no free registers: spill the value
[] -> do
(spill, slot) <- spillR (RegReal reg) temp
-- record why this reg was spilled for profiling
recordSpill (SpillClobber temp)
let new_assign = addToUFM assig temp (InBoth reg slot)
clobber new_assign (spill : instrs) rest
-- | Mark all these real regs as allocated,
-- and kick out their vreg assignments.
--
clobberRegs :: FR freeRegs => [RealReg] -> RegM freeRegs ()
clobberRegs []
= return ()
clobberRegs clobbered
= do dflags <- getDynFlags
let platform = targetPlatform dflags
freeregs <- getFreeRegsR
setFreeRegsR $! foldl' (flip $ frAllocateReg platform) freeregs clobbered
assig <- getAssigR
setAssigR $! clobber assig (nonDetUFMToList assig)
-- This is non-deterministic but we do not
-- currently support deterministic code-generation.
-- See Note [Unique Determinism and code generation]
where
-- if the temp was InReg and clobbered, then we will have
-- saved it in saveClobberedTemps above. So the only case
-- we have to worry about here is InBoth. Note that this
-- also catches temps which were loaded up during allocation
-- of read registers, not just those saved in saveClobberedTemps.
clobber assig []
= assig
clobber assig ((temp, InBoth reg slot) : rest)
| any (realRegsAlias reg) clobbered
= clobber (addToUFM assig temp (InMem slot)) rest
clobber assig (_:rest)
= clobber assig rest
-- -----------------------------------------------------------------------------
-- allocateRegsAndSpill
-- Why are we performing a spill?
data SpillLoc = ReadMem StackSlot -- reading from register only in memory
| WriteNew -- writing to a new variable
| WriteMem -- writing to register only in memory
-- Note that ReadNew is not valid, since you don't want to be reading
-- from an uninitialized register. We also don't need the location of
-- the register in memory, since that will be invalidated by the write.
-- Technically, we could coalesce WriteNew and WriteMem into a single
-- entry as well. -- EZY
-- This function does several things:
-- For each temporary referred to by this instruction,
-- we allocate a real register (spilling another temporary if necessary).
-- We load the temporary up from memory if necessary.
-- We also update the register assignment in the process, and
-- the list of free registers and free stack slots.
allocateRegsAndSpill
:: (FR freeRegs, Outputable instr, Instruction instr)
=> Bool -- True <=> reading (load up spilled regs)
-> [VirtualReg] -- don't push these out
-> [instr] -- spill insns
-> [RealReg] -- real registers allocated (accum.)
-> [VirtualReg] -- temps to allocate
-> RegM freeRegs ( [instr] , [RealReg])
allocateRegsAndSpill _ _ spills alloc []
= return (spills, reverse alloc)
allocateRegsAndSpill reading keep spills alloc (r:rs)
= do assig <- getAssigR
let doSpill = allocRegsAndSpill_spill reading keep spills alloc r rs assig
case lookupUFM assig r of
-- case (1a): already in a register
Just (InReg my_reg) ->
allocateRegsAndSpill reading keep spills (my_reg:alloc) rs
-- case (1b): already in a register (and memory)
-- NB1. if we're writing this register, update its assignment to be
-- InReg, because the memory value is no longer valid.
-- NB2. This is why we must process written registers here, even if they
-- are also read by the same instruction.
Just (InBoth my_reg _)
-> do when (not reading) (setAssigR (addToUFM assig r (InReg my_reg)))
allocateRegsAndSpill reading keep spills (my_reg:alloc) rs
-- Not already in a register, so we need to find a free one...
Just (InMem slot) | reading -> doSpill (ReadMem slot)
| otherwise -> doSpill WriteMem
Nothing | reading ->
pprPanic "allocateRegsAndSpill: Cannot read from uninitialized register" (ppr r)
-- NOTE: if the input to the NCG contains some
-- unreachable blocks with junk code, this panic
-- might be triggered. Make sure you only feed
-- sensible code into the NCG. In GHC.Cmm.Pipeline we
-- call removeUnreachableBlocks at the end for this
-- reason.
| otherwise -> doSpill WriteNew
-- reading is redundant with reason, but we keep it around because it's
-- convenient and it maintains the recursive structure of the allocator. -- EZY
allocRegsAndSpill_spill :: (FR freeRegs, Instruction instr, Outputable instr)
=> Bool
-> [VirtualReg]
-> [instr]
-> [RealReg]
-> VirtualReg
-> [VirtualReg]
-> UniqFM Loc
-> SpillLoc
-> RegM freeRegs ([instr], [RealReg])
allocRegsAndSpill_spill reading keep spills alloc r rs assig spill_loc
= do dflags <- getDynFlags
let platform = targetPlatform dflags
freeRegs <- getFreeRegsR
let freeRegs_thisClass = frGetFreeRegs platform (classOfVirtualReg r) freeRegs
case freeRegs_thisClass of
-- case (2): we have a free register
(my_reg : _) ->
do spills' <- loadTemp r spill_loc my_reg spills
setAssigR (addToUFM assig r $! newLocation spill_loc my_reg)
setFreeRegsR $ frAllocateReg platform my_reg freeRegs
allocateRegsAndSpill reading keep spills' (my_reg : alloc) rs
-- case (3): we need to push something out to free up a register
[] ->
do let inRegOrBoth (InReg _) = True
inRegOrBoth (InBoth _ _) = True
inRegOrBoth _ = False
let candidates' =
flip delListFromUFM keep $
filterUFM inRegOrBoth $
assig
-- This is non-deterministic but we do not
-- currently support deterministic code-generation.
-- See Note [Unique Determinism and code generation]
let candidates = nonDetUFMToList candidates'
-- the vregs we could kick out that are already in a slot
let candidates_inBoth
= [ (temp, reg, mem)
| (temp, InBoth reg mem) <- candidates
, targetClassOfRealReg platform reg == classOfVirtualReg r ]
-- the vregs we could kick out that are only in a reg
-- this would require writing the reg to a new slot before using it.
let candidates_inReg
= [ (temp, reg)
| (temp, InReg reg) <- candidates
, targetClassOfRealReg platform reg == classOfVirtualReg r ]
let result
-- we have a temporary that is in both register and mem,
-- just free up its register for use.
| (temp, my_reg, slot) : _ <- candidates_inBoth
= do spills' <- loadTemp r spill_loc my_reg spills
let assig1 = addToUFM assig temp (InMem slot)
let assig2 = addToUFM assig1 r $! newLocation spill_loc my_reg
setAssigR assig2
allocateRegsAndSpill reading keep spills' (my_reg:alloc) rs
-- otherwise, we need to spill a temporary that currently
-- resides in a register.
| (temp_to_push_out, (my_reg :: RealReg)) : _
<- candidates_inReg
= do
(spill_insn, slot) <- spillR (RegReal my_reg) temp_to_push_out
let spill_store = (if reading then id else reverse)
[ -- COMMENT (fsLit "spill alloc")
spill_insn ]
-- record that this temp was spilled
recordSpill (SpillAlloc temp_to_push_out)
-- update the register assignment
let assig1 = addToUFM assig temp_to_push_out (InMem slot)
let assig2 = addToUFM assig1 r $! newLocation spill_loc my_reg
setAssigR assig2
-- if need be, load up a spilled temp into the reg we've just freed up.
spills' <- loadTemp r spill_loc my_reg spills
allocateRegsAndSpill reading keep
(spill_store ++ spills')
(my_reg:alloc) rs
-- there wasn't anything to spill, so we're screwed.
| otherwise
= pprPanic ("RegAllocLinear.allocRegsAndSpill: no spill candidates\n")
$ vcat
[ text "allocating vreg: " <> text (show r)
, text "assignment: " <> ppr assig
, text "freeRegs: " <> text (show freeRegs)
, text "initFreeRegs: " <> text (show (frInitFreeRegs platform `asTypeOf` freeRegs)) ]
result
-- | Calculate a new location after a register has been loaded.
newLocation :: SpillLoc -> RealReg -> Loc
-- if the tmp was read from a slot, then now its in a reg as well
newLocation (ReadMem slot) my_reg = InBoth my_reg slot
-- writes will always result in only the register being available
newLocation _ my_reg = InReg my_reg
-- | Load up a spilled temporary if we need to (read from memory).
loadTemp
:: (Instruction instr)
=> VirtualReg -- the temp being loaded
-> SpillLoc -- the current location of this temp
-> RealReg -- the hreg to load the temp into
-> [instr]
-> RegM freeRegs [instr]
loadTemp vreg (ReadMem slot) hreg spills
= do
insn <- loadR (RegReal hreg) slot
recordSpill (SpillLoad $ getUnique vreg)
return $ {- COMMENT (fsLit "spill load") : -} insn : spills
loadTemp _ _ _ spills =
return spills
|