1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
|
-----------------------------------------------------------------------------
--
-- Machine-specific parts of the register allocator
--
-- (c) The University of Glasgow 1996-2004
--
-----------------------------------------------------------------------------
{-# OPTIONS_GHC -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
-- http://hackage.haskell.org/trac/ghc/wiki/WorkingConventions#Warnings
-- for details
#include "nativeGen/NCG.h"
module RegAllocInfo (
RegUsage(..),
noUsage,
regUsage,
patchRegs,
jumpDests,
patchJump,
isRegRegMove,
JumpDest, canShortcut, shortcutJump, shortcutStatic,
maxSpillSlots,
mkSpillInstr,
mkLoadInstr,
mkRegRegMoveInstr,
mkBranchInstr
) where
#include "HsVersions.h"
import Cmm
import CLabel
import MachOp ( MachRep(..), wordRep )
import MachInstrs
import MachRegs
import Outputable
import Constants ( rESERVED_C_STACK_BYTES )
import FastTypes
-- -----------------------------------------------------------------------------
-- RegUsage type
-- @regUsage@ returns the sets of src and destination registers used
-- by a particular instruction. Machine registers that are
-- pre-allocated to stgRegs are filtered out, because they are
-- uninteresting from a register allocation standpoint. (We wouldn't
-- want them to end up on the free list!) As far as we are concerned,
-- the fixed registers simply don't exist (for allocation purposes,
-- anyway).
-- regUsage doesn't need to do any trickery for jumps and such. Just
-- state precisely the regs read and written by that insn. The
-- consequences of control flow transfers, as far as register
-- allocation goes, are taken care of by the register allocator.
data RegUsage = RU [Reg] [Reg]
noUsage :: RegUsage
noUsage = RU [] []
regUsage :: Instr -> RegUsage
interesting (VirtualRegI _) = True
interesting (VirtualRegHi _) = True
interesting (VirtualRegF _) = True
interesting (VirtualRegD _) = True
interesting (RealReg i) = isFastTrue (freeReg i)
#if alpha_TARGET_ARCH
regUsage instr = case instr of
SPILL reg slot -> usage ([reg], [])
RELOAD slot reg -> usage ([], [reg])
LD B reg addr -> usage (regAddr addr, [reg, t9])
LD Bu reg addr -> usage (regAddr addr, [reg, t9])
-- LD W reg addr -> usage (regAddr addr, [reg, t9]) : UNUSED
-- LD Wu reg addr -> usage (regAddr addr, [reg, t9]) : UNUSED
LD sz reg addr -> usage (regAddr addr, [reg])
LDA reg addr -> usage (regAddr addr, [reg])
LDAH reg addr -> usage (regAddr addr, [reg])
LDGP reg addr -> usage (regAddr addr, [reg])
LDI sz reg imm -> usage ([], [reg])
ST B reg addr -> usage (reg : regAddr addr, [t9, t10])
-- ST W reg addr -> usage (reg : regAddr addr, [t9, t10]) : UNUSED
ST sz reg addr -> usage (reg : regAddr addr, [])
CLR reg -> usage ([], [reg])
ABS sz ri reg -> usage (regRI ri, [reg])
NEG sz ov ri reg -> usage (regRI ri, [reg])
ADD sz ov r1 ar r2 -> usage (r1 : regRI ar, [r2])
SADD sz sc r1 ar r2 -> usage (r1 : regRI ar, [r2])
SUB sz ov r1 ar r2 -> usage (r1 : regRI ar, [r2])
SSUB sz sc r1 ar r2 -> usage (r1 : regRI ar, [r2])
MUL sz ov r1 ar r2 -> usage (r1 : regRI ar, [r2])
DIV sz un r1 ar r2 -> usage (r1 : regRI ar, [r2, t9, t10, t11, t12])
REM sz un r1 ar r2 -> usage (r1 : regRI ar, [r2, t9, t10, t11, t12])
NOT ri reg -> usage (regRI ri, [reg])
AND r1 ar r2 -> usage (r1 : regRI ar, [r2])
ANDNOT r1 ar r2 -> usage (r1 : regRI ar, [r2])
OR r1 ar r2 -> usage (r1 : regRI ar, [r2])
ORNOT r1 ar r2 -> usage (r1 : regRI ar, [r2])
XOR r1 ar r2 -> usage (r1 : regRI ar, [r2])
XORNOT r1 ar r2 -> usage (r1 : regRI ar, [r2])
SLL r1 ar r2 -> usage (r1 : regRI ar, [r2])
SRL r1 ar r2 -> usage (r1 : regRI ar, [r2])
SRA r1 ar r2 -> usage (r1 : regRI ar, [r2])
ZAP r1 ar r2 -> usage (r1 : regRI ar, [r2])
ZAPNOT r1 ar r2 -> usage (r1 : regRI ar, [r2])
CMP co r1 ar r2 -> usage (r1 : regRI ar, [r2])
FCLR reg -> usage ([], [reg])
FABS r1 r2 -> usage ([r1], [r2])
FNEG sz r1 r2 -> usage ([r1], [r2])
FADD sz r1 r2 r3 -> usage ([r1, r2], [r3])
FDIV sz r1 r2 r3 -> usage ([r1, r2], [r3])
FMUL sz r1 r2 r3 -> usage ([r1, r2], [r3])
FSUB sz r1 r2 r3 -> usage ([r1, r2], [r3])
CVTxy sz1 sz2 r1 r2 -> usage ([r1], [r2])
FCMP sz co r1 r2 r3 -> usage ([r1, r2], [r3])
FMOV r1 r2 -> usage ([r1], [r2])
-- We assume that all local jumps will be BI/BF/BR. JMP must be out-of-line.
BI cond reg lbl -> usage ([reg], [])
BF cond reg lbl -> usage ([reg], [])
JMP reg addr hint -> RU (mkRegSet (filter interesting (regAddr addr))) freeRegSet
BSR _ n -> RU (argRegSet n) callClobberedRegSet
JSR reg addr n -> RU (argRegSet n) callClobberedRegSet
_ -> noUsage
where
usage (src, dst) = RU (mkRegSet (filter interesting src))
(mkRegSet (filter interesting dst))
interesting (FixedReg _) = False
interesting _ = True
regAddr (AddrReg r1) = [r1]
regAddr (AddrRegImm r1 _) = [r1]
regAddr (AddrImm _) = []
regRI (RIReg r) = [r]
regRI _ = []
#endif /* alpha_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
regUsage instr = case instr of
MOV sz src dst -> usageRW src dst
MOVZxL sz src dst -> usageRW src dst
MOVSxL sz src dst -> usageRW src dst
LEA sz src dst -> usageRW src dst
ADD sz src dst -> usageRM src dst
ADC sz src dst -> usageRM src dst
SUB sz src dst -> usageRM src dst
IMUL sz src dst -> usageRM src dst
IMUL2 sz src -> mkRU (eax:use_R src) [eax,edx]
MUL sz src dst -> usageRM src dst
DIV sz op -> mkRU (eax:edx:use_R op) [eax,edx]
IDIV sz op -> mkRU (eax:edx:use_R op) [eax,edx]
AND sz src dst -> usageRM src dst
OR sz src dst -> usageRM src dst
XOR sz (OpReg src) (OpReg dst)
| src == dst -> mkRU [] [dst]
XOR sz src dst -> usageRM src dst
NOT sz op -> usageM op
NEGI sz op -> usageM op
SHL sz imm dst -> usageRM imm dst
SAR sz imm dst -> usageRM imm dst
SHR sz imm dst -> usageRM imm dst
BT sz imm src -> mkRUR (use_R src)
PUSH sz op -> mkRUR (use_R op)
POP sz op -> mkRU [] (def_W op)
TEST sz src dst -> mkRUR (use_R src ++ use_R dst)
CMP sz src dst -> mkRUR (use_R src ++ use_R dst)
SETCC cond op -> mkRU [] (def_W op)
JXX cond lbl -> mkRU [] []
JXX_GBL cond lbl -> mkRU [] []
JMP op -> mkRUR (use_R op)
JMP_TBL op ids -> mkRUR (use_R op)
CALL (Left imm) params -> mkRU params callClobberedRegs
CALL (Right reg) params -> mkRU (reg:params) callClobberedRegs
CLTD sz -> mkRU [eax] [edx]
NOP -> mkRU [] []
#if i386_TARGET_ARCH
GMOV src dst -> mkRU [src] [dst]
GLD sz src dst -> mkRU (use_EA src) [dst]
GST sz src dst -> mkRUR (src : use_EA dst)
GLDZ dst -> mkRU [] [dst]
GLD1 dst -> mkRU [] [dst]
GFTOI src dst -> mkRU [src] [dst]
GDTOI src dst -> mkRU [src] [dst]
GITOF src dst -> mkRU [src] [dst]
GITOD src dst -> mkRU [src] [dst]
GADD sz s1 s2 dst -> mkRU [s1,s2] [dst]
GSUB sz s1 s2 dst -> mkRU [s1,s2] [dst]
GMUL sz s1 s2 dst -> mkRU [s1,s2] [dst]
GDIV sz s1 s2 dst -> mkRU [s1,s2] [dst]
GCMP sz src1 src2 -> mkRUR [src1,src2]
GABS sz src dst -> mkRU [src] [dst]
GNEG sz src dst -> mkRU [src] [dst]
GSQRT sz src dst -> mkRU [src] [dst]
GSIN sz src dst -> mkRU [src] [dst]
GCOS sz src dst -> mkRU [src] [dst]
GTAN sz src dst -> mkRU [src] [dst]
#endif
#if x86_64_TARGET_ARCH
CVTSS2SD src dst -> mkRU [src] [dst]
CVTSD2SS src dst -> mkRU [src] [dst]
CVTTSS2SIQ src dst -> mkRU (use_R src) [dst]
CVTTSD2SIQ src dst -> mkRU (use_R src) [dst]
CVTSI2SS src dst -> mkRU (use_R src) [dst]
CVTSI2SD src dst -> mkRU (use_R src) [dst]
FDIV sz src dst -> usageRM src dst
#endif
FETCHGOT reg -> mkRU [] [reg]
FETCHPC reg -> mkRU [] [reg]
COMMENT _ -> noUsage
DELTA _ -> noUsage
SPILL reg slot -> mkRU [reg] []
RELOAD slot reg -> mkRU [] [reg]
_other -> panic "regUsage: unrecognised instr"
where
-- 2 operand form; first operand Read; second Written
usageRW :: Operand -> Operand -> RegUsage
usageRW op (OpReg reg) = mkRU (use_R op) [reg]
usageRW op (OpAddr ea) = mkRUR (use_R op ++ use_EA ea)
-- 2 operand form; first operand Read; second Modified
usageRM :: Operand -> Operand -> RegUsage
usageRM op (OpReg reg) = mkRU (use_R op ++ [reg]) [reg]
usageRM op (OpAddr ea) = mkRUR (use_R op ++ use_EA ea)
-- 1 operand form; operand Modified
usageM :: Operand -> RegUsage
usageM (OpReg reg) = mkRU [reg] [reg]
usageM (OpAddr ea) = mkRUR (use_EA ea)
-- Registers defd when an operand is written.
def_W (OpReg reg) = [reg]
def_W (OpAddr ea) = []
-- Registers used when an operand is read.
use_R (OpReg reg) = [reg]
use_R (OpImm imm) = []
use_R (OpAddr ea) = use_EA ea
-- Registers used to compute an effective address.
use_EA (ImmAddr _ _) = []
use_EA (AddrBaseIndex base index _) =
use_base base $! use_index index
where use_base (EABaseReg r) x = r : x
use_base _ x = x
use_index EAIndexNone = []
use_index (EAIndex i _) = [i]
mkRUR src = src' `seq` RU src' []
where src' = filter interesting src
mkRU src dst = src' `seq` dst' `seq` RU src' dst'
where src' = filter interesting src
dst' = filter interesting dst
#endif /* i386_TARGET_ARCH || x86_64_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if sparc_TARGET_ARCH
regUsage instr = case instr of
SPILL reg slot -> usage ([reg], [])
RELOAD slot reg -> usage ([], [reg])
LD sz addr reg -> usage (regAddr addr, [reg])
ST sz reg addr -> usage (reg : regAddr addr, [])
ADD x cc r1 ar r2 -> usage (r1 : regRI ar, [r2])
SUB x cc r1 ar r2 -> usage (r1 : regRI ar, [r2])
UMUL cc r1 ar r2 -> usage (r1 : regRI ar, [r2])
SMUL cc r1 ar r2 -> usage (r1 : regRI ar, [r2])
RDY rd -> usage ([], [rd])
AND b r1 ar r2 -> usage (r1 : regRI ar, [r2])
ANDN b r1 ar r2 -> usage (r1 : regRI ar, [r2])
OR b r1 ar r2 -> usage (r1 : regRI ar, [r2])
ORN b r1 ar r2 -> usage (r1 : regRI ar, [r2])
XOR b r1 ar r2 -> usage (r1 : regRI ar, [r2])
XNOR b r1 ar r2 -> usage (r1 : regRI ar, [r2])
SLL r1 ar r2 -> usage (r1 : regRI ar, [r2])
SRL r1 ar r2 -> usage (r1 : regRI ar, [r2])
SRA r1 ar r2 -> usage (r1 : regRI ar, [r2])
SETHI imm reg -> usage ([], [reg])
FABS s r1 r2 -> usage ([r1], [r2])
FADD s r1 r2 r3 -> usage ([r1, r2], [r3])
FCMP e s r1 r2 -> usage ([r1, r2], [])
FDIV s r1 r2 r3 -> usage ([r1, r2], [r3])
FMOV s r1 r2 -> usage ([r1], [r2])
FMUL s r1 r2 r3 -> usage ([r1, r2], [r3])
FNEG s r1 r2 -> usage ([r1], [r2])
FSQRT s r1 r2 -> usage ([r1], [r2])
FSUB s r1 r2 r3 -> usage ([r1, r2], [r3])
FxTOy s1 s2 r1 r2 -> usage ([r1], [r2])
-- We assume that all local jumps will be BI/BF. JMP must be out-of-line.
JMP addr -> usage (regAddr addr, [])
CALL (Left imm) n True -> noUsage
CALL (Left imm) n False -> usage (argRegs n, callClobberedRegs)
CALL (Right reg) n True -> usage ([reg], [])
CALL (Right reg) n False -> usage (reg : (argRegs n), callClobberedRegs)
_ -> noUsage
where
usage (src, dst) = RU (filter interesting src)
(filter interesting dst)
regAddr (AddrRegReg r1 r2) = [r1, r2]
regAddr (AddrRegImm r1 _) = [r1]
regRI (RIReg r) = [r]
regRI _ = []
#endif /* sparc_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if powerpc_TARGET_ARCH
regUsage instr = case instr of
SPILL reg slot -> usage ([reg], [])
RELOAD slot reg -> usage ([], [reg])
LD sz reg addr -> usage (regAddr addr, [reg])
LA sz reg addr -> usage (regAddr addr, [reg])
ST sz reg addr -> usage (reg : regAddr addr, [])
STU sz reg addr -> usage (reg : regAddr addr, [])
LIS reg imm -> usage ([], [reg])
LI reg imm -> usage ([], [reg])
MR reg1 reg2 -> usage ([reg2], [reg1])
CMP sz reg ri -> usage (reg : regRI ri,[])
CMPL sz reg ri -> usage (reg : regRI ri,[])
BCC cond lbl -> noUsage
BCCFAR cond lbl -> noUsage
MTCTR reg -> usage ([reg],[])
BCTR targets -> noUsage
BL imm params -> usage (params, callClobberedRegs)
BCTRL params -> usage (params, callClobberedRegs)
ADD reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
ADDC reg1 reg2 reg3-> usage ([reg2,reg3], [reg1])
ADDE reg1 reg2 reg3-> usage ([reg2,reg3], [reg1])
ADDIS reg1 reg2 imm -> usage ([reg2], [reg1])
SUBF reg1 reg2 reg3-> usage ([reg2,reg3], [reg1])
MULLW reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
DIVW reg1 reg2 reg3-> usage ([reg2,reg3], [reg1])
DIVWU reg1 reg2 reg3-> usage ([reg2,reg3], [reg1])
MULLW_MayOflo reg1 reg2 reg3
-> usage ([reg2,reg3], [reg1])
AND reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
OR reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
XOR reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
XORIS reg1 reg2 imm -> usage ([reg2], [reg1])
EXTS siz reg1 reg2 -> usage ([reg2], [reg1])
NEG reg1 reg2 -> usage ([reg2], [reg1])
NOT reg1 reg2 -> usage ([reg2], [reg1])
SLW reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
SRW reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
SRAW reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
RLWINM reg1 reg2 sh mb me
-> usage ([reg2], [reg1])
FADD sz r1 r2 r3 -> usage ([r2,r3], [r1])
FSUB sz r1 r2 r3 -> usage ([r2,r3], [r1])
FMUL sz r1 r2 r3 -> usage ([r2,r3], [r1])
FDIV sz r1 r2 r3 -> usage ([r2,r3], [r1])
FNEG r1 r2 -> usage ([r2], [r1])
FCMP r1 r2 -> usage ([r1,r2], [])
FCTIWZ r1 r2 -> usage ([r2], [r1])
FRSP r1 r2 -> usage ([r2], [r1])
MFCR reg -> usage ([], [reg])
MFLR reg -> usage ([], [reg])
FETCHPC reg -> usage ([], [reg])
_ -> noUsage
where
usage (src, dst) = RU (filter interesting src)
(filter interesting dst)
regAddr (AddrRegReg r1 r2) = [r1, r2]
regAddr (AddrRegImm r1 _) = [r1]
regRI (RIReg r) = [r]
regRI _ = []
#endif /* powerpc_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- Determine the possible destinations from the current instruction.
-- (we always assume that the next instruction is also a valid destination;
-- if this isn't the case then the jump should be at the end of the basic
-- block).
jumpDests :: Instr -> [BlockId] -> [BlockId]
jumpDests insn acc
= case insn of
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
JXX _ id -> id : acc
JMP_TBL _ ids -> ids ++ acc
#elif powerpc_TARGET_ARCH
BCC _ id -> id : acc
BCCFAR _ id -> id : acc
BCTR targets -> targets ++ acc
#endif
_other -> acc
patchJump :: Instr -> BlockId -> BlockId -> Instr
patchJump insn old new
= case insn of
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
JXX cc id | id == old -> JXX cc new
JMP_TBL op ids -> error "Cannot patch JMP_TBL"
#elif powerpc_TARGET_ARCH
BCC cc id | id == old -> BCC cc new
BCCFAR cc id | id == old -> BCCFAR cc new
BCTR targets -> error "Cannot patch BCTR"
#endif
_other -> insn
data JumpDest = DestBlockId BlockId | DestImm Imm
canShortcut :: Instr -> Maybe JumpDest
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
canShortcut (JXX ALWAYS id) = Just (DestBlockId id)
canShortcut (JMP (OpImm imm)) = Just (DestImm imm)
#endif
canShortcut _ = Nothing
shortcutJump :: (BlockId -> Maybe JumpDest) -> Instr -> Instr
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
shortcutJump fn insn@(JXX cc id) =
case fn id of
Nothing -> insn
Just (DestBlockId id') -> shortcutJump fn (JXX cc id')
Just (DestImm imm) -> shortcutJump fn (JXX_GBL cc imm)
#endif
shortcutJump fn other = other
-- Here because it knows about JumpDest
shortcutStatic :: (BlockId -> Maybe JumpDest) -> CmmStatic -> CmmStatic
shortcutStatic fn (CmmStaticLit (CmmLabel lab))
| Just uq <- maybeAsmTemp lab
= CmmStaticLit (CmmLabel (shortBlockId fn (BlockId uq)))
shortcutStatic fn (CmmStaticLit (CmmLabelDiffOff lbl1 lbl2 off))
| Just uq <- maybeAsmTemp lbl1
= CmmStaticLit (CmmLabelDiffOff (shortBlockId fn (BlockId uq)) lbl2 off)
-- slightly dodgy, we're ignoring the second label, but this
-- works with the way we use CmmLabelDiffOff for jump tables now.
shortcutStatic fn other_static
= other_static
shortBlockId fn blockid@(BlockId uq) =
case fn blockid of
Nothing -> mkAsmTempLabel uq
Just (DestBlockId blockid') -> shortBlockId fn blockid'
Just (DestImm (ImmCLbl lbl)) -> lbl
_other -> panic "shortBlockId"
-- -----------------------------------------------------------------------------
-- 'patchRegs' function
-- 'patchRegs' takes an instruction and applies the given mapping to
-- all the register references.
patchRegs :: Instr -> (Reg -> Reg) -> Instr
#if alpha_TARGET_ARCH
patchRegs instr env = case instr of
SPILL reg slot -> SPILL (env reg) slot
RELOAD slot reg -> RELOAD slot (env reg)
LD sz reg addr -> LD sz (env reg) (fixAddr addr)
LDA reg addr -> LDA (env reg) (fixAddr addr)
LDAH reg addr -> LDAH (env reg) (fixAddr addr)
LDGP reg addr -> LDGP (env reg) (fixAddr addr)
LDI sz reg imm -> LDI sz (env reg) imm
ST sz reg addr -> ST sz (env reg) (fixAddr addr)
CLR reg -> CLR (env reg)
ABS sz ar reg -> ABS sz (fixRI ar) (env reg)
NEG sz ov ar reg -> NEG sz ov (fixRI ar) (env reg)
ADD sz ov r1 ar r2 -> ADD sz ov (env r1) (fixRI ar) (env r2)
SADD sz sc r1 ar r2 -> SADD sz sc (env r1) (fixRI ar) (env r2)
SUB sz ov r1 ar r2 -> SUB sz ov (env r1) (fixRI ar) (env r2)
SSUB sz sc r1 ar r2 -> SSUB sz sc (env r1) (fixRI ar) (env r2)
MUL sz ov r1 ar r2 -> MUL sz ov (env r1) (fixRI ar) (env r2)
DIV sz un r1 ar r2 -> DIV sz un (env r1) (fixRI ar) (env r2)
REM sz un r1 ar r2 -> REM sz un (env r1) (fixRI ar) (env r2)
NOT ar reg -> NOT (fixRI ar) (env reg)
AND r1 ar r2 -> AND (env r1) (fixRI ar) (env r2)
ANDNOT r1 ar r2 -> ANDNOT (env r1) (fixRI ar) (env r2)
OR r1 ar r2 -> OR (env r1) (fixRI ar) (env r2)
ORNOT r1 ar r2 -> ORNOT (env r1) (fixRI ar) (env r2)
XOR r1 ar r2 -> XOR (env r1) (fixRI ar) (env r2)
XORNOT r1 ar r2 -> XORNOT (env r1) (fixRI ar) (env r2)
SLL r1 ar r2 -> SLL (env r1) (fixRI ar) (env r2)
SRL r1 ar r2 -> SRL (env r1) (fixRI ar) (env r2)
SRA r1 ar r2 -> SRA (env r1) (fixRI ar) (env r2)
ZAP r1 ar r2 -> ZAP (env r1) (fixRI ar) (env r2)
ZAPNOT r1 ar r2 -> ZAPNOT (env r1) (fixRI ar) (env r2)
CMP co r1 ar r2 -> CMP co (env r1) (fixRI ar) (env r2)
FCLR reg -> FCLR (env reg)
FABS r1 r2 -> FABS (env r1) (env r2)
FNEG s r1 r2 -> FNEG s (env r1) (env r2)
FADD s r1 r2 r3 -> FADD s (env r1) (env r2) (env r3)
FDIV s r1 r2 r3 -> FDIV s (env r1) (env r2) (env r3)
FMUL s r1 r2 r3 -> FMUL s (env r1) (env r2) (env r3)
FSUB s r1 r2 r3 -> FSUB s (env r1) (env r2) (env r3)
CVTxy s1 s2 r1 r2 -> CVTxy s1 s2 (env r1) (env r2)
FCMP s co r1 r2 r3 -> FCMP s co (env r1) (env r2) (env r3)
FMOV r1 r2 -> FMOV (env r1) (env r2)
BI cond reg lbl -> BI cond (env reg) lbl
BF cond reg lbl -> BF cond (env reg) lbl
JMP reg addr hint -> JMP (env reg) (fixAddr addr) hint
JSR reg addr i -> JSR (env reg) (fixAddr addr) i
_ -> instr
where
fixAddr (AddrReg r1) = AddrReg (env r1)
fixAddr (AddrRegImm r1 i) = AddrRegImm (env r1) i
fixAddr other = other
fixRI (RIReg r) = RIReg (env r)
fixRI other = other
#endif /* alpha_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
patchRegs instr env = case instr of
MOV sz src dst -> patch2 (MOV sz) src dst
MOVZxL sz src dst -> patch2 (MOVZxL sz) src dst
MOVSxL sz src dst -> patch2 (MOVSxL sz) src dst
LEA sz src dst -> patch2 (LEA sz) src dst
ADD sz src dst -> patch2 (ADD sz) src dst
ADC sz src dst -> patch2 (ADC sz) src dst
SUB sz src dst -> patch2 (SUB sz) src dst
IMUL sz src dst -> patch2 (IMUL sz) src dst
IMUL2 sz src -> patch1 (IMUL2 sz) src
MUL sz src dst -> patch2 (MUL sz) src dst
IDIV sz op -> patch1 (IDIV sz) op
DIV sz op -> patch1 (DIV sz) op
AND sz src dst -> patch2 (AND sz) src dst
OR sz src dst -> patch2 (OR sz) src dst
XOR sz src dst -> patch2 (XOR sz) src dst
NOT sz op -> patch1 (NOT sz) op
NEGI sz op -> patch1 (NEGI sz) op
SHL sz imm dst -> patch1 (SHL sz imm) dst
SAR sz imm dst -> patch1 (SAR sz imm) dst
SHR sz imm dst -> patch1 (SHR sz imm) dst
BT sz imm src -> patch1 (BT sz imm) src
TEST sz src dst -> patch2 (TEST sz) src dst
CMP sz src dst -> patch2 (CMP sz) src dst
PUSH sz op -> patch1 (PUSH sz) op
POP sz op -> patch1 (POP sz) op
SETCC cond op -> patch1 (SETCC cond) op
JMP op -> patch1 JMP op
JMP_TBL op ids -> patch1 JMP_TBL op $ ids
#if i386_TARGET_ARCH
GMOV src dst -> GMOV (env src) (env dst)
GLD sz src dst -> GLD sz (lookupAddr src) (env dst)
GST sz src dst -> GST sz (env src) (lookupAddr dst)
GLDZ dst -> GLDZ (env dst)
GLD1 dst -> GLD1 (env dst)
GFTOI src dst -> GFTOI (env src) (env dst)
GDTOI src dst -> GDTOI (env src) (env dst)
GITOF src dst -> GITOF (env src) (env dst)
GITOD src dst -> GITOD (env src) (env dst)
GADD sz s1 s2 dst -> GADD sz (env s1) (env s2) (env dst)
GSUB sz s1 s2 dst -> GSUB sz (env s1) (env s2) (env dst)
GMUL sz s1 s2 dst -> GMUL sz (env s1) (env s2) (env dst)
GDIV sz s1 s2 dst -> GDIV sz (env s1) (env s2) (env dst)
GCMP sz src1 src2 -> GCMP sz (env src1) (env src2)
GABS sz src dst -> GABS sz (env src) (env dst)
GNEG sz src dst -> GNEG sz (env src) (env dst)
GSQRT sz src dst -> GSQRT sz (env src) (env dst)
GSIN sz src dst -> GSIN sz (env src) (env dst)
GCOS sz src dst -> GCOS sz (env src) (env dst)
GTAN sz src dst -> GTAN sz (env src) (env dst)
#endif
#if x86_64_TARGET_ARCH
CVTSS2SD src dst -> CVTSS2SD (env src) (env dst)
CVTSD2SS src dst -> CVTSD2SS (env src) (env dst)
CVTTSS2SIQ src dst -> CVTTSS2SIQ (patchOp src) (env dst)
CVTTSD2SIQ src dst -> CVTTSD2SIQ (patchOp src) (env dst)
CVTSI2SS src dst -> CVTSI2SS (patchOp src) (env dst)
CVTSI2SD src dst -> CVTSI2SD (patchOp src) (env dst)
FDIV sz src dst -> FDIV sz (patchOp src) (patchOp dst)
#endif
CALL (Left imm) _ -> instr
CALL (Right reg) p -> CALL (Right (env reg)) p
FETCHGOT reg -> FETCHGOT (env reg)
FETCHPC reg -> FETCHPC (env reg)
NOP -> instr
COMMENT _ -> instr
DELTA _ -> instr
SPILL reg slot -> SPILL (env reg) slot
RELOAD slot reg -> RELOAD slot (env reg)
JXX _ _ -> instr
JXX_GBL _ _ -> instr
CLTD _ -> instr
_other -> panic "patchRegs: unrecognised instr"
where
patch1 insn op = insn $! patchOp op
patch2 insn src dst = (insn $! patchOp src) $! patchOp dst
patchOp (OpReg reg) = OpReg $! env reg
patchOp (OpImm imm) = OpImm imm
patchOp (OpAddr ea) = OpAddr $! lookupAddr ea
lookupAddr (ImmAddr imm off) = ImmAddr imm off
lookupAddr (AddrBaseIndex base index disp)
= ((AddrBaseIndex $! lookupBase base) $! lookupIndex index) disp
where
lookupBase EABaseNone = EABaseNone
lookupBase EABaseRip = EABaseRip
lookupBase (EABaseReg r) = EABaseReg (env r)
lookupIndex EAIndexNone = EAIndexNone
lookupIndex (EAIndex r i) = EAIndex (env r) i
#endif /* i386_TARGET_ARCH || x86_64_TARGET_ARCH*/
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if sparc_TARGET_ARCH
patchRegs instr env = case instr of
SPILL reg slot -> SPILL (env reg) slot
RELOAD slot reg -> RELOAD slot (env reg)
LD sz addr reg -> LD sz (fixAddr addr) (env reg)
ST sz reg addr -> ST sz (env reg) (fixAddr addr)
ADD x cc r1 ar r2 -> ADD x cc (env r1) (fixRI ar) (env r2)
SUB x cc r1 ar r2 -> SUB x cc (env r1) (fixRI ar) (env r2)
UMUL cc r1 ar r2 -> UMUL cc (env r1) (fixRI ar) (env r2)
SMUL cc r1 ar r2 -> SMUL cc (env r1) (fixRI ar) (env r2)
RDY rd -> RDY (env rd)
AND b r1 ar r2 -> AND b (env r1) (fixRI ar) (env r2)
ANDN b r1 ar r2 -> ANDN b (env r1) (fixRI ar) (env r2)
OR b r1 ar r2 -> OR b (env r1) (fixRI ar) (env r2)
ORN b r1 ar r2 -> ORN b (env r1) (fixRI ar) (env r2)
XOR b r1 ar r2 -> XOR b (env r1) (fixRI ar) (env r2)
XNOR b r1 ar r2 -> XNOR b (env r1) (fixRI ar) (env r2)
SLL r1 ar r2 -> SLL (env r1) (fixRI ar) (env r2)
SRL r1 ar r2 -> SRL (env r1) (fixRI ar) (env r2)
SRA r1 ar r2 -> SRA (env r1) (fixRI ar) (env r2)
SETHI imm reg -> SETHI imm (env reg)
FABS s r1 r2 -> FABS s (env r1) (env r2)
FADD s r1 r2 r3 -> FADD s (env r1) (env r2) (env r3)
FCMP e s r1 r2 -> FCMP e s (env r1) (env r2)
FDIV s r1 r2 r3 -> FDIV s (env r1) (env r2) (env r3)
FMOV s r1 r2 -> FMOV s (env r1) (env r2)
FMUL s r1 r2 r3 -> FMUL s (env r1) (env r2) (env r3)
FNEG s r1 r2 -> FNEG s (env r1) (env r2)
FSQRT s r1 r2 -> FSQRT s (env r1) (env r2)
FSUB s r1 r2 r3 -> FSUB s (env r1) (env r2) (env r3)
FxTOy s1 s2 r1 r2 -> FxTOy s1 s2 (env r1) (env r2)
JMP addr -> JMP (fixAddr addr)
CALL (Left i) n t -> CALL (Left i) n t
CALL (Right r) n t -> CALL (Right (env r)) n t
_ -> instr
where
fixAddr (AddrRegReg r1 r2) = AddrRegReg (env r1) (env r2)
fixAddr (AddrRegImm r1 i) = AddrRegImm (env r1) i
fixRI (RIReg r) = RIReg (env r)
fixRI other = other
#endif /* sparc_TARGET_ARCH */
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if powerpc_TARGET_ARCH
patchRegs instr env = case instr of
SPILL reg slot -> SPILL (env reg) slot
RELOAD slot reg -> RELOAD slot (env reg)
LD sz reg addr -> LD sz (env reg) (fixAddr addr)
LA sz reg addr -> LA sz (env reg) (fixAddr addr)
ST sz reg addr -> ST sz (env reg) (fixAddr addr)
STU sz reg addr -> STU sz (env reg) (fixAddr addr)
LIS reg imm -> LIS (env reg) imm
LI reg imm -> LI (env reg) imm
MR reg1 reg2 -> MR (env reg1) (env reg2)
CMP sz reg ri -> CMP sz (env reg) (fixRI ri)
CMPL sz reg ri -> CMPL sz (env reg) (fixRI ri)
BCC cond lbl -> BCC cond lbl
BCCFAR cond lbl -> BCCFAR cond lbl
MTCTR reg -> MTCTR (env reg)
BCTR targets -> BCTR targets
BL imm argRegs -> BL imm argRegs -- argument regs
BCTRL argRegs -> BCTRL argRegs -- cannot be remapped
ADD reg1 reg2 ri -> ADD (env reg1) (env reg2) (fixRI ri)
ADDC reg1 reg2 reg3-> ADDC (env reg1) (env reg2) (env reg3)
ADDE reg1 reg2 reg3-> ADDE (env reg1) (env reg2) (env reg3)
ADDIS reg1 reg2 imm -> ADDIS (env reg1) (env reg2) imm
SUBF reg1 reg2 reg3-> SUBF (env reg1) (env reg2) (env reg3)
MULLW reg1 reg2 ri -> MULLW (env reg1) (env reg2) (fixRI ri)
DIVW reg1 reg2 reg3-> DIVW (env reg1) (env reg2) (env reg3)
DIVWU reg1 reg2 reg3-> DIVWU (env reg1) (env reg2) (env reg3)
MULLW_MayOflo reg1 reg2 reg3
-> MULLW_MayOflo (env reg1) (env reg2) (env reg3)
AND reg1 reg2 ri -> AND (env reg1) (env reg2) (fixRI ri)
OR reg1 reg2 ri -> OR (env reg1) (env reg2) (fixRI ri)
XOR reg1 reg2 ri -> XOR (env reg1) (env reg2) (fixRI ri)
XORIS reg1 reg2 imm -> XORIS (env reg1) (env reg2) imm
EXTS sz reg1 reg2 -> EXTS sz (env reg1) (env reg2)
NEG reg1 reg2 -> NEG (env reg1) (env reg2)
NOT reg1 reg2 -> NOT (env reg1) (env reg2)
SLW reg1 reg2 ri -> SLW (env reg1) (env reg2) (fixRI ri)
SRW reg1 reg2 ri -> SRW (env reg1) (env reg2) (fixRI ri)
SRAW reg1 reg2 ri -> SRAW (env reg1) (env reg2) (fixRI ri)
RLWINM reg1 reg2 sh mb me
-> RLWINM (env reg1) (env reg2) sh mb me
FADD sz r1 r2 r3 -> FADD sz (env r1) (env r2) (env r3)
FSUB sz r1 r2 r3 -> FSUB sz (env r1) (env r2) (env r3)
FMUL sz r1 r2 r3 -> FMUL sz (env r1) (env r2) (env r3)
FDIV sz r1 r2 r3 -> FDIV sz (env r1) (env r2) (env r3)
FNEG r1 r2 -> FNEG (env r1) (env r2)
FCMP r1 r2 -> FCMP (env r1) (env r2)
FCTIWZ r1 r2 -> FCTIWZ (env r1) (env r2)
FRSP r1 r2 -> FRSP (env r1) (env r2)
MFCR reg -> MFCR (env reg)
MFLR reg -> MFLR (env reg)
FETCHPC reg -> FETCHPC (env reg)
_ -> instr
where
fixAddr (AddrRegReg r1 r2) = AddrRegReg (env r1) (env r2)
fixAddr (AddrRegImm r1 i) = AddrRegImm (env r1) i
fixRI (RIReg r) = RIReg (env r)
fixRI other = other
#endif /* powerpc_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- Detecting reg->reg moves
-- The register allocator attempts to eliminate reg->reg moves whenever it can,
-- by assigning the src and dest temporaries to the same real register.
isRegRegMove :: Instr -> Maybe (Reg,Reg)
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
-- TMP:
isRegRegMove (MOV _ (OpReg r1) (OpReg r2)) = Just (r1,r2)
#elif powerpc_TARGET_ARCH
isRegRegMove (MR dst src) = Just (src,dst)
#else
#warning ToDo: isRegRegMove
#endif
isRegRegMove _ = Nothing
-- -----------------------------------------------------------------------------
-- Generating spill instructions
mkSpillInstr
:: Reg -- register to spill
-> Int -- current stack delta
-> Int -- spill slot to use
-> Instr
mkSpillInstr reg delta slot
= let off = spillSlotToOffset slot
in
#ifdef alpha_TARGET_ARCH
{-Alpha: spill below the stack pointer (?)-}
ST sz dyn (spRel (- (off `div` 8)))
#endif
#ifdef i386_TARGET_ARCH
let off_w = (off-delta) `div` 4
in case regClass reg of
RcInteger -> MOV I32 (OpReg reg) (OpAddr (spRel off_w))
_ -> GST F80 reg (spRel off_w) {- RcFloat/RcDouble -}
#endif
#ifdef x86_64_TARGET_ARCH
let off_w = (off-delta) `div` 8
in case regClass reg of
RcInteger -> MOV I64 (OpReg reg) (OpAddr (spRel off_w))
RcDouble -> MOV F64 (OpReg reg) (OpAddr (spRel off_w))
-- ToDo: will it work to always spill as a double?
-- does that cause a stall if the data was a float?
#endif
#ifdef sparc_TARGET_ARCH
{-SPARC: spill below frame pointer leaving 2 words/spill-}
let{off_w = 1 + (off `div` 4);
sz = case regClass reg of {
RcInteger -> I32;
RcFloat -> F32;
RcDouble -> F64}}
in ST sz reg (fpRel (- off_w))
#endif
#ifdef powerpc_TARGET_ARCH
let sz = case regClass reg of
RcInteger -> I32
RcDouble -> F64
in ST sz reg (AddrRegImm sp (ImmInt (off-delta)))
#endif
mkLoadInstr
:: Reg -- register to load
-> Int -- current stack delta
-> Int -- spill slot to use
-> Instr
mkLoadInstr reg delta slot
= let off = spillSlotToOffset slot
in
#if alpha_TARGET_ARCH
LD sz dyn (spRel (- (off `div` 8)))
#endif
#if i386_TARGET_ARCH
let off_w = (off-delta) `div` 4
in case regClass reg of {
RcInteger -> MOV I32 (OpAddr (spRel off_w)) (OpReg reg);
_ -> GLD F80 (spRel off_w) reg} {- RcFloat/RcDouble -}
#endif
#if x86_64_TARGET_ARCH
let off_w = (off-delta) `div` 8
in case regClass reg of
RcInteger -> MOV I64 (OpAddr (spRel off_w)) (OpReg reg)
_ -> MOV F64 (OpAddr (spRel off_w)) (OpReg reg)
#endif
#if sparc_TARGET_ARCH
let{off_w = 1 + (off `div` 4);
sz = case regClass reg of {
RcInteger -> I32;
RcFloat -> F32;
RcDouble -> F64}}
in LD sz (fpRel (- off_w)) reg
#endif
#if powerpc_TARGET_ARCH
let sz = case regClass reg of
RcInteger -> I32
RcDouble -> F64
in LD sz reg (AddrRegImm sp (ImmInt (off-delta)))
#endif
mkRegRegMoveInstr
:: Reg
-> Reg
-> Instr
mkRegRegMoveInstr src dst
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
= case regClass src of
RcInteger -> MOV wordRep (OpReg src) (OpReg dst)
#if i386_TARGET_ARCH
RcDouble -> GMOV src dst
#else
RcDouble -> MOV F64 (OpReg src) (OpReg dst)
#endif
#elif powerpc_TARGET_ARCH
= MR dst src
#endif
mkBranchInstr
:: BlockId
-> [Instr]
#if alpha_TARGET_ARCH
mkBranchInstr id = [BR id]
#endif
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
mkBranchInstr id = [JXX ALWAYS id]
#endif
#if sparc_TARGET_ARCH
mkBranchInstr (BlockId id) = [BI ALWAYS False (ImmCLbl (mkAsmTempLabel id)), NOP]
#endif
#if powerpc_TARGET_ARCH
mkBranchInstr id = [BCC ALWAYS id]
#endif
spillSlotSize :: Int
spillSlotSize = IF_ARCH_i386(12, 8)
maxSpillSlots :: Int
maxSpillSlots = ((rESERVED_C_STACK_BYTES - 64) `div` spillSlotSize) - 1
-- convert a spill slot number to a *byte* offset, with no sign:
-- decide on a per arch basis whether you are spilling above or below
-- the C stack pointer.
spillSlotToOffset :: Int -> Int
spillSlotToOffset slot
| slot >= 0 && slot < maxSpillSlots
= 64 + spillSlotSize * slot
| otherwise
= pprPanic "spillSlotToOffset:"
( text "invalid spill location: " <> int slot
$$ text "maxSpillSlots: " <> int maxSpillSlots)
|