1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
-----------------------------------------------------------------------------
--
-- The register liveness determinator
--
-- (c) The University of Glasgow 2004-2013
--
-----------------------------------------------------------------------------
module RegAlloc.Liveness (
RegSet,
RegMap, emptyRegMap,
BlockMap, mapEmpty,
LiveCmmDecl,
InstrSR (..),
LiveInstr (..),
Liveness (..),
LiveInfo (..),
LiveBasicBlock,
mapBlockTop, mapBlockTopM, mapSCCM,
mapGenBlockTop, mapGenBlockTopM,
stripLive,
stripLiveBlock,
slurpConflicts,
slurpReloadCoalesce,
eraseDeltasLive,
patchEraseLive,
patchRegsLiveInstr,
reverseBlocksInTops,
regLiveness,
cmmTopLiveness
) where
import GhcPrelude
import Reg
import Instruction
import BlockId
import CFG
import Hoopl.Collections
import Hoopl.Label
import Cmm hiding (RegSet, emptyRegSet)
import Digraph
import DynFlags
import MonadUtils
import Outputable
import GHC.Platform
import UniqSet
import UniqFM
import UniqSupply
import Bag
import State
import Data.List
import Data.Maybe
import Data.IntSet (IntSet)
-----------------------------------------------------------------------------
type RegSet = UniqSet Reg
type RegMap a = UniqFM a
emptyRegMap :: UniqFM a
emptyRegMap = emptyUFM
emptyRegSet :: RegSet
emptyRegSet = emptyUniqSet
type BlockMap a = LabelMap a
-- | A top level thing which carries liveness information.
type LiveCmmDecl statics instr
= GenCmmDecl
statics
LiveInfo
[SCC (LiveBasicBlock instr)]
-- | The register allocator also wants to use SPILL/RELOAD meta instructions,
-- so we'll keep those here.
data InstrSR instr
-- | A real machine instruction
= Instr instr
-- | spill this reg to a stack slot
| SPILL Reg Int
-- | reload this reg from a stack slot
| RELOAD Int Reg
instance Instruction instr => Instruction (InstrSR instr) where
regUsageOfInstr platform i
= case i of
Instr instr -> regUsageOfInstr platform instr
SPILL reg _ -> RU [reg] []
RELOAD _ reg -> RU [] [reg]
patchRegsOfInstr i f
= case i of
Instr instr -> Instr (patchRegsOfInstr instr f)
SPILL reg slot -> SPILL (f reg) slot
RELOAD slot reg -> RELOAD slot (f reg)
isJumpishInstr i
= case i of
Instr instr -> isJumpishInstr instr
_ -> False
jumpDestsOfInstr i
= case i of
Instr instr -> jumpDestsOfInstr instr
_ -> []
patchJumpInstr i f
= case i of
Instr instr -> Instr (patchJumpInstr instr f)
_ -> i
mkSpillInstr = error "mkSpillInstr[InstrSR]: Not making SPILL meta-instr"
mkLoadInstr = error "mkLoadInstr[InstrSR]: Not making LOAD meta-instr"
takeDeltaInstr i
= case i of
Instr instr -> takeDeltaInstr instr
_ -> Nothing
isMetaInstr i
= case i of
Instr instr -> isMetaInstr instr
_ -> False
mkRegRegMoveInstr platform r1 r2
= Instr (mkRegRegMoveInstr platform r1 r2)
takeRegRegMoveInstr i
= case i of
Instr instr -> takeRegRegMoveInstr instr
_ -> Nothing
mkJumpInstr target = map Instr (mkJumpInstr target)
mkStackAllocInstr platform amount =
Instr <$> mkStackAllocInstr platform amount
mkStackDeallocInstr platform amount =
Instr <$> mkStackDeallocInstr platform amount
-- | An instruction with liveness information.
data LiveInstr instr
= LiveInstr (InstrSR instr) (Maybe Liveness)
-- | Liveness information.
-- The regs which die are ones which are no longer live in the *next* instruction
-- in this sequence.
-- (NB. if the instruction is a jump, these registers might still be live
-- at the jump target(s) - you have to check the liveness at the destination
-- block to find out).
data Liveness
= Liveness
{ liveBorn :: RegSet -- ^ registers born in this instruction (written to for first time).
, liveDieRead :: RegSet -- ^ registers that died because they were read for the last time.
, liveDieWrite :: RegSet } -- ^ registers that died because they were clobbered by something.
-- | Stash regs live on entry to each basic block in the info part of the cmm code.
data LiveInfo
= LiveInfo
(LabelMap CmmStatics) -- cmm info table static stuff
[BlockId] -- entry points (first one is the
-- entry point for the proc).
(BlockMap RegSet) -- argument locals live on entry to this block
(BlockMap IntSet) -- stack slots live on entry to this block
-- | A basic block with liveness information.
type LiveBasicBlock instr
= GenBasicBlock (LiveInstr instr)
instance Outputable instr
=> Outputable (InstrSR instr) where
ppr (Instr realInstr)
= ppr realInstr
ppr (SPILL reg slot)
= hcat [
text "\tSPILL",
char ' ',
ppr reg,
comma,
text "SLOT" <> parens (int slot)]
ppr (RELOAD slot reg)
= hcat [
text "\tRELOAD",
char ' ',
text "SLOT" <> parens (int slot),
comma,
ppr reg]
instance Outputable instr
=> Outputable (LiveInstr instr) where
ppr (LiveInstr instr Nothing)
= ppr instr
ppr (LiveInstr instr (Just live))
= ppr instr
$$ (nest 8
$ vcat
[ pprRegs (text "# born: ") (liveBorn live)
, pprRegs (text "# r_dying: ") (liveDieRead live)
, pprRegs (text "# w_dying: ") (liveDieWrite live) ]
$+$ space)
where pprRegs :: SDoc -> RegSet -> SDoc
pprRegs name regs
| isEmptyUniqSet regs = empty
| otherwise = name <>
(pprUFM (getUniqSet regs) (hcat . punctuate space . map ppr))
instance Outputable LiveInfo where
ppr (LiveInfo mb_static entryIds liveVRegsOnEntry liveSlotsOnEntry)
= (ppr mb_static)
$$ text "# entryIds = " <> ppr entryIds
$$ text "# liveVRegsOnEntry = " <> ppr liveVRegsOnEntry
$$ text "# liveSlotsOnEntry = " <> text (show liveSlotsOnEntry)
-- | map a function across all the basic blocks in this code
--
mapBlockTop
:: (LiveBasicBlock instr -> LiveBasicBlock instr)
-> LiveCmmDecl statics instr -> LiveCmmDecl statics instr
mapBlockTop f cmm
= evalState (mapBlockTopM (\x -> return $ f x) cmm) ()
-- | map a function across all the basic blocks in this code (monadic version)
--
mapBlockTopM
:: Monad m
=> (LiveBasicBlock instr -> m (LiveBasicBlock instr))
-> LiveCmmDecl statics instr -> m (LiveCmmDecl statics instr)
mapBlockTopM _ cmm@(CmmData{})
= return cmm
mapBlockTopM f (CmmProc header label live sccs)
= do sccs' <- mapM (mapSCCM f) sccs
return $ CmmProc header label live sccs'
mapSCCM :: Monad m => (a -> m b) -> SCC a -> m (SCC b)
mapSCCM f (AcyclicSCC x)
= do x' <- f x
return $ AcyclicSCC x'
mapSCCM f (CyclicSCC xs)
= do xs' <- mapM f xs
return $ CyclicSCC xs'
-- map a function across all the basic blocks in this code
mapGenBlockTop
:: (GenBasicBlock i -> GenBasicBlock i)
-> (GenCmmDecl d h (ListGraph i) -> GenCmmDecl d h (ListGraph i))
mapGenBlockTop f cmm
= evalState (mapGenBlockTopM (\x -> return $ f x) cmm) ()
-- | map a function across all the basic blocks in this code (monadic version)
mapGenBlockTopM
:: Monad m
=> (GenBasicBlock i -> m (GenBasicBlock i))
-> (GenCmmDecl d h (ListGraph i) -> m (GenCmmDecl d h (ListGraph i)))
mapGenBlockTopM _ cmm@(CmmData{})
= return cmm
mapGenBlockTopM f (CmmProc header label live (ListGraph blocks))
= do blocks' <- mapM f blocks
return $ CmmProc header label live (ListGraph blocks')
-- | Slurp out the list of register conflicts and reg-reg moves from this top level thing.
-- Slurping of conflicts and moves is wrapped up together so we don't have
-- to make two passes over the same code when we want to build the graph.
--
slurpConflicts
:: Instruction instr
=> LiveCmmDecl statics instr
-> (Bag (UniqSet Reg), Bag (Reg, Reg))
slurpConflicts live
= slurpCmm (emptyBag, emptyBag) live
where slurpCmm rs CmmData{} = rs
slurpCmm rs (CmmProc info _ _ sccs)
= foldl' (slurpSCC info) rs sccs
slurpSCC info rs (AcyclicSCC b)
= slurpBlock info rs b
slurpSCC info rs (CyclicSCC bs)
= foldl' (slurpBlock info) rs bs
slurpBlock info rs (BasicBlock blockId instrs)
| LiveInfo _ _ blockLive _ <- info
, Just rsLiveEntry <- mapLookup blockId blockLive
, (conflicts, moves) <- slurpLIs rsLiveEntry rs instrs
= (consBag rsLiveEntry conflicts, moves)
| otherwise
= panic "Liveness.slurpConflicts: bad block"
slurpLIs rsLive (conflicts, moves) []
= (consBag rsLive conflicts, moves)
slurpLIs rsLive rs (LiveInstr _ Nothing : lis)
= slurpLIs rsLive rs lis
slurpLIs rsLiveEntry (conflicts, moves) (LiveInstr instr (Just live) : lis)
= let
-- regs that die because they are read for the last time at the start of an instruction
-- are not live across it.
rsLiveAcross = rsLiveEntry `minusUniqSet` (liveDieRead live)
-- regs live on entry to the next instruction.
-- be careful of orphans, make sure to delete dying regs _after_ unioning
-- in the ones that are born here.
rsLiveNext = (rsLiveAcross `unionUniqSets` (liveBorn live))
`minusUniqSet` (liveDieWrite live)
-- orphan vregs are the ones that die in the same instruction they are born in.
-- these are likely to be results that are never used, but we still
-- need to assign a hreg to them..
rsOrphans = intersectUniqSets
(liveBorn live)
(unionUniqSets (liveDieWrite live) (liveDieRead live))
--
rsConflicts = unionUniqSets rsLiveNext rsOrphans
in case takeRegRegMoveInstr instr of
Just rr -> slurpLIs rsLiveNext
( consBag rsConflicts conflicts
, consBag rr moves) lis
Nothing -> slurpLIs rsLiveNext
( consBag rsConflicts conflicts
, moves) lis
-- | For spill\/reloads
--
-- SPILL v1, slot1
-- ...
-- RELOAD slot1, v2
--
-- If we can arrange that v1 and v2 are allocated to the same hreg it's more likely
-- the spill\/reload instrs can be cleaned and replaced by a nop reg-reg move.
--
--
slurpReloadCoalesce
:: forall statics instr. Instruction instr
=> LiveCmmDecl statics instr
-> Bag (Reg, Reg)
slurpReloadCoalesce live
= slurpCmm emptyBag live
where
slurpCmm :: Bag (Reg, Reg)
-> GenCmmDecl t t1 [SCC (LiveBasicBlock instr)]
-> Bag (Reg, Reg)
slurpCmm cs CmmData{} = cs
slurpCmm cs (CmmProc _ _ _ sccs)
= slurpComp cs (flattenSCCs sccs)
slurpComp :: Bag (Reg, Reg)
-> [LiveBasicBlock instr]
-> Bag (Reg, Reg)
slurpComp cs blocks
= let (moveBags, _) = runState (slurpCompM blocks) emptyUFM
in unionManyBags (cs : moveBags)
slurpCompM :: [LiveBasicBlock instr]
-> State (UniqFM [UniqFM Reg]) [Bag (Reg, Reg)]
slurpCompM blocks
= do -- run the analysis once to record the mapping across jumps.
mapM_ (slurpBlock False) blocks
-- run it a second time while using the information from the last pass.
-- We /could/ run this many more times to deal with graphical control
-- flow and propagating info across multiple jumps, but it's probably
-- not worth the trouble.
mapM (slurpBlock True) blocks
slurpBlock :: Bool -> LiveBasicBlock instr
-> State (UniqFM [UniqFM Reg]) (Bag (Reg, Reg))
slurpBlock propagate (BasicBlock blockId instrs)
= do -- grab the slot map for entry to this block
slotMap <- if propagate
then getSlotMap blockId
else return emptyUFM
(_, mMoves) <- mapAccumLM slurpLI slotMap instrs
return $ listToBag $ catMaybes mMoves
slurpLI :: UniqFM Reg -- current slotMap
-> LiveInstr instr
-> State (UniqFM [UniqFM Reg]) -- blockId -> [slot -> reg]
-- for tracking slotMaps across jumps
( UniqFM Reg -- new slotMap
, Maybe (Reg, Reg)) -- maybe a new coalesce edge
slurpLI slotMap li
-- remember what reg was stored into the slot
| LiveInstr (SPILL reg slot) _ <- li
, slotMap' <- addToUFM slotMap slot reg
= return (slotMap', Nothing)
-- add an edge between the this reg and the last one stored into the slot
| LiveInstr (RELOAD slot reg) _ <- li
= case lookupUFM slotMap slot of
Just reg2
| reg /= reg2 -> return (slotMap, Just (reg, reg2))
| otherwise -> return (slotMap, Nothing)
Nothing -> return (slotMap, Nothing)
-- if we hit a jump, remember the current slotMap
| LiveInstr (Instr instr) _ <- li
, targets <- jumpDestsOfInstr instr
, not $ null targets
= do mapM_ (accSlotMap slotMap) targets
return (slotMap, Nothing)
| otherwise
= return (slotMap, Nothing)
-- record a slotmap for an in edge to this block
accSlotMap slotMap blockId
= modify (\s -> addToUFM_C (++) s blockId [slotMap])
-- work out the slot map on entry to this block
-- if we have slot maps for multiple in-edges then we need to merge them.
getSlotMap blockId
= do map <- get
let slotMaps = fromMaybe [] (lookupUFM map blockId)
return $ foldr mergeSlotMaps emptyUFM slotMaps
mergeSlotMaps :: UniqFM Reg -> UniqFM Reg -> UniqFM Reg
mergeSlotMaps map1 map2
= listToUFM
$ [ (k, r1)
| (k, r1) <- nonDetUFMToList map1
-- This is non-deterministic but we do not
-- currently support deterministic code-generation.
-- See Note [Unique Determinism and code generation]
, case lookupUFM map2 k of
Nothing -> False
Just r2 -> r1 == r2 ]
-- | Strip away liveness information, yielding NatCmmDecl
stripLive
:: (Outputable statics, Outputable instr, Instruction instr)
=> DynFlags
-> LiveCmmDecl statics instr
-> NatCmmDecl statics instr
stripLive dflags live
= stripCmm live
where stripCmm :: (Outputable statics, Outputable instr, Instruction instr)
=> LiveCmmDecl statics instr -> NatCmmDecl statics instr
stripCmm (CmmData sec ds) = CmmData sec ds
stripCmm (CmmProc (LiveInfo info (first_id:_) _ _) label live sccs)
= let final_blocks = flattenSCCs sccs
-- make sure the block that was first in the input list
-- stays at the front of the output. This is the entry point
-- of the proc, and it needs to come first.
((first':_), rest')
= partition ((== first_id) . blockId) final_blocks
in CmmProc info label live
(ListGraph $ map (stripLiveBlock dflags) $ first' : rest')
-- If the proc has blocks but we don't know what the first one was, then we're dead.
stripCmm proc
= pprPanic "RegAlloc.Liveness.stripLive: no first_id on proc" (ppr proc)
-- | Strip away liveness information from a basic block,
-- and make real spill instructions out of SPILL, RELOAD pseudos along the way.
stripLiveBlock
:: Instruction instr
=> DynFlags
-> LiveBasicBlock instr
-> NatBasicBlock instr
stripLiveBlock dflags (BasicBlock i lis)
= BasicBlock i instrs'
where (instrs', _)
= runState (spillNat [] lis) 0
spillNat acc []
= return (reverse acc)
spillNat acc (LiveInstr (SPILL reg slot) _ : instrs)
= do delta <- get
spillNat (mkSpillInstr dflags reg delta slot : acc) instrs
spillNat acc (LiveInstr (RELOAD slot reg) _ : instrs)
= do delta <- get
spillNat (mkLoadInstr dflags reg delta slot : acc) instrs
spillNat acc (LiveInstr (Instr instr) _ : instrs)
| Just i <- takeDeltaInstr instr
= do put i
spillNat acc instrs
spillNat acc (LiveInstr (Instr instr) _ : instrs)
= spillNat (instr : acc) instrs
-- | Erase Delta instructions.
eraseDeltasLive
:: Instruction instr
=> LiveCmmDecl statics instr
-> LiveCmmDecl statics instr
eraseDeltasLive cmm
= mapBlockTop eraseBlock cmm
where
eraseBlock (BasicBlock id lis)
= BasicBlock id
$ filter (\(LiveInstr i _) -> not $ isJust $ takeDeltaInstr i)
$ lis
-- | Patch the registers in this code according to this register mapping.
-- also erase reg -> reg moves when the reg is the same.
-- also erase reg -> reg moves when the destination dies in this instr.
patchEraseLive
:: Instruction instr
=> (Reg -> Reg)
-> LiveCmmDecl statics instr -> LiveCmmDecl statics instr
patchEraseLive patchF cmm
= patchCmm cmm
where
patchCmm cmm@CmmData{} = cmm
patchCmm (CmmProc info label live sccs)
| LiveInfo static id blockMap mLiveSlots <- info
= let
patchRegSet set = mkUniqSet $ map patchF $ nonDetEltsUFM set
-- See Note [Unique Determinism and code generation]
blockMap' = mapMap (patchRegSet . getUniqSet) blockMap
info' = LiveInfo static id blockMap' mLiveSlots
in CmmProc info' label live $ map patchSCC sccs
patchSCC (AcyclicSCC b) = AcyclicSCC (patchBlock b)
patchSCC (CyclicSCC bs) = CyclicSCC (map patchBlock bs)
patchBlock (BasicBlock id lis)
= BasicBlock id $ patchInstrs lis
patchInstrs [] = []
patchInstrs (li : lis)
| LiveInstr i (Just live) <- li'
, Just (r1, r2) <- takeRegRegMoveInstr i
, eatMe r1 r2 live
= patchInstrs lis
| otherwise
= li' : patchInstrs lis
where li' = patchRegsLiveInstr patchF li
eatMe r1 r2 live
-- source and destination regs are the same
| r1 == r2 = True
-- destination reg is never used
| elementOfUniqSet r2 (liveBorn live)
, elementOfUniqSet r2 (liveDieRead live) || elementOfUniqSet r2 (liveDieWrite live)
= True
| otherwise = False
-- | Patch registers in this LiveInstr, including the liveness information.
--
patchRegsLiveInstr
:: Instruction instr
=> (Reg -> Reg)
-> LiveInstr instr -> LiveInstr instr
patchRegsLiveInstr patchF li
= case li of
LiveInstr instr Nothing
-> LiveInstr (patchRegsOfInstr instr patchF) Nothing
LiveInstr instr (Just live)
-> LiveInstr
(patchRegsOfInstr instr patchF)
(Just live
{ -- WARNING: have to go via lists here because patchF changes the uniq in the Reg
liveBorn = mapUniqSet patchF $ liveBorn live
, liveDieRead = mapUniqSet patchF $ liveDieRead live
, liveDieWrite = mapUniqSet patchF $ liveDieWrite live })
-- See Note [Unique Determinism and code generation]
--------------------------------------------------------------------------------
-- | Convert a NatCmmDecl to a LiveCmmDecl, with liveness information
cmmTopLiveness
:: (Outputable instr, Instruction instr)
=> Maybe CFG -> Platform
-> NatCmmDecl statics instr
-> UniqSM (LiveCmmDecl statics instr)
cmmTopLiveness cfg platform cmm
= regLiveness platform $ natCmmTopToLive cfg cmm
natCmmTopToLive
:: (Instruction instr, Outputable instr)
=> Maybe CFG -> NatCmmDecl statics instr
-> LiveCmmDecl statics instr
natCmmTopToLive _ (CmmData i d)
= CmmData i d
natCmmTopToLive _ (CmmProc info lbl live (ListGraph []))
= CmmProc (LiveInfo info [] mapEmpty mapEmpty) lbl live []
natCmmTopToLive mCfg proc@(CmmProc info lbl live (ListGraph blocks@(first : _)))
= CmmProc (LiveInfo info' (first_id : entry_ids) mapEmpty mapEmpty)
lbl live sccsLive
where
first_id = blockId first
all_entry_ids = entryBlocks proc
sccs = sccBlocks blocks all_entry_ids mCfg
sccsLive = map (fmap (\(BasicBlock l instrs) ->
BasicBlock l (map (\i -> LiveInstr (Instr i) Nothing) instrs)))
$ sccs
entry_ids = filter (reachable_node) .
filter (/= first_id) $ all_entry_ids
info' = mapFilterWithKey (\node _ -> reachable_node node) info
reachable_node
| Just cfg <- mCfg
= hasNode cfg
| otherwise
= const True
--
-- Compute the liveness graph of the set of basic blocks. Important:
-- we also discard any unreachable code here, starting from the entry
-- points (the first block in the list, and any blocks with info
-- tables). Unreachable code arises when code blocks are orphaned in
-- earlier optimisation passes, and may confuse the register allocator
-- by referring to registers that are not initialised. It's easy to
-- discard the unreachable code as part of the SCC pass, so that's
-- exactly what we do. (#7574)
--
sccBlocks
:: forall instr . Instruction instr
=> [NatBasicBlock instr]
-> [BlockId]
-> Maybe CFG
-> [SCC (NatBasicBlock instr)]
sccBlocks blocks entries mcfg = map (fmap node_payload) sccs
where
nodes :: [ Node BlockId (NatBasicBlock instr) ]
nodes = [ DigraphNode block id (getOutEdges instrs)
| block@(BasicBlock id instrs) <- blocks ]
g1 = graphFromEdgedVerticesUniq nodes
reachable :: LabelSet
reachable
| Just cfg <- mcfg
-- Our CFG only contains reachable nodes by construction at this point.
= setFromList $ getCfgNodes cfg
| otherwise
= setFromList $ [ node_key node | node <- reachablesG g1 roots ]
g2 = graphFromEdgedVerticesUniq [ node | node <- nodes
, node_key node
`setMember` reachable ]
sccs = stronglyConnCompG g2
getOutEdges :: Instruction instr => [instr] -> [BlockId]
getOutEdges instrs = concat $ map jumpDestsOfInstr instrs
-- This is truly ugly, but I don't see a good alternative.
-- Digraph just has the wrong API. We want to identify nodes
-- by their keys (BlockId), but Digraph requires the whole
-- node: (NatBasicBlock, BlockId, [BlockId]). This takes
-- advantage of the fact that Digraph only looks at the key,
-- even though it asks for the whole triple.
roots = [DigraphNode (panic "sccBlocks") b (panic "sccBlocks")
| b <- entries ]
--------------------------------------------------------------------------------
-- Annotate code with register liveness information
--
regLiveness
:: (Outputable instr, Instruction instr)
=> Platform
-> LiveCmmDecl statics instr
-> UniqSM (LiveCmmDecl statics instr)
regLiveness _ (CmmData i d)
= return $ CmmData i d
regLiveness _ (CmmProc info lbl live [])
| LiveInfo static mFirst _ _ <- info
= return $ CmmProc
(LiveInfo static mFirst mapEmpty mapEmpty)
lbl live []
regLiveness platform (CmmProc info lbl live sccs)
| LiveInfo static mFirst _ liveSlotsOnEntry <- info
= let (ann_sccs, block_live) = computeLiveness platform sccs
in return $ CmmProc (LiveInfo static mFirst block_live liveSlotsOnEntry)
lbl live ann_sccs
-- -----------------------------------------------------------------------------
-- | Check ordering of Blocks
-- The computeLiveness function requires SCCs to be in reverse
-- dependent order. If they're not the liveness information will be
-- wrong, and we'll get a bad allocation. Better to check for this
-- precondition explicitly or some other poor sucker will waste a
-- day staring at bad assembly code..
--
checkIsReverseDependent
:: Instruction instr
=> [SCC (LiveBasicBlock instr)] -- ^ SCCs of blocks that we're about to run the liveness determinator on.
-> Maybe BlockId -- ^ BlockIds that fail the test (if any)
checkIsReverseDependent sccs'
= go emptyUniqSet sccs'
where go _ []
= Nothing
go blocksSeen (AcyclicSCC block : sccs)
= let dests = slurpJumpDestsOfBlock block
blocksSeen' = unionUniqSets blocksSeen $ mkUniqSet [blockId block]
badDests = dests `minusUniqSet` blocksSeen'
in case nonDetEltsUniqSet badDests of
-- See Note [Unique Determinism and code generation]
[] -> go blocksSeen' sccs
bad : _ -> Just bad
go blocksSeen (CyclicSCC blocks : sccs)
= let dests = unionManyUniqSets $ map slurpJumpDestsOfBlock blocks
blocksSeen' = unionUniqSets blocksSeen $ mkUniqSet $ map blockId blocks
badDests = dests `minusUniqSet` blocksSeen'
in case nonDetEltsUniqSet badDests of
-- See Note [Unique Determinism and code generation]
[] -> go blocksSeen' sccs
bad : _ -> Just bad
slurpJumpDestsOfBlock (BasicBlock _ instrs)
= unionManyUniqSets
$ map (mkUniqSet . jumpDestsOfInstr)
[ i | LiveInstr i _ <- instrs]
-- | If we've compute liveness info for this code already we have to reverse
-- the SCCs in each top to get them back to the right order so we can do it again.
reverseBlocksInTops :: LiveCmmDecl statics instr -> LiveCmmDecl statics instr
reverseBlocksInTops top
= case top of
CmmData{} -> top
CmmProc info lbl live sccs -> CmmProc info lbl live (reverse sccs)
-- | Computing liveness
--
-- On entry, the SCCs must be in "reverse" order: later blocks may transfer
-- control to earlier ones only, else `panic`.
--
-- The SCCs returned are in the *opposite* order, which is exactly what we
-- want for the next pass.
--
computeLiveness
:: (Outputable instr, Instruction instr)
=> Platform
-> [SCC (LiveBasicBlock instr)]
-> ([SCC (LiveBasicBlock instr)], -- instructions annotated with list of registers
-- which are "dead after this instruction".
BlockMap RegSet) -- blocks annotated with set of live registers
-- on entry to the block.
computeLiveness platform sccs
= case checkIsReverseDependent sccs of
Nothing -> livenessSCCs platform mapEmpty [] sccs
Just bad -> pprPanic "RegAlloc.Liveness.computeLiveness"
(vcat [ text "SCCs aren't in reverse dependent order"
, text "bad blockId" <+> ppr bad
, ppr sccs])
livenessSCCs
:: Instruction instr
=> Platform
-> BlockMap RegSet
-> [SCC (LiveBasicBlock instr)] -- accum
-> [SCC (LiveBasicBlock instr)]
-> ( [SCC (LiveBasicBlock instr)]
, BlockMap RegSet)
livenessSCCs _ blockmap done []
= (done, blockmap)
livenessSCCs platform blockmap done (AcyclicSCC block : sccs)
= let (blockmap', block') = livenessBlock platform blockmap block
in livenessSCCs platform blockmap' (AcyclicSCC block' : done) sccs
livenessSCCs platform blockmap done
(CyclicSCC blocks : sccs) =
livenessSCCs platform blockmap' (CyclicSCC blocks':done) sccs
where (blockmap', blocks')
= iterateUntilUnchanged linearLiveness equalBlockMaps
blockmap blocks
iterateUntilUnchanged
:: (a -> b -> (a,c)) -> (a -> a -> Bool)
-> a -> b
-> (a,c)
iterateUntilUnchanged f eq a b
= head $
concatMap tail $
groupBy (\(a1, _) (a2, _) -> eq a1 a2) $
iterate (\(a, _) -> f a b) $
(a, panic "RegLiveness.livenessSCCs")
linearLiveness
:: Instruction instr
=> BlockMap RegSet -> [LiveBasicBlock instr]
-> (BlockMap RegSet, [LiveBasicBlock instr])
linearLiveness = mapAccumL (livenessBlock platform)
-- probably the least efficient way to compare two
-- BlockMaps for equality.
equalBlockMaps a b
= a' == b'
where a' = map f $ mapToList a
b' = map f $ mapToList b
f (key,elt) = (key, nonDetEltsUniqSet elt)
-- See Note [Unique Determinism and code generation]
-- | Annotate a basic block with register liveness information.
--
livenessBlock
:: Instruction instr
=> Platform
-> BlockMap RegSet
-> LiveBasicBlock instr
-> (BlockMap RegSet, LiveBasicBlock instr)
livenessBlock platform blockmap (BasicBlock block_id instrs)
= let
(regsLiveOnEntry, instrs1)
= livenessBack platform emptyUniqSet blockmap [] (reverse instrs)
blockmap' = mapInsert block_id regsLiveOnEntry blockmap
instrs2 = livenessForward platform regsLiveOnEntry instrs1
output = BasicBlock block_id instrs2
in ( blockmap', output)
-- | Calculate liveness going forwards,
-- filling in when regs are born
livenessForward
:: Instruction instr
=> Platform
-> RegSet -- regs live on this instr
-> [LiveInstr instr] -> [LiveInstr instr]
livenessForward _ _ [] = []
livenessForward platform rsLiveEntry (li@(LiveInstr instr mLive) : lis)
| Just live <- mLive
= let
RU _ written = regUsageOfInstr platform instr
-- Regs that are written to but weren't live on entry to this instruction
-- are recorded as being born here.
rsBorn = mkUniqSet
$ filter (\r -> not $ elementOfUniqSet r rsLiveEntry) written
rsLiveNext = (rsLiveEntry `unionUniqSets` rsBorn)
`minusUniqSet` (liveDieRead live)
`minusUniqSet` (liveDieWrite live)
in LiveInstr instr (Just live { liveBorn = rsBorn })
: livenessForward platform rsLiveNext lis
| otherwise
= li : livenessForward platform rsLiveEntry lis
-- | Calculate liveness going backwards,
-- filling in when regs die, and what regs are live across each instruction
livenessBack
:: Instruction instr
=> Platform
-> RegSet -- regs live on this instr
-> BlockMap RegSet -- regs live on entry to other BBs
-> [LiveInstr instr] -- instructions (accum)
-> [LiveInstr instr] -- instructions
-> (RegSet, [LiveInstr instr])
livenessBack _ liveregs _ done [] = (liveregs, done)
livenessBack platform liveregs blockmap acc (instr : instrs)
= let (liveregs', instr') = liveness1 platform liveregs blockmap instr
in livenessBack platform liveregs' blockmap (instr' : acc) instrs
-- don't bother tagging comments or deltas with liveness
liveness1
:: Instruction instr
=> Platform
-> RegSet
-> BlockMap RegSet
-> LiveInstr instr
-> (RegSet, LiveInstr instr)
liveness1 _ liveregs _ (LiveInstr instr _)
| isMetaInstr instr
= (liveregs, LiveInstr instr Nothing)
liveness1 platform liveregs blockmap (LiveInstr instr _)
| not_a_branch
= (liveregs1, LiveInstr instr
(Just $ Liveness
{ liveBorn = emptyUniqSet
, liveDieRead = mkUniqSet r_dying
, liveDieWrite = mkUniqSet w_dying }))
| otherwise
= (liveregs_br, LiveInstr instr
(Just $ Liveness
{ liveBorn = emptyUniqSet
, liveDieRead = mkUniqSet r_dying_br
, liveDieWrite = mkUniqSet w_dying }))
where
!(RU read written) = regUsageOfInstr platform instr
-- registers that were written here are dead going backwards.
-- registers that were read here are live going backwards.
liveregs1 = (liveregs `delListFromUniqSet` written)
`addListToUniqSet` read
-- registers that are not live beyond this point, are recorded
-- as dying here.
r_dying = [ reg | reg <- read, reg `notElem` written,
not (elementOfUniqSet reg liveregs) ]
w_dying = [ reg | reg <- written,
not (elementOfUniqSet reg liveregs) ]
-- union in the live regs from all the jump destinations of this
-- instruction.
targets = jumpDestsOfInstr instr -- where we go from here
not_a_branch = null targets
targetLiveRegs target
= case mapLookup target blockmap of
Just ra -> ra
Nothing -> emptyRegSet
live_from_branch = unionManyUniqSets (map targetLiveRegs targets)
liveregs_br = liveregs1 `unionUniqSets` live_from_branch
-- registers that are live only in the branch targets should
-- be listed as dying here.
live_branch_only = live_from_branch `minusUniqSet` liveregs
r_dying_br = nonDetEltsUniqSet (mkUniqSet r_dying `unionUniqSets`
live_branch_only)
-- See Note [Unique Determinism and code generation]
|