1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
|
{-# OPTIONS_GHC -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
-- http://hackage.haskell.org/trac/ghc/wiki/WorkingConventions#Warnings
-- for details
-----------------------------------------------------------------------------
--
-- The register allocator
--
-- (c) The University of Glasgow 2004
--
-----------------------------------------------------------------------------
{-
The algorithm is roughly:
1) Compute strongly connected components of the basic block list.
2) Compute liveness (mapping from pseudo register to
point(s) of death?).
3) Walk instructions in each basic block. We keep track of
(a) Free real registers (a bitmap?)
(b) Current assignment of temporaries to machine registers and/or
spill slots (call this the "assignment").
(c) Partial mapping from basic block ids to a virt-to-loc mapping.
When we first encounter a branch to a basic block,
we fill in its entry in this table with the current mapping.
For each instruction:
(a) For each real register clobbered by this instruction:
If a temporary resides in it,
If the temporary is live after this instruction,
Move the temporary to another (non-clobbered & free) reg,
or spill it to memory. Mark the temporary as residing
in both memory and a register if it was spilled (it might
need to be read by this instruction).
(ToDo: this is wrong for jump instructions?)
(b) For each temporary *read* by the instruction:
If the temporary does not have a real register allocation:
- Allocate a real register from the free list. If
the list is empty:
- Find a temporary to spill. Pick one that is
not used in this instruction (ToDo: not
used for a while...)
- generate a spill instruction
- If the temporary was previously spilled,
generate an instruction to read the temp from its spill loc.
(optimisation: if we can see that a real register is going to
be used soon, then don't use it for allocation).
(c) Update the current assignment
(d) If the intstruction is a branch:
if the destination block already has a register assignment,
Generate a new block with fixup code and redirect the
jump to the new block.
else,
Update the block id->assignment mapping with the current
assignment.
(e) Delete all register assignments for temps which are read
(only) and die here. Update the free register list.
(f) Mark all registers clobbered by this instruction as not free,
and mark temporaries which have been spilled due to clobbering
as in memory (step (a) marks then as in both mem & reg).
(g) For each temporary *written* by this instruction:
Allocate a real register as for (b), spilling something
else if necessary.
- except when updating the assignment, drop any memory
locations that the temporary was previously in, since
they will be no longer valid after this instruction.
(h) Delete all register assignments for temps which are
written and die here (there should rarely be any). Update
the free register list.
(i) Rewrite the instruction with the new mapping.
(j) For each spilled reg known to be now dead, re-add its stack slot
to the free list.
-}
module RegAllocLinear (
regAlloc,
RegAllocStats, pprStats
) where
#include "HsVersions.h"
import MachRegs
import MachInstrs
import RegAllocInfo
import RegLiveness
import Cmm
import Digraph
import Unique ( Uniquable(getUnique), Unique )
import UniqSet
import UniqFM
import UniqSupply
import Outputable
import State
#ifndef DEBUG
import Data.Maybe ( fromJust )
#endif
import Data.List ( nub, partition, mapAccumL, foldl')
import Control.Monad ( when )
import Data.Word
import Data.Bits
-- -----------------------------------------------------------------------------
-- The free register set
-- This needs to be *efficient*
{- Here's an inefficient 'executable specification' of the FreeRegs data type:
type FreeRegs = [RegNo]
noFreeRegs = 0
releaseReg n f = if n `elem` f then f else (n : f)
initFreeRegs = allocatableRegs
getFreeRegs cls f = filter ( (==cls) . regClass . RealReg ) f
allocateReg f r = filter (/= r) f
-}
#if defined(powerpc_TARGET_ARCH)
-- The PowerPC has 32 integer and 32 floating point registers.
-- This is 32bit PowerPC, so Word64 is inefficient - two Word32s are much
-- better.
-- Note that when getFreeRegs scans for free registers, it starts at register
-- 31 and counts down. This is a hack for the PowerPC - the higher-numbered
-- registers are callee-saves, while the lower regs are caller-saves, so it
-- makes sense to start at the high end.
-- Apart from that, the code does nothing PowerPC-specific, so feel free to
-- add your favourite platform to the #if (if you have 64 registers but only
-- 32-bit words).
data FreeRegs = FreeRegs !Word32 !Word32
deriving( Show ) -- The Show is used in an ASSERT
noFreeRegs :: FreeRegs
noFreeRegs = FreeRegs 0 0
releaseReg :: RegNo -> FreeRegs -> FreeRegs
releaseReg r (FreeRegs g f)
| r > 31 = FreeRegs g (f .|. (1 `shiftL` (fromIntegral r - 32)))
| otherwise = FreeRegs (g .|. (1 `shiftL` fromIntegral r)) f
initFreeRegs :: FreeRegs
initFreeRegs = foldr releaseReg noFreeRegs allocatableRegs
getFreeRegs :: RegClass -> FreeRegs -> [RegNo] -- lazilly
getFreeRegs cls (FreeRegs g f)
| RcDouble <- cls = go f (0x80000000) 63
| RcInteger <- cls = go g (0x80000000) 31
where
go x 0 i = []
go x m i | x .&. m /= 0 = i : (go x (m `shiftR` 1) $! i-1)
| otherwise = go x (m `shiftR` 1) $! i-1
allocateReg :: RegNo -> FreeRegs -> FreeRegs
allocateReg r (FreeRegs g f)
| r > 31 = FreeRegs g (f .&. complement (1 `shiftL` (fromIntegral r - 32)))
| otherwise = FreeRegs (g .&. complement (1 `shiftL` fromIntegral r)) f
#else
-- If we have less than 32 registers, or if we have efficient 64-bit words,
-- we will just use a single bitfield.
#if defined(alpha_TARGET_ARCH)
type FreeRegs = Word64
#else
type FreeRegs = Word32
#endif
noFreeRegs :: FreeRegs
noFreeRegs = 0
releaseReg :: RegNo -> FreeRegs -> FreeRegs
releaseReg n f = f .|. (1 `shiftL` n)
initFreeRegs :: FreeRegs
initFreeRegs = foldr releaseReg noFreeRegs allocatableRegs
getFreeRegs :: RegClass -> FreeRegs -> [RegNo] -- lazilly
getFreeRegs cls f = go f 0
where go 0 m = []
go n m
| n .&. 1 /= 0 && regClass (RealReg m) == cls
= m : (go (n `shiftR` 1) $! (m+1))
| otherwise
= go (n `shiftR` 1) $! (m+1)
-- ToDo: there's no point looking through all the integer registers
-- in order to find a floating-point one.
allocateReg :: RegNo -> FreeRegs -> FreeRegs
allocateReg r f = f .&. complement (1 `shiftL` fromIntegral r)
#endif
-- -----------------------------------------------------------------------------
-- The assignment of virtual registers to stack slots
-- We have lots of stack slots. Memory-to-memory moves are a pain on most
-- architectures. Therefore, we avoid having to generate memory-to-memory moves
-- by simply giving every virtual register its own stack slot.
-- The StackMap stack map keeps track of virtual register - stack slot
-- associations and of which stack slots are still free. Once it has been
-- associated, a stack slot is never "freed" or removed from the StackMap again,
-- it remains associated until we are done with the current CmmProc.
type StackSlot = Int
data StackMap = StackMap [StackSlot] (UniqFM StackSlot)
emptyStackMap :: StackMap
emptyStackMap = StackMap [0..maxSpillSlots] emptyUFM
getStackSlotFor :: StackMap -> Unique -> (StackMap,Int)
getStackSlotFor fs@(StackMap [] reserved) reg
= panic "RegAllocLinear.getStackSlotFor: out of stack slots"
getStackSlotFor fs@(StackMap (freeSlot:stack') reserved) reg =
case lookupUFM reserved reg of
Just slot -> (fs,slot)
Nothing -> (StackMap stack' (addToUFM reserved reg freeSlot), freeSlot)
-- -----------------------------------------------------------------------------
-- Top level of the register allocator
-- Allocate registers
regAlloc
:: LiveCmmTop
-> UniqSM (NatCmmTop, Maybe RegAllocStats)
regAlloc cmm@(CmmData sec d)
= return
( CmmData sec d
, Nothing )
regAlloc cmm@(CmmProc (LiveInfo info _ _) lbl params [])
= return
( CmmProc info lbl params []
, Nothing )
regAlloc cmm@(CmmProc static lbl params comps)
| LiveInfo info (Just first_id) block_live <- static
= do
-- do register allocation on each component.
(final_blocks, stats)
<- linearRegAlloc block_live
$ map (\b -> case b of
BasicBlock i [b] -> AcyclicSCC b
BasicBlock i bs -> CyclicSCC bs)
$ comps
-- make sure the block that was first in the input list
-- stays at the front of the output
let ((first':_), rest')
= partition ((== first_id) . blockId) final_blocks
return ( CmmProc info lbl params (first' : rest')
, Just stats)
-- -----------------------------------------------------------------------------
-- Linear sweep to allocate registers
data Loc = InReg {-# UNPACK #-} !RegNo
| InMem {-# UNPACK #-} !Int -- stack slot
| InBoth {-# UNPACK #-} !RegNo
{-# UNPACK #-} !Int -- stack slot
deriving (Eq, Show, Ord)
{-
A temporary can be marked as living in both a register and memory
(InBoth), for example if it was recently loaded from a spill location.
This makes it cheap to spill (no save instruction required), but we
have to be careful to turn this into InReg if the value in the
register is changed.
This is also useful when a temporary is about to be clobbered. We
save it in a spill location, but mark it as InBoth because the current
instruction might still want to read it.
-}
#ifdef DEBUG
instance Outputable Loc where
ppr l = text (show l)
#endif
-- | Do register allocation on some basic blocks.
--
linearRegAlloc
:: BlockMap RegSet -- ^ live regs on entry to each basic block
-> [SCC LiveBasicBlock] -- ^ instructions annotated with "deaths"
-> UniqSM ([NatBasicBlock], RegAllocStats)
linearRegAlloc block_live sccs
= do us <- getUs
let (block_assig', stackMap', stats, blocks) =
runR emptyBlockMap initFreeRegs emptyRegMap emptyStackMap us
$ linearRA_SCCs block_live [] sccs
return (blocks, stats)
linearRA_SCCs block_live blocksAcc []
= return $ reverse blocksAcc
linearRA_SCCs block_live blocksAcc (AcyclicSCC block : sccs)
= do blocks' <- processBlock block_live block
linearRA_SCCs block_live
((reverse blocks') ++ blocksAcc)
sccs
linearRA_SCCs block_live blocksAcc (CyclicSCC blocks : sccs)
= do blockss' <- mapM (processBlock block_live) blocks
linearRA_SCCs block_live
(reverse (concat blockss') ++ blocksAcc)
sccs
-- | Do register allocation on this basic block
--
processBlock
:: BlockMap RegSet -- ^ live regs on entry to each basic block
-> LiveBasicBlock -- ^ block to do register allocation on
-> RegM [NatBasicBlock] -- ^ block with registers allocated
processBlock block_live (BasicBlock id instrs)
= do initBlock id
(instrs', fixups)
<- linearRA block_live [] [] instrs
return $ BasicBlock id instrs' : fixups
-- | Load the freeregs and current reg assignment into the RegM state
-- for the basic block with this BlockId.
initBlock :: BlockId -> RegM ()
initBlock id
= do block_assig <- getBlockAssigR
case lookupUFM block_assig id of
-- no prior info about this block: assume everything is
-- free and the assignment is empty.
Nothing
-> do setFreeRegsR initFreeRegs
setAssigR emptyRegMap
-- load info about register assignments leading into this block.
Just (freeregs, assig)
-> do setFreeRegsR freeregs
setAssigR assig
linearRA
:: BlockMap RegSet
-> [Instr] -> [NatBasicBlock] -> [LiveInstr]
-> RegM ([Instr], [NatBasicBlock])
linearRA block_live instr_acc fixups []
= return (reverse instr_acc, fixups)
linearRA block_live instr_acc fixups (instr:instrs)
= do (instr_acc', new_fixups) <- raInsn block_live instr_acc instr
linearRA block_live instr_acc' (new_fixups++fixups) instrs
-- -----------------------------------------------------------------------------
-- Register allocation for a single instruction
type BlockAssignment = BlockMap (FreeRegs, RegMap Loc)
raInsn :: BlockMap RegSet -- Live temporaries at each basic block
-> [Instr] -- new instructions (accum.)
-> LiveInstr -- the instruction (with "deaths")
-> RegM (
[Instr], -- new instructions
[NatBasicBlock] -- extra fixup blocks
)
raInsn block_live new_instrs (Instr instr@(COMMENT _) Nothing)
= return (new_instrs, [])
raInsn block_live new_instrs (Instr instr@(DELTA n) Nothing)
= do
setDeltaR n
return (new_instrs, [])
raInsn block_live new_instrs (Instr instr (Just live))
= do
assig <- getAssigR
-- If we have a reg->reg move between virtual registers, where the
-- src register is not live after this instruction, and the dst
-- register does not already have an assignment,
-- and the source register is assigned to a register, not to a spill slot,
-- then we can eliminate the instruction.
-- (we can't eliminitate it if the source register is on the stack, because
-- we do not want to use one spill slot for different virtual registers)
case isRegRegMove instr of
Just (src,dst) | src `elementOfUniqSet` (liveDieRead live),
isVirtualReg dst,
not (dst `elemUFM` assig),
Just (InReg _) <- (lookupUFM assig src) -> do
case src of
RealReg i -> setAssigR (addToUFM assig dst (InReg i))
-- if src is a fixed reg, then we just map dest to this
-- reg in the assignment. src must be an allocatable reg,
-- otherwise it wouldn't be in r_dying.
_virt -> case lookupUFM assig src of
Nothing -> panic "raInsn"
Just loc ->
setAssigR (addToUFM (delFromUFM assig src) dst loc)
-- we have elimianted this instruction
{-
freeregs <- getFreeRegsR
assig <- getAssigR
pprTrace "raInsn" (text "ELIMINATED: " <> docToSDoc (pprInstr instr) $$ ppr r_dying <+> ppr w_dying $$ text (show freeregs) $$ ppr assig) $ do
-}
return (new_instrs, [])
other -> genRaInsn block_live new_instrs instr
(uniqSetToList $ liveDieRead live)
(uniqSetToList $ liveDieWrite live)
raInsn block_live new_instrs li
= pprPanic "raInsn" (text "no match for:" <> ppr li)
genRaInsn block_live new_instrs instr r_dying w_dying =
case regUsage instr of { RU read written ->
case partition isRealReg written of { (real_written1,virt_written) ->
do
let
real_written = [ r | RealReg r <- real_written1 ]
-- we don't need to do anything with real registers that are
-- only read by this instr. (the list is typically ~2 elements,
-- so using nub isn't a problem).
virt_read = nub (filter isVirtualReg read)
-- in
-- (a) save any temporaries which will be clobbered by this instruction
clobber_saves <- saveClobberedTemps real_written r_dying
{-
freeregs <- getFreeRegsR
assig <- getAssigR
pprTrace "raInsn" (docToSDoc (pprInstr instr) $$ ppr r_dying <+> ppr w_dying $$ ppr virt_read <+> ppr virt_written $$ text (show freeregs) $$ ppr assig) $ do
-}
-- (b), (c) allocate real regs for all regs read by this instruction.
(r_spills, r_allocd) <-
allocateRegsAndSpill True{-reading-} virt_read [] [] virt_read
-- (d) Update block map for new destinations
-- NB. do this before removing dead regs from the assignment, because
-- these dead regs might in fact be live in the jump targets (they're
-- only dead in the code that follows in the current basic block).
(fixup_blocks, adjusted_instr)
<- joinToTargets block_live [] instr (jumpDests instr [])
-- (e) Delete all register assignments for temps which are read
-- (only) and die here. Update the free register list.
releaseRegs r_dying
-- (f) Mark regs which are clobbered as unallocatable
clobberRegs real_written
-- (g) Allocate registers for temporaries *written* (only)
(w_spills, w_allocd) <-
allocateRegsAndSpill False{-writing-} virt_written [] [] virt_written
-- (h) Release registers for temps which are written here and not
-- used again.
releaseRegs w_dying
let
-- (i) Patch the instruction
patch_map = listToUFM [ (t,RealReg r) |
(t,r) <- zip virt_read r_allocd
++ zip virt_written w_allocd ]
patched_instr = patchRegs adjusted_instr patchLookup
patchLookup x = case lookupUFM patch_map x of
Nothing -> x
Just y -> y
-- in
-- pprTrace "patched" (docToSDoc (pprInstr patched_instr)) $ do
-- (j) free up stack slots for dead spilled regs
-- TODO (can't be bothered right now)
-- erase reg->reg moves where the source and destination are the same.
-- If the src temp didn't die in this instr but happened to be allocated
-- to the same real reg as the destination, then we can erase the move anyway.
squashed_instr = case isRegRegMove patched_instr of
Just (src, dst)
| src == dst -> []
_ -> [patched_instr]
return (squashed_instr ++ w_spills ++ reverse r_spills
++ clobber_saves ++ new_instrs,
fixup_blocks)
}}
-- -----------------------------------------------------------------------------
-- releaseRegs
releaseRegs regs = do
assig <- getAssigR
free <- getFreeRegsR
loop assig free regs
where
loop assig free _ | free `seq` False = undefined
loop assig free [] = do setAssigR assig; setFreeRegsR free; return ()
loop assig free (RealReg r : rs) = loop assig (releaseReg r free) rs
loop assig free (r:rs) =
case lookupUFM assig r of
Just (InBoth real _) -> loop (delFromUFM assig r) (releaseReg real free) rs
Just (InReg real) -> loop (delFromUFM assig r) (releaseReg real free) rs
_other -> loop (delFromUFM assig r) free rs
-- -----------------------------------------------------------------------------
-- Clobber real registers
{-
For each temp in a register that is going to be clobbered:
- if the temp dies after this instruction, do nothing
- otherwise, put it somewhere safe (another reg if possible,
otherwise spill and record InBoth in the assignment).
for allocateRegs on the temps *read*,
- clobbered regs are allocatable.
for allocateRegs on the temps *written*,
- clobbered regs are not allocatable.
-}
saveClobberedTemps
:: [RegNo] -- real registers clobbered by this instruction
-> [Reg] -- registers which are no longer live after this insn
-> RegM [Instr] -- return: instructions to spill any temps that will
-- be clobbered.
saveClobberedTemps [] _ = return [] -- common case
saveClobberedTemps clobbered dying = do
assig <- getAssigR
let
to_spill = [ (temp,reg) | (temp, InReg reg) <- ufmToList assig,
reg `elem` clobbered,
temp `notElem` map getUnique dying ]
-- in
(instrs,assig') <- clobber assig [] to_spill
setAssigR assig'
return instrs
where
clobber assig instrs [] = return (instrs,assig)
clobber assig instrs ((temp,reg):rest)
= do
--ToDo: copy it to another register if possible
(spill,slot) <- spillR (RealReg reg) temp
recordSpill (SpillClobber temp)
let new_assign = addToUFM assig temp (InBoth reg slot)
clobber new_assign (spill : COMMENT FSLIT("spill clobber") : instrs) rest
clobberRegs :: [RegNo] -> RegM ()
clobberRegs [] = return () -- common case
clobberRegs clobbered = do
freeregs <- getFreeRegsR
setFreeRegsR $! foldr allocateReg freeregs clobbered
assig <- getAssigR
setAssigR $! clobber assig (ufmToList assig)
where
-- if the temp was InReg and clobbered, then we will have
-- saved it in saveClobberedTemps above. So the only case
-- we have to worry about here is InBoth. Note that this
-- also catches temps which were loaded up during allocation
-- of read registers, not just those saved in saveClobberedTemps.
clobber assig [] = assig
clobber assig ((temp, InBoth reg slot) : rest)
| reg `elem` clobbered
= clobber (addToUFM assig temp (InMem slot)) rest
clobber assig (entry:rest)
= clobber assig rest
-- -----------------------------------------------------------------------------
-- allocateRegsAndSpill
-- This function does several things:
-- For each temporary referred to by this instruction,
-- we allocate a real register (spilling another temporary if necessary).
-- We load the temporary up from memory if necessary.
-- We also update the register assignment in the process, and
-- the list of free registers and free stack slots.
allocateRegsAndSpill
:: Bool -- True <=> reading (load up spilled regs)
-> [Reg] -- don't push these out
-> [Instr] -- spill insns
-> [RegNo] -- real registers allocated (accum.)
-> [Reg] -- temps to allocate
-> RegM ([Instr], [RegNo])
allocateRegsAndSpill reading keep spills alloc []
= return (spills,reverse alloc)
allocateRegsAndSpill reading keep spills alloc (r:rs) = do
assig <- getAssigR
case lookupUFM assig r of
-- case (1a): already in a register
Just (InReg my_reg) ->
allocateRegsAndSpill reading keep spills (my_reg:alloc) rs
-- case (1b): already in a register (and memory)
-- NB1. if we're writing this register, update its assignemnt to be
-- InReg, because the memory value is no longer valid.
-- NB2. This is why we must process written registers here, even if they
-- are also read by the same instruction.
Just (InBoth my_reg mem) -> do
when (not reading) (setAssigR (addToUFM assig r (InReg my_reg)))
allocateRegsAndSpill reading keep spills (my_reg:alloc) rs
-- Not already in a register, so we need to find a free one...
loc -> do
freeregs <- getFreeRegsR
case getFreeRegs (regClass r) freeregs of
-- case (2): we have a free register
my_reg:_ -> do
spills' <- loadTemp reading r loc my_reg spills
let new_loc
| Just (InMem slot) <- loc, reading = InBoth my_reg slot
| otherwise = InReg my_reg
setAssigR (addToUFM assig r $! new_loc)
setFreeRegsR (allocateReg my_reg freeregs)
allocateRegsAndSpill reading keep spills' (my_reg:alloc) rs
-- case (3): we need to push something out to free up a register
[] -> do
let
keep' = map getUnique keep
candidates1 = [ (temp,reg,mem)
| (temp, InBoth reg mem) <- ufmToList assig,
temp `notElem` keep', regClass (RealReg reg) == regClass r ]
candidates2 = [ (temp,reg)
| (temp, InReg reg) <- ufmToList assig,
temp `notElem` keep', regClass (RealReg reg) == regClass r ]
-- in
ASSERT2(not (null candidates1 && null candidates2),
text (show freeregs) <+> ppr r <+> ppr assig) do
case candidates1 of
-- we have a temporary that is in both register and mem,
-- just free up its register for use.
--
(temp,my_reg,slot):_ -> do
spills' <- loadTemp reading r loc my_reg spills
let
assig1 = addToUFM assig temp (InMem slot)
assig2 = addToUFM assig1 r (InReg my_reg)
-- in
setAssigR assig2
allocateRegsAndSpill reading keep spills' (my_reg:alloc) rs
-- otherwise, we need to spill a temporary that currently
-- resides in a register.
[] -> do
-- TODO: plenty of room for optimisation in choosing which temp
-- to spill. We just pick the first one that isn't used in
-- the current instruction for now.
let (temp_to_push_out, my_reg) = myHead "regalloc" candidates2
(spill_insn, slot) <- spillR (RealReg my_reg) temp_to_push_out
let spill_store = (if reading then id else reverse)
[ COMMENT FSLIT("spill alloc")
, spill_insn ]
-- record that this temp was spilled
recordSpill (SpillAlloc temp_to_push_out)
-- update the register assignment
let assig1 = addToUFM assig temp_to_push_out (InMem slot)
let assig2 = addToUFM assig1 r (InReg my_reg)
setAssigR assig2
-- if need be, load up a spilled temp into the reg we've just freed up.
spills' <- loadTemp reading r loc my_reg spills
allocateRegsAndSpill reading keep
(spill_store ++ spills')
(my_reg:alloc) rs
-- | Load up a spilled temporary if we need to.
loadTemp
:: Bool
-> Reg -- the temp being loaded
-> Maybe Loc -- the current location of this temp
-> RegNo -- the hreg to load the temp into
-> [Instr]
-> RegM [Instr]
loadTemp True vreg (Just (InMem slot)) hreg spills
= do
insn <- loadR (RealReg hreg) slot
recordSpill (SpillLoad $ getUnique vreg)
return $ COMMENT FSLIT("spill load") : insn : spills
loadTemp _ _ _ _ spills =
return spills
myHead s [] = panic s
myHead s (x:xs) = x
-- -----------------------------------------------------------------------------
-- Joining a jump instruction to its targets
-- The first time we encounter a jump to a particular basic block, we
-- record the assignment of temporaries. The next time we encounter a
-- jump to the same block, we compare our current assignment to the
-- stored one. They might be different if spilling has occrred in one
-- branch; so some fixup code will be required to match up the
-- assignments.
joinToTargets
:: BlockMap RegSet
-> [NatBasicBlock]
-> Instr
-> [BlockId]
-> RegM ([NatBasicBlock], Instr)
joinToTargets block_live new_blocks instr []
= return (new_blocks, instr)
joinToTargets block_live new_blocks instr (dest:dests) = do
block_assig <- getBlockAssigR
assig <- getAssigR
let
-- adjust the assignment to remove any registers which are not
-- live on entry to the destination block.
adjusted_assig = filterUFM_Directly still_live assig
live_set = lookItUp "joinToTargets" block_live dest
still_live uniq _ = uniq `elemUniqSet_Directly` live_set
-- and free up those registers which are now free.
to_free =
[ r | (reg, loc) <- ufmToList assig,
not (elemUniqSet_Directly reg live_set),
r <- regsOfLoc loc ]
regsOfLoc (InReg r) = [r]
regsOfLoc (InBoth r _) = [r]
regsOfLoc (InMem _) = []
-- in
case lookupUFM block_assig dest of
-- Nothing <=> this is the first time we jumped to this
-- block.
Nothing -> do
freeregs <- getFreeRegsR
let freeregs' = foldr releaseReg freeregs to_free
setBlockAssigR (addToUFM block_assig dest
(freeregs',adjusted_assig))
joinToTargets block_live new_blocks instr dests
Just (freeregs,dest_assig)
-- the assignments match
| ufmToList dest_assig == ufmToList adjusted_assig
-> joinToTargets block_live new_blocks instr dests
-- need fixup code
| otherwise
-> do
delta <- getDeltaR
let graph = makeRegMovementGraph adjusted_assig dest_assig
let sccs = stronglyConnCompR graph
fixUpInstrs <- mapM (handleComponent delta instr) sccs
block_id <- getUniqueR
let block = BasicBlock (BlockId block_id) $
concat fixUpInstrs ++ mkBranchInstr dest
let instr' = patchJump instr dest (BlockId block_id)
joinToTargets block_live (block : new_blocks) instr' dests
-- | Construct a graph of register/spill movements.
--
-- We cut some corners by
-- a) not handling cyclic components
-- b) not handling memory-to-memory moves.
--
-- Cyclic components seem to occur only very rarely,
-- and we don't need memory-to-memory moves because we
-- make sure that every temporary always gets its own
-- stack slot.
makeRegMovementGraph :: RegMap Loc -> RegMap Loc -> [(Unique, Loc, [Loc])]
makeRegMovementGraph adjusted_assig dest_assig
= let
mkNodes src vreg
= expandNode vreg src
$ lookupWithDefaultUFM_Directly
dest_assig
(panic "RegisterAlloc.joinToTargets")
vreg
in [ node | (vreg, src) <- ufmToList adjusted_assig
, node <- mkNodes src vreg ]
-- The InBoth handling is a little tricky here. If
-- the destination is InBoth, then we must ensure that
-- the value ends up in both locations. An InBoth
-- destination must conflict with an InReg or InMem
-- source, so we expand an InBoth destination as
-- necessary. An InBoth source is slightly different:
-- we only care about the register that the source value
-- is in, so that we can move it to the destinations.
expandNode vreg loc@(InReg src) (InBoth dst mem)
| src == dst = [(vreg, loc, [InMem mem])]
| otherwise = [(vreg, loc, [InReg dst, InMem mem])]
expandNode vreg loc@(InMem src) (InBoth dst mem)
| src == mem = [(vreg, loc, [InReg dst])]
| otherwise = [(vreg, loc, [InReg dst, InMem mem])]
expandNode vreg loc@(InBoth _ src) (InMem dst)
| src == dst = [] -- guaranteed to be true
expandNode vreg loc@(InBoth src _) (InReg dst)
| src == dst = []
expandNode vreg loc@(InBoth src _) dst
= expandNode vreg (InReg src) dst
expandNode vreg src dst
| src == dst = []
| otherwise = [(vreg, src, [dst])]
-- | Make a move instruction between these two locations so we
-- can join together allocations for different basic blocks.
--
makeMove :: Int -> Unique -> Loc -> Loc -> RegM Instr
makeMove delta vreg (InReg src) (InReg dst)
= do recordSpill (SpillJoinRR vreg)
return $ mkRegRegMoveInstr (RealReg src) (RealReg dst)
makeMove delta vreg (InMem src) (InReg dst)
= do recordSpill (SpillJoinRM vreg)
return $ mkLoadInstr (RealReg dst) delta src
makeMove delta vreg (InReg src) (InMem dst)
= do recordSpill (SpillJoinRM vreg)
return $ mkSpillInstr (RealReg src) delta dst
makeMove delta vreg src dst
= panic $ "makeMove " ++ show vreg ++ " (" ++ show src ++ ") ("
++ show dst ++ ")"
++ " (workaround: use -fviaC)"
-- we have eliminated any possibility of single-node cylces
-- in expandNode above.
handleComponent :: Int -> Instr -> SCC (Unique, Loc, [Loc]) -> RegM [Instr]
handleComponent delta instr (AcyclicSCC (vreg,src,dsts))
= mapM (makeMove delta vreg src) dsts
-- we can not have cycles that involve memory
-- locations as source nor as single destination
-- because memory locations (stack slots) are
-- allocated exclusively for a virtual register and
-- therefore can not require a fixup
handleComponent delta instr (CyclicSCC ((vreg,src@(InReg sreg),dsts):rest))
= do
spill_id <- getUniqueR
(saveInstr,slot) <- spillR (RealReg sreg) spill_id
remainingFixUps <- mapM (handleComponent delta instr) (stronglyConnCompR rest)
restoreAndFixInstr <- getRestoreMoves dsts slot
return ([instr] ++ concat remainingFixUps ++ restoreAndFixInstr)
where
getRestoreMoves [r@(InReg reg), mem@(InMem _)] slot
= do
restoreToReg <- loadR (RealReg reg) slot
moveInstr <- makeMove delta vreg r mem
return $ [COMMENT FSLIT("spill join move"), restoreToReg, moveInstr]
getRestoreMoves [InReg reg] slot
= loadR (RealReg reg) slot >>= return . (:[])
getRestoreMoves [InMem _] _ = panic "getRestoreMoves can not handle memory only restores"
getRestoreMoves _ _ = panic "getRestoreMoves unknown case"
handleComponent delta instr (CyclicSCC _)
= panic "Register Allocator: handleComponent cyclic"
-- -----------------------------------------------------------------------------
-- The register allocator's monad.
-- Here we keep all the state that the register allocator keeps track
-- of as it walks the instructions in a basic block.
data RA_State
= RA_State {
ra_blockassig :: BlockAssignment,
-- The current mapping from basic blocks to
-- the register assignments at the beginning of that block.
ra_freeregs :: {-#UNPACK#-}!FreeRegs, -- free machine registers
ra_assig :: RegMap Loc, -- assignment of temps to locations
ra_delta :: Int, -- current stack delta
ra_stack :: StackMap, -- free stack slots for spilling
ra_us :: UniqSupply, -- unique supply for generating names
-- for fixup blocks.
-- Record why things were spilled, for -ddrop-asm-stats.
-- Just keep a list here instead of a map of regs -> reasons.
-- We don't want to slow down the allocator if we're not going to emit the stats.
ra_spills :: [SpillReason]
}
newtype RegM a = RegM { unReg :: RA_State -> (# RA_State, a #) }
instance Monad RegM where
m >>= k = RegM $ \s -> case unReg m s of { (# s, a #) -> unReg (k a) s }
return a = RegM $ \s -> (# s, a #)
runR :: BlockAssignment -> FreeRegs -> RegMap Loc -> StackMap -> UniqSupply
-> RegM a -> (BlockAssignment, StackMap, RegAllocStats, a)
runR block_assig freeregs assig stack us thing =
case unReg thing (RA_State{ ra_blockassig=block_assig, ra_freeregs=freeregs,
ra_assig=assig, ra_delta=0{-???-}, ra_stack=stack,
ra_us = us, ra_spills = [] }) of
(# state'@RA_State{ ra_blockassig=block_assig, ra_stack=stack', ra_spills=spills' }, returned_thing #)
-> (block_assig, stack', makeRAStats state', returned_thing)
spillR :: Reg -> Unique -> RegM (Instr, Int)
spillR reg temp = RegM $ \ s@RA_State{ra_delta=delta, ra_stack=stack} ->
let (stack',slot) = getStackSlotFor stack temp
instr = mkSpillInstr reg delta slot
in
(# s{ra_stack=stack'}, (instr,slot) #)
loadR :: Reg -> Int -> RegM Instr
loadR reg slot = RegM $ \ s@RA_State{ra_delta=delta} ->
(# s, mkLoadInstr reg delta slot #)
getFreeRegsR :: RegM FreeRegs
getFreeRegsR = RegM $ \ s@RA_State{ra_freeregs = freeregs} ->
(# s, freeregs #)
setFreeRegsR :: FreeRegs -> RegM ()
setFreeRegsR regs = RegM $ \ s ->
(# s{ra_freeregs = regs}, () #)
getAssigR :: RegM (RegMap Loc)
getAssigR = RegM $ \ s@RA_State{ra_assig = assig} ->
(# s, assig #)
setAssigR :: RegMap Loc -> RegM ()
setAssigR assig = RegM $ \ s ->
(# s{ra_assig=assig}, () #)
getBlockAssigR :: RegM BlockAssignment
getBlockAssigR = RegM $ \ s@RA_State{ra_blockassig = assig} ->
(# s, assig #)
setBlockAssigR :: BlockAssignment -> RegM ()
setBlockAssigR assig = RegM $ \ s ->
(# s{ra_blockassig = assig}, () #)
setDeltaR :: Int -> RegM ()
setDeltaR n = RegM $ \ s ->
(# s{ra_delta = n}, () #)
getDeltaR :: RegM Int
getDeltaR = RegM $ \s -> (# s, ra_delta s #)
getUniqueR :: RegM Unique
getUniqueR = RegM $ \s ->
case splitUniqSupply (ra_us s) of
(us1, us2) -> (# s{ra_us = us2}, uniqFromSupply us1 #)
-- | Record that a spill instruction was inserted, for profiling.
recordSpill :: SpillReason -> RegM ()
recordSpill spill
= RegM $ \s -> (# s { ra_spills = spill : ra_spills s}, () #)
-- -----------------------------------------------------------------------------
-- | Reasons why instructions might be inserted by the spiller.
-- Used when generating stats for -ddrop-asm-stats.
--
data SpillReason
= SpillAlloc !Unique -- ^ vreg was spilled to a slot so we could use its
-- current hreg for another vreg
| SpillClobber !Unique -- ^ vreg was moved because its hreg was clobbered
| SpillLoad !Unique -- ^ vreg was loaded from a spill slot
| SpillJoinRR !Unique -- ^ reg-reg move inserted during join to targets
| SpillJoinRM !Unique -- ^ reg-mem move inserted during join to targets
-- | Used to carry interesting stats out of the register allocator.
data RegAllocStats
= RegAllocStats
{ ra_spillInstrs :: UniqFM [Int] }
-- | Make register allocator stats from its final state.
makeRAStats :: RA_State -> RegAllocStats
makeRAStats state
= RegAllocStats
{ ra_spillInstrs = binSpillReasons (ra_spills state) }
-- | Build a map of how many times each reg was alloced, clobbered, loaded etc.
binSpillReasons
:: [SpillReason] -> UniqFM [Int]
binSpillReasons reasons
= addListToUFM_C
(zipWith (+))
emptyUFM
(map (\reason -> case reason of
SpillAlloc r -> (r, [1, 0, 0, 0, 0])
SpillClobber r -> (r, [0, 1, 0, 0, 0])
SpillLoad r -> (r, [0, 0, 1, 0, 0])
SpillJoinRR r -> (r, [0, 0, 0, 1, 0])
SpillJoinRM r -> (r, [0, 0, 0, 0, 1])) reasons)
-- | Count reg-reg moves remaining in this code.
countRegRegMovesNat :: NatCmmTop -> Int
countRegRegMovesNat cmm
= execState (mapGenBlockTopM countBlock cmm) 0
where
countBlock b@(BasicBlock i instrs)
= do instrs' <- mapM countInstr instrs
return b
countInstr instr
| Just _ <- isRegRegMove instr
= do modify (+ 1)
return instr
| otherwise
= return instr
-- | Pretty print some RegAllocStats
pprStats :: [NatCmmTop] -> [RegAllocStats] -> SDoc
pprStats code statss
= let -- sum up all the instrs inserted by the spiller
spills = foldl' (plusUFM_C (zipWith (+)))
emptyUFM
$ map ra_spillInstrs statss
spillTotals = foldl' (zipWith (+))
[0, 0, 0, 0, 0]
$ eltsUFM spills
-- count how many reg-reg-moves remain in the code
moves = sum $ map countRegRegMovesNat code
pprSpill (reg, spills)
= parens $ (hcat $ punctuate (text ", ") (doubleQuotes (ppr reg) : map ppr spills))
in ( text "-- spills-added-total"
$$ text "-- (allocs, clobbers, loads, joinRR, joinRM, reg_reg_moves_remaining)"
$$ (parens $ (hcat $ punctuate (text ", ") (map ppr spillTotals ++ [ppr moves])))
$$ text ""
$$ text "-- spills-added"
$$ text "-- (reg_name, allocs, clobbers, loads, joinRR, joinRM)"
$$ (vcat $ map pprSpill
$ ufmToList spills)
$$ text "")
-- -----------------------------------------------------------------------------
-- Utils
#ifdef DEBUG
my_fromJust s p Nothing = pprPanic ("fromJust: " ++ s) p
my_fromJust s p (Just x) = x
#else
my_fromJust _ _ = fromJust
#endif
lookItUp :: Uniquable b => String -> UniqFM a -> b -> a
lookItUp str fm x = my_fromJust str (ppr (getUnique x)) (lookupUFM fm x)
|